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SEMI-CONTINUOUS G-FRAMES IN HILBERT SPACES

ANIRUDHA PORIA

ABSTRACT. In this paper, we introduce the concept of semi-continuous g-frames in
Hilbert spaces. We first construct an example of semi-continuous g-frames using the
Fourier transform of the Heisenberg group and study the structure of such frames.
Then, as an application we provide some fundamental identities and inequalities for
semi-continuous g-frames. Finally, we present a classical perturbation result and
prove that semi-continuous g-frames are stable under small perturbations.

BBoguThca moHATTS HamiBHemepepsBHOro ¢-dpefimy B rimpbeproBiM mpocTopi.
CrouaTky OyAyeThCsl IPUKJIA)] HAliBHEIIEPEPBHOrO g-dpeliMy, AKHH CIHPAaeThCs HA
nepersopenns Dyp’e ma rpymi lefizenbepra. [ocmimkyernca CTpykKTypa Takumx
dpeiiviB.  fx 3acTocyBaHHSA, OTpUMaHi JedKi GyHJIaMeHTAaJbHI TOTOXKHOCTI Ta
HepiBHOCT] fyis1 HamiBmemepepBHmx g-pefimis. HapemTi, goBegeHo Teopemy mpo
30ypeHHs: HalliBHeNepepBHi g-dpeiimu CTifiki BIATHOCHO Mannx 30ypeHb.

1. INTRODUCTION

Discrete and continuous frames arise in many applications in mathematics and, in
particular, they play important roles in scientific computations and digital signal pro-
cessing. The concept of a frame in Hilbert spaces has been introduced in 1952 by Duffin
and Schaeffer [13], in the context of nonharmonic Fourier series (see [29]). After the
work of Daubechies et al. [11] frame theory got considerable attention outside signal
processing and began to be more broadly studied (see [8, 22]). A frame for a Hilbert
space is a redundant set of vectors in Hilbert space which provides non-unique repre-
sentations of vectors in terms of frame elements. The redundancy and flexibility offered
by frames has spurred their application in several areas of mathematics, physics, and
engineering such as wavelet theory, sampling theory, signal processing, image processing,
coding theory and many other well known fields. Applications of frames, especially in
the last decade, motivated researchers to find some generalization of frames like contin-
uous frames [1, 23], g-frames [27], Hilbert—Schmidt frames [25, 26], K-frames [19, 20]
and etc. Our main purpose in this paper is to study a generalization of frames, namely
semi-continuous g-frames, which are natural generalizations of g-frames and continuous
g-frames. We investigate the structure of semi-continuous g-frames and establish some
identities and inequalities of these frames. Also, we present a perturbation result and
discuss the stability of the perturbation of a semi-continuous g-frame.

Throughout this paper, H and K are two Hilbert spaces; J is a countable index
set; (X, u) is a measure space with positive measure u; {K;}rex is a family of closed
subspaces of K; L(H,K,) is the collection of all bounded linear operators from # into
Kz; if K =H for any z € X, we denote L(H, ;) by L(H).

We recall that a family {f;};es in H is called a (discrete) frame for H, if there exist
constants 0 < A < B < oo such that

AlIFIP <Y WP < BIFIP, Ve,

jeJ
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The concept of the discrete frame was generalized to continuous frame by Kaiser [23]
and independently by Ali et al. [1]. A family of vectors {¢,}.cx C H is called a
continuous frame for H with respect to (X, ), if {¢, }.ecx is weakly-measurable, i.e., for
any f € H, x — (f,1,) is a measurable function on X, and if there exist two constants
A, B > 0 such that

Al < /X (60 [2dia(a) < BIFI?, V€ H.

Continuous frames have been widely applied in continuous wavelets transform [2] and the
short-time Fourier transform [22]. We refer to [3, 16, 17] for more details on continuous
frames.

