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GREEN MEASURES FOR MARKOV PROCESSES

YURI KONDRATIEV AND JOS�E L. DA SILVA

Abstract. In this paper we study Green measures of certain classes of Markov
processes. In particular Brownian motion and processes with jump generators with
di�erent tails. The Green measures are represented as a sum of a singular and a
regular part given in terms of the jump generator. The main technical question is to
�nd a bound for the regular part.

�¨ ¢¨¢ç õ¬® ¬÷à¨ òà÷  ¤«ï ¤¥ïª¨å ª« á÷¢ ¬ àª÷¢áìª¨å ¯à®æ¥á÷¢. �®ªà¥¬ 
¤«ï ¡à®ã÷¢áìª®£® àãåã ÷ áâà¨¡ª®¢¨å ¯à®æ¥á÷¢. �÷à¨ òà÷  ¬÷áâïâì á¨£ã«ïàã ÷
à¥£ã«ïàã ª®¬¯®¥â¨. �á®¢  § ¤ ç  ¯®«ï£ õ ¢ ®æ÷æ÷ à¥£ã«ïà®ù ç áâ¨¨.

1. Introduction

Let X(t), t \geq 0 be a time homogeneous Markov process in \BbbR d starting from the point
x \in \BbbR d. For a function f : \BbbR d \rightarrow \BbbR we consider the following heuristic object

V (f, x) =

\int \infty 

0

Ex[f(X(t)]dt.

If this quantity exists then V (f, x) is called the potential for the function f . The notions
of potentials is well known in probability theory, see e.g., [1, 11].

The existence of the potential V (f, x) is a di�cult question and the class of admissible
f shall be analyzed for each process separately. An alternative approach is based on the
use of the generator L of the processX. Namely, the potential V (f, x)may be constructed
as the solution to the following equation:

 - LV = f.

Of course, there appear a technical problem of the characterization of the domain for
the inverse generator L - 1. For a general Markov process we can not characterize this
domain.

In the analogy with the PDE framework, we would like to have a representation

V (t, x) =

\int 
\BbbR d

f(y)\scrG (x,\mathrm{d}y),

where \scrG (x, dy) is a measure on \BbbR d. This measure is nothing but the fundamental solution
to the considered equation and traditionally may be called the Green measure for the
operator L. Our aim is to study Green measures for certain classes of Markov processes.
We stress again that the concepts of potentials and Green measures are related in the
same manner as the notions of solutions and fundamental solutions to the corresponding
equations.

In this paper we discuss general notion of Green measures for Markov processes and
consider particular examples of such processes for which the existence and properties of
Green measures may be analyzed.

2020 Mathematics Subject Classi�cation. 47D07, 37P30, 60J65, 60G55.
Keywords. Markov processes, Green measures, compound Poisson process, Brownian motion.

241

https://doi.org/10.31392/MFAT-npu26_3.2020.05


242 YURI KONDRATIEV AND JOS�E L. DA SILVA

2. General Framework

We will consider time homogeneous Markov processes X(t), t \geq 0 in \BbbR d, see for
example [1, 3, 10, 11]. A standard way to de�ne a Markov process is to give the probability
Pt(x,B) of the transition from the point x \in \BbbR d to the Borel set B \subset \BbbR d in the time
t > 0. In some cases we may have

Pt(x,B) =

\int 
B

pt(x, y) \mathrm{d}y,

where pt(x, y) is the density of the transition probability (heat kernel), that is, Pt(x, \mathrm{d}y) =
pt(x, y) \mathrm{d}y. The function

g(x, y) :=

\int \infty 

0

pt(x, y) \mathrm{d}t

is called the Green function, although the integral here may diverge. The existence of
the Green function for a given process or transition probability, even for simple classes
of Markov processes, is not always guaranteed, see examples below. Nevertheless, Green
functions for di�erent classes of Markov processes are well known in probability theory,
see, e.g., [2, 4] and references therein.

As an alternative we introduce the Green measure by

\scrG (x, \mathrm{d}y) :=
\int \infty 

0

Pt(x, \mathrm{d}y) \mathrm{d}t, x \in \BbbR d,

assuming the existence of this object as a Radon measure on \BbbR d. Then we would have
\scrG (x,\mathrm{d}y) = g(x, y) \mathrm{d}y. The aim of this paper is to show how to de�ne and study Green
measures for certain particular Markov processes in \BbbR d.