The notion of a discrete frame was extended to g-frame by Sun [27], which generalized
all the existing frames such as bounded quasi-projectors [15], frames of subspaces [7],
pseudo-frames [24], oblique frames [9], etc. G-frames are natural generalizations of frames
as members of a Hilbert space to bounded linear operators. Let {K; : j € J} C K be a
sequence of Hilbert spaces. A family {A; € L(H,KC;) : j € J} is called a g-frame, for H
with respect to {K; : j € J} if there are two constants A, B > 0 such that

A2 < STIADI2 < BIFIE, VF €A,
jeJ
The continuous g-frames were proposed by Dehghan and Hasankhani Fard in [12],
which are an extension of g-frames and continuous frames. A family {A, € L(H,K,) :
x € X} is called a continuous g-frame for H with respect to (X, p), if {A, : 2 € X} is
weakly-measurable, i.e., for any f € H, x — A,(f) is a measurable function on X, and
if there exist two constants A, B > 0 such that

AllfI? < /X IA(F)|Pdu(z) < BIFIP, Vf € H.

Notice that if X' is a countable set and p is a counting measure, then the continuous
g-frame is just the g-frame. By the Riesz representation theorem, for any A € L(H,C),
there exist a h € H, such that A(f) = (f, h) for all f € H. Hence, if £, = C for any
x € X, then the continuous g-frame is equivalent to the continuous frame.

This paper is organized as follows. After the introduction, in Section 2, we intro-
duce the semi-continuous g-frames in Hilbert spaces and construct an example using
the Fourier transform of the Heisenberg group. Then we study the structure of semi-
continuous g-frames using shift-invariant spaces. In Section 3, we first list some fun-
damental identities and inequalities of discrete frames just for the contrast to the main
results of this section. Then we derive some important identities and inequalities of semi-
continuous g-frames. Finally, in Section 4, we present a classical perturbation result and
prove that semi-continuous g-frames are stable under small perturbations.

2. SEMI-CONTINUOUS G-FRAMES
Let {IC,; :z € X,j € J} C K be a family of Hilbert spaces.

Definition 2.1. A family {A, ; € L(H,K, ;) :x € X,j € J} is called a semi-continuous
g-frame for H with respect to (X, ), if {A, ; : x € X,j € J} is weakly-measurable, i.e.,
for any f € H and any j € J, the function  — A, ;(f) is measurable on X, and if there
exist two constants A, B > 0 such that

Al fIIP S/ > Az (HIPdu(z) < B[ fI?, Vf €H. (2.1)
X jes
If only the right-hand inequality of (2.1) is satisfied, we call {A, ; : z € X,j € J} the
semi-continuous g-Bessel sequence for H with respect to (X, ) with Bessel bound B.
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Remark 2.2. If 0 < p(X) < oo, and for any fixed x € X, the family {A, ; : j € J} is
a g-frame for H with respect to {K, ; : j € J}, then {A;; : z € X,j € J} is a semi-
continuous g-frame for H with respect to (X, u). Moreover if |J| < 0o, and for any fixed
Jj € J, the family {A; ; : € X'} is a continuous g-frame for #, then {A, ; :z € X,j € J}
is a semi-continuous g-frame for A with respect to (X, p).

In the following, we shall construct an example of such frames using the Fourier
transform of the Heisenberg group.

2.1. Heisenberg Group. The Heisenberg group H is a Lie group whose underlying
manifold is R®. We denote points in H by (p, q,t) with p,q,t € R, and define the group
operation by

1
(P1,q1.t1) (P2, 42, t2) = (D1 + P2, @1 + G2, t1 + 12 + 5(171612 —q1p2)). (2.2)

It is easy to verify that this is a group operation, with the origin 0 = (0,0,0) as the
identity element. Notice that the inverse of (p,q,t) is given by (—p, —¢, —t). The Haar
measure on the group H = R? is the usual Lebesgue measure.

The irreducible representations of the Heisenberg group has been identified by all
non-zero elements in R*(= R\ {0}) (see [14]). Indeed, for any A € R*, the associated
irreducible representation py of H is equivalent to Schridinger representation into the
class of unitary operators on L?(R), such that for any (p,q,t) € H and f € L*(R), the
operator py(p, gq,t) is defined by

pa(p, q, 1) f(a) = M eAPTHE00) £ (g 4 g). (2.3)

It is easy to see that p)(p,q,t) is a unitary operator satisfying the homomorphism prop-
erty:
px((p1,q1,t1) (P2, g2, t2)) = pa(p1, g1, t1) pa(p2; G2, t2)-

Thus each p, is a strongly continuous unitary representation of H. By Stone and von
Neumann theorem ([14]), {px : A € R*} are all the infinite dimensional irreducible unitary
representations of H, whose set has non-zero Plancherel measure. The measure |\|d) is
the Plancherel measure on the dual space H (22 R*) of H, and d is the Lebesgue measure
on R*. For ¢ € L?(H) and A € R*, we denote p()\) the operator-valued Fourier transform
of ¢ at a given irreducible representation py, which is defined by

20 = [ i@ (2.4)
The operator @()) is a unitary map on L?(R) into L?(R), such that for any f € L?(R)

BN F(y) = /H (@) pr(2)  (y)d.

Therefore $(\) belongs to L2(R)®L?(R). If ¢ € L?(H), §(A) is actually a Hilbert—Schmidt
operator on L?(R) and from the Plancherel theorem we have

/ () [2de = / Y (2.5)
H R*

the norm ||-||7.s. denotes the Hilbert—Schmidt norm in L?(R)® L?(R). The proof of the
Plancherel theorem for the Heisenberg group can be found in [21], and for more general
groups, see [14].

To construct our example of semi-continuous g-frames, we shall define another unitary
operator as follows.
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Let II := [0,1] and £ := ¢(*(Z, L?>(R) ® L?(R)) be the Hilbert space of all sequences
with values in the space L?(R) ® L?(R), i.e.,

L= {{an}nez : a, € L*(R) ® L*(R) and Z lanll% s < oo}.
neZ

Lemma 2.3. For any o € II, let T, : L2(H) — £ given by T, f(j) = |o + j|2 f(o + ).
Then T, is well-defined and 3=, |o + j| || f(o + 7)1 5. < oo

Proof. Let f € L?(H). Using Plancherel theorem and an application of periodization
method, we obtain

1 = [ IFOVBrs A

| Sl il 1o+ s do

jGZ

/ ST £ () |.5.do
oell

JEZL

Hence, the result follows from the fact that f € L*(H). O

Example 2.1. Consider X =1I and J = Z. For any o € Il and j € Z, define A, ; :
L*(H) — L*(R) ® L%(R) as A, ;(f) = T, f(j). Then for every f € L?(H), using Lemma
2.3 we get

| EesDlhsde = [ ST fGlrsdo
o€ll

JEZ ez

/UGHZH|U+]|5f U+]>H AdO’

= 122

Therefore {A,; : 0 € II,j € Z} is a semi-continuous g-frame with frame bounds A =
B=1.

Corollary 2.4. Let 0 < pu(X) < 0o. For any fized o € X, let {A,; : j € J} be a g-frame
for L2(H). Then {A,; : 0 € X,j € J} is a semi-continuous g-frame for L?(H) with
respect to (X, p) with unified frame bounds multiplied by u(X').

Proof. Since {A,; : j € J} be a g-frame for L?(H), there exist constants A, B > 0 such
that

AlF 122y < D Mg (DI < BlIf 12y, VS € L*(H).
jeJ

Taking integral from all sides of the preceding inequality, we obtain
Ap(X)|F 72y < / Y Ao (NIPdulo) < Bu(X)If |72y VS € L*(H).
jeJ

Hence, the result follows. O

Now, we shall define shift-invariant spaces and give an example.

Definition 2.5. Let I' be a countable subset of H. A subspace V C L?(H) is called
[-invariant if L,¢ € V for all v € I" and all ¢ € V, where L,¢(w) = ¢(y tw), w € H. If
T" is a discrete subset of H, then V is called shift-invariant.

Example 2.2. Let ¢ € L?(H) and I be a lattice. Then the space (¢)r generated by
I'-shifts of ¢ is a shift-invariant space.
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Before we prove the main result of this section, we first need the following.
Let T': L?(H) — L* (1L, £). Then for any 0 € I and j € Z, T'f(0)(j) € L*(R)® L*(R).
By Lemma 2.3, it is clear that T'f(0) = T, f. Let
F:F1F0={$Z€HZZ‘EF1,Z€F0},

where I'; be any discrete subset of H and I'y be the lattice of integral points in Z. Then
for y € H and o € II, define the unitary operator g, (y) : £ — £ by

(Po(W)h)j = potj(y) oy, D e L,
where p,;(y) oh; denotes function composition. Also, define p(y) : L2(I1, £) — L3(IL, £)
by
(b(y)a)(o) = pe(y)alo), ae€ L*(ILL).
Note that if v € Ty, then (p(7)a)(c) = >N a(s) for all a € L*(II, £). Further, the
mapping T is unitary, and for each y € H, we have
T(Ly¢)(0) = (p(y)TP)(0).
Proofs of these results and a more detailed study of these operators can be found in ([10],
Section 3). Fix a discrete subset I' of H of the form I';T'y. Let ¥ C L?(H) be a countable
set. Define E(V) = {L,¢: v €T',¢ € V} and put S = span E(V). Let R be the range
function associated with S. Motivated by the results of Currey et al. [10], we obtain the
following.