Let us be more precise. We can start with a Markov semigroup T (t), t \geq 0, that is,
a family of linear operators in a Banach space E. As E, we may use bounded measur-
able functions B(\BbbR d), bounded continuous functions Cb(\BbbR d) or Lebesgue spaces Lp(\BbbR d),
p \geq 1 depending on each particular case. This family of operators satisfy the following
properties:

(i) T (t) \in \scrL (E), t \geq 0,
(ii) T (0) = 1,
(iii) \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow 0+
T (t)f = f, f \in E,

(iv) T (t+ s) = T (t)T (s),
(v) \forall f \geq 0 T (t)f \geq 0.

The semigroup is conservative if

(vi) T (t)1 = 1.

The semigroup T (t), t \geq 0 is associated with a Markov process \{ X(t), t \geq 0 | Px, x \in \BbbR d\} 
if

(T (t)f)(x) = Ex[f(X(t))] =

\int 
\BbbR d

f(y)Pt(x,\mathrm{d}y), f \in E.

The transition probabilities may be constructed from the semigroup by choosing f = 1A,
A \in \scrB (\BbbR d), that is,

Pt(x,A) = (T (t)1A)(x).

Now we introduce the resolvent of the Markov semigroup T (t), t \geq 0. Let \lambda > 0 be given.
The \lambda -resolvent of the Markov semigroup is the linear operator R\lambda : E  - \rightarrow E de�ned by

(R\lambda f)(x) :=

\int \infty 

0

e - \lambda t(T (t)f)(x) \mathrm{d}t =

\int \infty 

0

e - \lambda t

\int 
\BbbR d

f(y)Pt(x, \mathrm{d}y) \mathrm{d}t,

for any f \in E and x \in \BbbR d.
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Denote by \scrB b(\BbbR d) the family of bounded Borel sets in \BbbR d and C0(\BbbR d) the space of
continuous functions with compact support.

De�nition 2.1. The Green measure for a Markov process X(t), t \geq 0 with transition
probability Pt(x,B) is de�ned by

\scrG (x,B) :=

\int \infty 

0

Pt(x,B) \mathrm{d}t, B \in \scrB b(\BbbR d),

or \int 
\BbbR d

f(y)\scrG (x, dy) =
\int \infty 

0

f(y)Pt(x, dy) \mathrm{d}t, f \in C0(\BbbR d)

whenever these integrals exist.

The Markov generator is a characteristic of a Markov semigroup. More precisely, we
have the following de�nition.

De�nition 2.2. We set

D(L) :=

\biggl\{ 
f \in E

\bigm| \bigm| \bigm| \bigm| T (t)f  - f

t
\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{s} \mathrm{i}\mathrm{n} E \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n} t \rightarrow 0+

\biggr\} 
and for every f \in D(L), x \in \BbbR d

(Lf)(x) := \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow 0+

(T (t)f)(x) - f(x)

t
.

Then D(L) (the domain of L) is a linear subspace of E and L : D(L)  - \rightarrow E is a linear
operator called the generator of the semigroup T (t), t \geq 0.

There are several known properties of the generator L and and we have the full de-
scription of the Markov generators via so-called maximum principle, see, e.g., [2, 4].

From the relation between semigroup and generator we have

Ex

\biggl[ \int \infty 

0

f(X(t)) \mathrm{d}t

\biggr] 
=

\int 
\BbbR d

f(y)\scrG (x, \mathrm{d}y) =  - (L - 1f)(x) =

\int \infty 

0

(T (t)f)(x) \mathrm{d}t (2.1)

for every f \in C0(\BbbR d). Because any Radon measure de�nes a generalized function, then
we may write

\scrG (x, \mathrm{d}y) = g(x, y) \mathrm{d}y,

where g(x, \cdot ) \in D\prime (\BbbR d) is a positive generalized function for all x \in \BbbR d. In view of (2.1)
the Green measure is the fundamental solution corresponding to the operator L. Note
that the existence and regularity of this fundamental solution produces a description of
admissible Markov processes for which the Green measure exists. In Section 4 we present
some examples and show the existence of the Green measure under the assumption d \geq 3.
This moment is one more demonstration on the essential inuence of the dimension of
the phase space on the properties of Markov processes.