Lemma 2.6. Let f € L>(H), I CH and V C L*(H). Then
> Lo =[S ). T (L)) e
peV,yeT W gev ker,
Proof. Let f € L?(H). Since ||Tf|| = ||f|l, we have
Yo WAL= Y UTATILo)F >

peV,vel peV,vel ¢peV,yvell

>

¢peV,vell

/H (Tf(0), T(L,6)(0)) do

/H (T (o), (5(x)Td)(0)) do

Putting v = kI, with &k € I'y,1 € [y, we get
(BT H)(0) = fo (KT S(0) = po (K)o (T H(0) = ™0 5 (k)T h(0).

Thus
(Tf(o),(p(v)TP) (o)) do i = (TF(0), po (k)T (o)) e~ 27 dgr 2
¢€VZ,’Y€F /H . ¢6V(Zkl)er /H

For each k, define Fi(o) = (T'f(0),ps(k)T¢(c)). Then Fy is integrable with square
summable Fourier coefficients, hence Fj, € L?(II). Using Fourier inversion formula we

obtain
2

>

eV, (k,1)er

= Y IBOP

€V, (k,1)eT

= > IR

¢eV,kel'y

/ |Fk 2d0’

¢eV,kely

/H (Tf(0), 7o (K)TH(0))e ™" do
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Again, by substituting Fy (o) = (T f(0), po(k)T¢(c)) in the above we get

> el = Y [1A@Pl = Y [ (T50).50)To() Pl

peV,yell ¢EV, ke ¢EV, kT
= [ X e T o) e (26)
eV, kel
This completes the proof. O

Now we are in a position to prove our main result of this section.

Theorem 2.7. If {T,(Ly¢) : k € 1,6 € V} is a frame for its spanned vector space for
almost every o € II. Then {L ¢ : v € T',¢ € V} is also a frame for its spanned vector
space.

Proof. Suppose that f € S, then Tf(c) € R(o) holds for a.e. 0. Since for a.e. o € I,
{T,(Lyo) : k € T1,¢ € V} is a frame for its spanned vector space, there exist 0 < A <
B < 0o such that

AITf(o)]* < /H (T (), T(Lo)(0))[*do < B||ITf(o)||*.

$EV,kET,
holds for a.e. o. Integrating over II yields

AlfI2 = AITFI? = A /H IT4(0)|2do

IN

[ > ). e e

ISRV TSI

IN

B T 2do = B| .
/Hn f(0)|2do = B f|
Using (2.6) we obtain

AllfI? < Z [(f, Lo)|* < Bl f|I>.

peV,vel
Hence, we have the desired result. O

Remark 2.8. Notice that the family {7, (L) : k € I'1, ¢ € V} constitutes a frame for the
space which consists of all functions of the form T, f for every f € L?(H). Similarly, the
above result can be extended for semi-continuous g-frames using the Riesz representation
theorem.

3. IDENTITIES AND INEQUALITIES FOR SEMI-CONTINUOUS G-FRAMES

Let {A;; € L(H,K;;) : z € X,j € J} be a semi-continuous g-frame for H with
respect to (X, u). Then we define the semi-continuous g-frame operator S as follows:

S:H—H, Sf= /ZA Agjf dp(z),

jedJ

where A ; is the adjoint of A, ;. It is easy to show that S is a bounded, invertible,
self—adJ01nt and positive operator. Therefore for any f € H, we have the following
reconstructions:

F=857 = [ SN A8 dute)

jed
=58 = / SSTUAL Ay dpi():
jed

Denote /~\m7j = Am,ijl. Then {Ax,j :x € X,j € J} is also a semi-continuous g-frame
with frame bounds %, %, which we call the canonical dual frame of {A, ; : x € X,j € J}.
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A semi-continuous g-frame {G, ; € L(H, K, ;) : x € X,j € J} is called an alternate dual
frame of {A, ;:x € X,j € J}if for all f € H, the following identity holds:

f = /ZA Goif dulz /Zg ot du(a). (3.7)