3. Jump Generators and Green Measures

Let a : \BbbR d \rightarrow \BbbR be a �xed kernel with the following properties:

(1) Symmetric, a( - x) = a(x), for every x \in \BbbR d.
(2) Positive and bounded, a \geq 0, a \in Cb(\BbbR d).
(3) Integrable \int 

\BbbR d

a(y) \mathrm{d}y = 1.
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Consider the generator L de�ned on E (as mentioned above) by

(Lf)(x) =

\int 
\BbbR d

a(x - y)[f(y) - f(x)] \mathrm{d}y = (a \ast f)(x) - f(x), x \in \BbbR d.

In particular, L\ast = L in L2(\BbbR d) and L is a bounded linear operator in all Lp(\BbbR d), p \geq 1.
We call this operator the jump generator with jump kernel a. The corresponding Markov
process is of a pure jump type and is known in stochastic as compound Poisson process,
see [12].

Several analytic properties of the jump generator L were studied recently, see for
example [5, 9, 8]. Here we recall some of these properties necessary in what follows.

Because L is a convolution operator, it is natural to apply Fourier transform to study
it.

At �rst notice that, due to the symmetry of the kernel a, its Fourier image is given by

\^a(k) =

\int 
\BbbR d

e - i(k,y)a(y) \mathrm{d}y =

\int 
\BbbR d

\mathrm{c}\mathrm{o}\mathrm{s}((k, y))a(y) \mathrm{d}y.

Then, it is easy to see that

\^a(0) = 1, \^a(k) < 1, k \not = 0,

\^a(k) \rightarrow 0, k \rightarrow \infty .

On the other hand, the Fourier image L is the multiplication operator by

\^L(k) = \^a(k) - 1

that is the symbol of L.
We make the following assumptions on the kernel a.

(H): The jump kernel a is such that \^a \in L1(\BbbR d) and has �nite second moment,
that is, \int 

\BbbR d

| x| 2a(x) \mathrm{d}x < \infty .

Denote by \scrG \lambda (x, y), x, y \in \BbbR d, \lambda \in (0,\infty ) the resolvent kernel of R\lambda (L) = (\lambda  - L) - 1.
This kernel admits the representation

\scrG \lambda (x, y) =
1

1 + \lambda 

\bigl( 
\delta (x - y) +G\lambda (x - y)

\bigr) 
, \lambda \in (0,\infty ),

with

G\lambda (x) =

\infty \sum 
k=1

ak(x)

(1 + \lambda )k
, (3.1)

where ak(x) = a\ast k(x) is the k-fold convolution of the kernel a. Notice that the resolvent
kernel \scrG \lambda (x, y) has a singular part, \delta (x  - y) and a regular part G\lambda (x  - y). The Green
function, as a generalized function, has the form

\scrG 0(x) = \delta (x) +G0(x).

The transition probability density p(t, x) in terms of Fourier transform has represen-
tation

p(t, x) =
1

(2\pi )d

\int 
\BbbR d

ei(k,x)+t(\^a(k) - 1) \mathrm{d}k.

and for the resolvent kernel

\scrG \lambda (x, y) =  - (L - \lambda ) - 1(x, y),

holds
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\scrG \lambda (x - y) =
1

(2\pi )d

\int 
\BbbR d

ei(k,x - y)

1 - \^a(k) + \lambda 
\mathrm{d}k.

For a regularization of the last expression we write

1

1 - \^a(k) + \lambda 
=

1

1 + \lambda 
+

\^a(k)

(1 + \lambda )(1 - \^a(k) + \lambda )
.

Then for operators we have

\scrG \lambda =
1

1 + \lambda 
+G\lambda 

or in terms of kernels

G\lambda (x - y) =
1

(2\pi )d

\int 
\BbbR d

ei(k,x - y) \^a(k)

(1 + \lambda )(1 - \^a(k) + \lambda )
\mathrm{d}k.

We summarize our considerations. The study the resolvent kernel (Green kernel) is
reduced to the analysis of the regular part G0(x), that is,

G0(x) =

\infty \sum 
k=1

ak(x), ak(x) = a\ast k(x),

where ak(x) is the k-fold convolution of the kernel a. The Fourier representation for G0

is given by

G0(x) =
1

(2\pi )d

\int 
\BbbR d

ei(k,x)
\^a(k)

1 - \^a(k)
\mathrm{d}k.

For d \geq 3 this integral exists for all x \in \BbbR d that follows from the integrable singularity
of (1 - \^a(k)) - 1 at k = 0. The latter is the consequence of our assumptions on a(x).

4. Particular Models

The main technical question is to obtain a bound for the k-fold convolution ak(x) in
k and x together for the analysis of the properties of G0(x). From stochastic point of
view, ak(x) is the density of sum of k i.i.d. random variables with distribution density
a(x). Unfortunately, we can not �nd in the literature any general result in this direction.
There are several particular classes of jump kernels for which we shall expect such kind
of results, see [8].

(1) Exponential tails or light tails. That is, the kernel a(x) satis�es the upper bound

a(x) \leq Ce - \delta | x| , \delta > 0.

(2) Moderate tails. In this case the asymptotic of a(x) and x \rightarrow \infty is given by

a(x) \sim C

| x| d+\gamma 
, \gamma > 2. (4.1)

(3) Heavy tails. The kernel a(x) has an asymptotic similar to (4.1) with \gamma \in (0, 2),
that is,

a(x) \sim C

| x| d+\gamma 
, \gamma \in (0, 2).

In both cases the exponential tails and moderate tails, the kernel a(x) has second moment.
On the other hand, the case of heavy tails the second moment of a(x) does not exists.

Below we consider two examples of kernels a(x) and show the bound for the regular
part of the resolvent kernel G0(x).
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4.1. Gauss Kernels. Assume that the jump kernels a(x) has the following form:

a(x) = C \mathrm{e}\mathrm{x}\mathrm{p}

\biggl( 
 - b| x| 2

2

\biggr) 
, C, b > 0. (4.2)

Proposition 4.1. If the jump kernel a(x) be given by (4.2) and d \geq 3, then holds

G0(x) \leq C1 \mathrm{e}\mathrm{x}\mathrm{p}

\biggl( 
 - b| x| 2

4

\biggr) 
.

Proof. By a direct calculation we �nd

ak(x) =
C

kd/2
\mathrm{e}\mathrm{x}\mathrm{p}

\biggl( 
 - b| x| 2

2k

\biggr) 
with C = C(b, d). Therefore for d \geq 3 we obtain

G0(x) =

\infty \sum 
k=1

ak(x) = C

\infty \sum 
k=1

1

kd/2
\mathrm{e}\mathrm{x}\mathrm{p}

\biggl( 
 - b| x| 2

2k

\biggr) 

= C

\infty \sum 
k=1

\infty \sum 
n=0

1

kd/2
1

n!

\biggl( 
 - b| x| 2

2k

\biggr) n

= C

\infty \sum 
n=0

\Biggl( \infty \sum 
k=1

1

kd/2+n

\Biggr) 
1

n!

\biggl( 
 - b| x| 2

2

\biggr) n

.

As the series
\sum \infty 

k=1
1

kd/2+n = \zeta (d/2 + n) \leq \zeta (3/2) for d/2 + n > 1 \leftrightarrow d \geq 3, where \zeta (s),
s > 1 is the Riemann zeta function, then we obtain

G0(x) \leq C\zeta (3/2)

\infty \sum 
n=0

1

n!

\biggl( 
 - b| x| 2

2

\biggr) n

= C1 \mathrm{e}\mathrm{x}\mathrm{p}

\biggl( 
 - b| x| 2

2

\biggr) 
.

\square 

4.2. Exponential Tails. Now we investigate the case when the jump kernel a(x) has
exponential tails, that is,

a(x) \leq C \mathrm{e}\mathrm{x}\mathrm{p}( - \delta | x| ), \delta > 0. (4.3)

Proposition 4.2. If the jump kernel a(x) satis�es (4.3) and d \geq 3, then there exist
A,B > 0 such that the bound for G0(x) holds

G0(x) \leq A \mathrm{e}\mathrm{x}\mathrm{p}( - B| x| ).

Proof. It was shown in [8] that

an(x) \leq Cn - d/2 \mathrm{e}\mathrm{x}\mathrm{p}( - c\mathrm{m}\mathrm{i}\mathrm{n}(| x| , | x| 2/n)).