JjeJ jeJ

A semi-continuous g-frame {A,; : x € X,j € J} is called a Parseval semi-continuous
g-frame, if the frame bounds A = B = 1. For any X; C X, we denote Xf = X' \ A7, and
define the following operator:

Suf = /ZAmAmfdu()

Ljed

In [4], the authors proved a longstanding conjecture of the signal processing commu-
nity: a signal can be reconstructed without information about the phase. While working
on efficient algorithms for signal reconstruction, Balan et al. [5] discovered a remarkable
new identity for Parseval discrete frames, given in the following form.

Theorem 3.1. Let {f;};cs be a Parseval frame for H, then for every K C J and every
f € H, we have

Z |<f7f]>|2 -

jeK

2

S L)

jeK

Z | faf]

JEK®

o DIRIBOYE

jEK®

Theorem 3.2. If {f;};cs be a Parseval frame for H, then for every K C J and every

f € H, we have
SOWLEE | Do

JEK JEK®

3 2
> ZIIfIP.

In fact, the identity appears in Theorem 3.1 was obtained in [5] as a particular case
of the following result for general frames.

Theorem 3.3. Let {f;};cs be a frame for H with canonical dual frame {fj}je]. Then
for every K C J and every f € H, we have

STUEEIP =D USkf FP =D W )P =D WSk £, Fi)I

jeEK jeJ JEK® jedJ

Motivated by these interesting results, the authors in [18, 30] generalized Theorems 3.1
and 3.2 to canonical and alternate dual frames. In this section, we investigate the above
mentioned results for semi-continuous g-frames and derive some important identities and
inequalities of these frames. We first state a simple result on operators.

Lemma 3.4. [30] If P,Q € L(H) satisfying P+ Q = I, then P — P*P = Q* — Q*Q.
Proof. We compute P — P*P = (I — P*)P=Q*(I — Q) = Q" — Q*Q. O

Theorem 3.5. Let {A, ; : x € X,j € J} be a Parseval semi-continuous g-frame for H
with respect to (X, n). Then for every X1 C X and every f € H, we have

[ S sttt | [ S8z et o

1jed 1jed

~ [ S e lauta H [ XA o)

1]6] 1g€I

i (3.8)
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Proof. Since {A, ; : x € X,j € J}is a Parseval semi-continuous g-frame, the correspond-
ing frame operator S = I, and hence Sy, + Sxc = I. Note that Sy is a self-adjoint
operator, and therefore S}f = Sx¢. Applying Lemma 3.4 to the operators Sx, and Sx¢,
we obtain that for every f € H

(S [, f) = (Sx, Sxr [, ) = (Sxe [, ) — (Ske S f, f)
= (Sar [, ) = 12, fII” = (Sag £ f) = |Sxe fI?. (3.9)

We have
(Sx.f f) = < / > AL A f dula), f> = / > (Naify Aay ) dp(z)
Y jes Y1 jes
= [ Z et dne). @10)
1jeg
Similarly
Sxef )= [ S f Pt (311)
X7 jeJ
Using equations (3.10) and (3.11) in (3.9), we obtain the desired result. O

Now we generalize Theorem 3.1 to dual semi-continuous g-frames. We first need the
following lemma.

Lemma 3.6. [25] Let P,Q € L(H) be two self-adjoint operators such that P+ Q = I.
Then for any X € [0,1] and every f € H we have

IPFI?+2MQf, £) = [QFI7 +2(1 = (P, f) + @A = DIfI* = (1= (A = DI f]*

Theorem 3.7. Let {A, ; : x € X,j € J} be a semi-continuous g-frame for H with respect
to (X, p) and {A, j:x € X,j € J} be the canonical dual frame of {A,;: 2z € X,j € J}.
Then for any X\ € [0,1], for every X; C X and every f € H, we have

/ S As s S f12du() / S 1A I du(e

jeJ leJ
S DI LETIE / > e f Pl
JjeJ 1jed
> (A= 2) [ Y s Pdute) + (1= ) / S A FIPdpa).
X1 e X jeg

Proof. Let S be the frame operator for {A,; : € X,j € J}. Since Sx, + Sxe = 5,
it follows that S~1/2Sx, S71/2 4+ §71/25,.571/2 = I. Considering P = S~1/25y, S~1/2,
Q= S7125x:571/2 and S'/2f instead of f in Lemma 3.6, we obtain