This implies the following bound for an(x)

an(x) \leq Cn - d/2
\bigl( 
\mathrm{e}\mathrm{x}\mathrm{p}( - c| x| ) + \mathrm{e}\mathrm{x}\mathrm{p}( - c| x| 2/n)

\bigr) 
.

Hence, it is simple to obtain the bound for G0(x), namely for d \geq 3

G0(x) =

\infty \sum 
n=1

an(x) \leq C1 \mathrm{e}\mathrm{x}\mathrm{p}( - c1| x| ) + C2 \mathrm{e}\mathrm{x}\mathrm{p}( - c2| x| 2)

\leq A \mathrm{e}\mathrm{x}\mathrm{p}( - B| x| ). \square 
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4.3. Brownian Motion. Let us consider another concrete example of a Markov process.
Namely, denote B(t), t \geq 0 the Brownian motion in \BbbR d. The generator of this process
is the Laplace operator \Delta considered in a proper Banach space E. As above we are
interested in studying the expectation of the random variable

Y (f) =

\int \infty 

0

f(B(t)) \mathrm{d}t

for certain class of functions f : \BbbR d \rightarrow \BbbR . To this end, we introduce the following class
of functions

CL(\BbbR d) = \{ f : \BbbR d \rightarrow \BbbR : f is continuous, bounded and belongs to L1(\BbbR d)\} .

It is a Banach space with the norm \| f\| CL := \| f\| \infty +\| f\| 1, where \| \cdot \| \infty is the supremum
norm and \| \cdot \| 1 is the norm in L1(\BbbR d).

Proposition 4.3. Let d \geq 3 be given. The Green measure of Brownian motion is

\scrG (x, dy) = G0(x - y) \mathrm{d}y =
C(d)

| x - y| d - 2
\mathrm{d}y.

Proof. Note that due to (2.1) we have

Ex[Y (f)] =  - \Delta  - 1f(x) =

\int 
\BbbR d

C(d)
f(y)

| x - y| d - 2
\mathrm{d}y.

Then \bigm| \bigm| \bigm| \bigm| \int 
\BbbR d

f(y)

| x - y| d - 2
\mathrm{d}y

\bigm| \bigm| \bigm| \bigm| \leq 
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
| x - y| \leq 1

f(y)

| x - y| d - 2
\mathrm{d}y

\bigm| \bigm| \bigm| \bigm| \bigm| +
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
| x - y| >1

f(y)

| x - y| d - 2
\mathrm{d}y

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq C1\| f\| \infty + C2\| f\| L1(\BbbR d)

\leq C\| f\| CL,

where we have used the local integrability in y of | x - y| 2 - d. It means that every function
from CL(\BbbR d) is integrable with respect to the Green measure. \square 

Remark 4.4. In a forthcoming paper we will investigate the additive functionals for time
change Markov processes. More precisely, let X(t), t \geq 0 be a Markov process in \BbbR d with
generator L and denote by \mu t(\mathrm{d}x) the marginal distribution of X(t). That is, \mu t is the
solution of the Fokker-Planck equation

\partial \mu t

\partial t
= L\ast \mu t.

In addition, Assume that an inverse subordinator E(t), t \geq 0 is given and consider
random time change

Y (t) := X(E(t)), t \geq 0.

It is known that the marginal distribution \nu t of Y (t) holds a subordination formula, see
[7]

\nu t(\mathrm{d}x) =

\int \infty 

0

Dt(\tau )\mu \tau (\mathrm{d}x) \mathrm{d}\tau ,

where Dt(\tau ) is the density distribution of E(t). If Pt(x, \mathrm{d}y) is the transition probability
of X(t), then the Green measure of Y (t) is (heuristically) given by

G(x, \mathrm{d}y) =

\int \infty 

0

\int \infty 

0

P\tau (x, \mathrm{d}y)Dt(\tau ) \mathrm{d}\tau \mathrm{d}t.
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But it is not hard to see that this de�nition leads to a contradiction and it has to be
modi�ed. More precisely, it has to e renormalized in such a way that then we are able
to study the integral functionals \int \infty 

0

f(Y (t)) \mathrm{d}t

for a proper class of functions f : \BbbR d  - \rightarrow \BbbR . For the details, see [6].
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