1571282, fII* +20(S V2 S xe £, 512 f)
= |[S7V2Sap fII” + 2(1 = A)(S™H28x, £, SM2 ) + (2A = 1| Y2 £
> (1= (A =1?)8"f)?
= (ST'Sx, [, Sx f) + (Sxe f, f) = (ST Sxe f, Sxe f) + (Sx, f, )
> (20 = X)(Sa, £, ) + (1= X)(Sac f, f). (3.12)
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We have

(S7'Sx, f.8x.f) = (SS7'Sx f. 57 Sx.f)

_ </ SOAL Ax,js—lsxlfdu(x),5-15X1f>

JjeJ

. /ZA”S 'S, £, ey ST S, f) dpa(z)

jeJ

- /Z (e jSa £, K i S, f) dia(z)

jeJ

- / S 1A S, fIPdp(a). (3.13)

jeJ

Similarly

(S Sxe f. Sixe f) / S 1A Suve £ dp(): (3.14)

jeJ

Sxef )= [ S Pdute (315)

1JEJ

(S f, f) = /X S 18 £l du(a). (3.16)

jed

Using equations (3.13)—(3.16) in the inequality (3.12), we obtain the desired result. O

Lemma 3.8. [25] If P,Q € L(H) satisfy P+ Q = I, then for any X\ € [0,1] and every
f € H we have

PPHANQ +Q)=Q Q+(1 - NP +P)+ 2 —DI>(1—-A-13I.

Theorem 3.9. Let {A, ; : x € X,j € J} be a semi-continuous g-frame for H with respect
to (X,u) and {G,; : x € X,j € J} be an alternate dual frame of {A,; :x € X,j € J}.
Then for any X\ € [0,1], for every X; C X and every f € H, we have

#ed [ 526t A inta } ' | A6 duto

1]€J jeJ

]GJ 1]€J

> (2) — A2 Re{/ > (Guif A f)dp(x )}

1jeJd

+(1-2%) Re{/ > (Geifs A f)dp(z )}

IJEJ

2

2

Proof. For X} C X and f € H, define the operator Fx, by

Fr,f = ZA G f dp(@). (3.17)

]GJ
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Then Fx, € L(H). By (3.7), we have Fx, + Fxe = I. By Lemma 3.8, we get

(1= A= D)FI? < (F3, Fao o ) + M(Fxe + Fxp)f, f)

= (FyeFxe f ) + (1= M((Fx, + Fx)f, ) + 22 = D fI?

= 2\ = M) Re((If, ) < |Fa f1* + X((Fxe £, f) + (Fae £, f))

= [|Fxe fII> + (1= N((Fx, [, ) + (Fa f, ) + @A = D fII”

= (2A = N)Re((Fx, f, ) + (1 = N)Re((Fxg f, f)) < | Fx, f|I> + Re((Fxe f, f))

We have
- A Goif d Ly A f)d .
(Fa f, f) = </X; * Goif dulz > /;g A fdp(e). (3.19)
(e f. f) / S G o A (). (3.20)
1]€J

Using equations (3.19), (3.20) and (3.17) in (3.18), we obtain the desired inequality. O

Next we give a generalization of the above theorem to a more general form that does
not involve the real parts of the complex numbers.

Theorem 3.10. Let {A,; : x € X,j € J} be a semi-continuous g-frame for H with
respect to (X, p) and {G,; : x € X,j € J} be an alternate dual frame of {A,; : © €
X,j € J}. Then for every Xy C X and every f € H, we have

(], S0+ | [ S0 a0

2

M jeJ jeJ
2
= (/ Z G jfa zjf d,u ) H/ ZA::,ng’jf d,u(sc)
X jeJ Xf jeJ

Proof. For Xy C X and f € H, we define the operator F, as in Theorem 3.9. Therefore,
we have Fx, + FXf = I. By Lemma 3.4, we have

(/LZ gw,]f7 ,]f d:u' > i,jgm,jf d,u(z)

1jed jeJ
= (Fxpf. )+ Fx, Fx f, f) = (Fx, [, ) + (FxeFxp f, f)
Fle’ >+HFXCf||2

</XlZg”f, Auy F)dp(a ) H/ SN2, Gesf dula)

jeJ X7 jedJ
Hence the relation stated in the theorem holds. O

2

X

2

4. STABILITY OF SEMI-CONTINUOUS G-FRAMES

The stability of frames is important in practice, so it has received much attentions
and is, therefore, studied widely by many authors (see [8, 26, 28]). In this section, we
study the stability of semi-continuous g-frames. The following is a fundamental result in
the study of the stability of frames.
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Proposition 4.1. ([6], Theorem 2) Let {f;}52, be a frame for some Hilbert space H with
bounds A, B. Let {g9;}2, C H and assume that there exist constants A1, Az, > 0 such

that max(\; + ﬁ, A2) < 1 and

n

Zci(fi — 9i)

i=1

n

> afi

i=1

<\ + Ao +u

n n 1/2
Z Cigi Z Ci|2] (4.21)

i=1 i=1
for all c1,...;cn(n € N). Then {g;}52, is a frame for H with bounds

AL+ Ao + = 2 AL+ Ao + & 2
A<1—“A>, Bl1+——_YB )

14+ Ao 11—

Similar to discrete frames, semi-continuous g-frames are stable under small perturba-
tions. The stability of semi-continuous g-frames is discussed in the following theorem.

Theorem 4.2. Let {A,; : © € X,j € J} be a semi-continuous g-frame for H with
respect to (X, p), with frame bounds A and B. Suppose that Ty ; € L(H,K, ;) for any
x € X, j € J and there exist constants A1, Ao, i > 0 such that max(\; + ﬁ, A2) <1 and
the following condition is satisfied

1/2
/ S 1(Awy — o) FI2dp(a)
X ieJ
1/2 1/2
<\ /X S Ay (DlPdn(z) |+ o /X SO (D Pdutz) |+ ull £l

JjeJ jeJ
(4.22)

forall f € H. Then {T'y; : x € X,j € J} is a semi-continuous g-frame for H with
respect to (X, ), with frame bounds

AL+ Ao+ £ 2 AL+ o+ £ 2
Al1-——— Y4} pli1+——_YB) (4.23)
14+ Ao
Proof. Notice that
| X Ies(n)Pdnta) < Bl
X jes
From (4.22) we see that

1/2
| ¥ ey = Top) Pdu(o)
X jes
1/2
< (VB ) 11+ 3 | [ 3 10 Pdite)
X jes
Using the triangle inequality, we get
1/2
[ X ey = T Pduto)
X jes
1/2 12

WD CEGIRTE) Y D S SGIRTE

jeJ jeJ
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Hence
1/2
(1=22) | [ S Irs(DlPdnto)
X jes
1/2
< (MVB+p)|Ifll+ / Ao (F)Pdp(z <\/§<1+)\ +“>f.
(MVB+4) 1171 | L les ) ) L
Therefore )
A1+ Ao+ =
/ > ITe s (HIPdpr) < B (1 + 1_A“§> 1711
x5 2
jeJ
Similarly, we can prove that
AL+ A+ = 2
| S I (OlPdu(o) = 4 (1 HA”) 171
x5y 2
This completes the proof. O

Remark 4.3. In general, the inequality (4.22) does not imply that {I';; : z € X,j €
J} is a semi-continuous g-frame regardless how small the parameters A1, Ao, p are. A
counterexample for g-frames can be found in [28], and an example can be constructed
similarly for semi-continuous g-frames.

Corollary 4.4. Let {A,; : « € X,j € J} be a semi-continuous g-frame for H with
respect to (X, 1), with frame bounds A, B, and let {T'y ; : x € X,j € J} be a family in
L(H,Ky,j) for any x € X, j € J. Assume that there exists a constant 0 < M < A such
that

| Yy = o) 1Pduta) < MIFIP, ¥F € H,
X jer
then {T'y; : x € X,j € J} is a semi-continuous g-frame for H with respect to (X, ),
with bounds A[l — (M/A)'/?)? and B[1+ (M/B)Y/?]?.

Proof. Let \; = Ay = 0 and p = v/M. Since M < A, pu/v/A = \/M/A < 1. So, by
Theorem 4.2, {I'; j : @ € X,j € J} is a semi-continuous g-frame for H with respect to
(X, ), with bounds A[1 — (M/A)'/?]? and B[1 + (M/B)'/?]?. O
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