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CANTOR'S INTERSECTION THEOREM AND SOME GENERALIZED

FIXED POINT THEOREMS OVER A LOCALLY CONVEX

TOPOLOGICAL VECTOR SPACE

A. P. BAISNAB, K. ROY, AND M. SAHA

Abstract. In this present paper, we establish Cantor's intersection like theorem in
a locally convex topological vector spaces. Some �xed point and common �xed point
theorems are proved for Reich and Caccioppoli type contractive mappings in such a
locally convex topological vector space. Also in this setting we prove a �xed point
theorem for some mapping which is the uniform limit of a sequence of Reich type
contractive mappings therein.

�áâ ­®¢«¥­  â¥®à¥¬ , ¯®¤÷¡­  â¥®à¥¬÷ � ­â®à  ¯à® ¯¥à¥â¨­, ã ¢¨¯ ¤ªã
«®ª «ì­® ®¯ãª«¨å ¢¥ªâ®à­¨å ¯à®áâ®à÷¢. �«ï áâ¨áªãîç¨å ¢÷¤®¡à ¦¥­ì â¨¯ã
� ©å  ÷ � çç÷®¯®«÷ ¢÷¤¯®¢÷¤­¨å ¯à®áâ®à÷¢ ¤®¢¥¤¥­÷ â¥®à¥¬¨ ¯à® ­¥àãå®¬ã â®çªã
â  á¯÷«ì­ã ­¥àãå®¬ã â®çªã. � ª®¦ ã æ÷© ¯®áâ ­®¢æ÷ ¤®¢¥¤¥­  â¥®à¥¬  ¯à®
­¥àãå®¬ã â®çªã ¤«ï ¢÷¤®¡à ¦¥­­ï, ïª¥ õ à÷¢­®¬÷à­®î £à ­¨æ¥î ¯®á«÷¤®¢­®áâ÷
áâ¨áªãîç¨å ¢÷¤®¡à ¦¥­ì â¨¯ã � ©å .

1. Introduction

Nowadays �xed point Theory is one of the most emerging areas of research in contem-
porary Mathematics. The research in this area has been more useful for its numerous
applications in various branches in Mathematics, like Solution of nonlinear matrix equa-
tions, nonlinear di�erential and integral equations, boundary value problem, implicit
function theorem, homotopy Theory and many more. S. Banach had been �rst person
to prove well known Contraction Principle Theorem [4] in �xed point Theory using con-
traction mapping in a complete metric space. Since then many researchers had been
attracted in �xed point Theory resulting in enormous growth enriching and enlarging
frontiers of �xed point theory. By relaxation of spatial structure many researchers had
discovered several metric-like structures in underlying spaces and proved important �xed
point theorems (See [3], [6], [7], [9], [11] and [16]), where polygonal type inequalities
had been extensively used. Attempts have now been in progress to establish �xed point
Theorems with Frechet Topological Vector space as underlying space [1]. Very recently
Roy and Saha in 2019 (See [13]) have developed �xed point theory in Topological Vector
spaces, specially in Locally Convex Topological Vector spaces so far unexplored, and they
have proved �xed point theorems involving Kannan type contractive mappings. Since
not necessarily continuous mappings are also now welcome in �xed point theory as de-
veloped by Roy and Saha [13], we have been prompted to look into problems involving
like-Kannan mappings and our investigations in the concerned area have shown that we
can derive some interesting and useful too �xed point theorems by taking Reich and
Caccioppoli-type mappings over Locally Convex Topological Vector space where Cantor-
Intersection Theorem has been proved. We have not used Minkowski functional over the
space in our �xed point theorems. It may now be seen that our �ndings in �xed point
theory choice of a suitable local base in underlying Locally Convex Topological Vector
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space has played an important part and motivation throughout the text of the paper as
presented.

Before we start with actual text we need giving some preliminaries and recall some
de�nitions that help reading the materials with ease and comfort.

2. Preliminaries

The following basic de�nitions and basic results together with its consequences are
relevant to our �ndings.

De�nition 2.1. [13] Let X be a real vector space and C be a subset of X. Then C
is said to be convex if for any two elements x, y \in C and for any scalar 0 \leq \alpha \leq 1,
\alpha x+ (1 - \alpha )y \in C that is the line segment joining two points x, y must lie in the set C.
Equivalently, \alpha C + (1 - \alpha )C \subset C for all scalars \alpha satisfying 0 \leq \alpha \leq 1.

Lemma 2.2. [13] A subset C of a vector space X is convex i� for all positive scalars s
and t, (s+ t)C = sC + tC.

De�nition 2.3. [13] A subset S of a vector space X is said to be symmetric if  - S \subset S,
equivalently S =  - S.

De�nition 2.4. [13] A subset B of a vector space X is said to be balanced if \alpha B \subset B
for all scalars \alpha , whenever | \alpha | \leq 1.

De�nition 2.5. [13] A set A in a vector space X is said to be absorbing if for each
x \in X there exists a \epsilon > 0 such that \alpha x \in A, whenever | \alpha | \leq \epsilon .

Lemma 2.6. [13] A convex set C of a vector space X is balanced i� it is symmetric.

De�nition 2.7. [13] A balanced set B of a vector space X is absorbing i� for each
x \in X, there corresponds a scalar \beta \not = 0 such that \beta x \in B.

De�nition 2.8. [13] A vector space X over \BbbR or \BbbC equipped with a T1 topology \tau is
said to be a topological vector space(TVS) if the following conditions are satis�ed.

(i) The mapping from X \times X to X de�ned by (x, y) \rightarrow x+ y, x, y \in X, is continuous,
that is for every neighborhood W of x+ y we can �nd neighborhoods V1 of x and V2 of
y such that V1 + V2 \subset W and also

(ii) The mapping from F \times X \rightarrow X de�ned by (\alpha , x) \rightarrow \alpha x, \alpha \in F, x \in X, is
continuous, that is for any neighborhood W of \alpha x we can �nd a neighborhood of \alpha 
say (\alpha  - \delta , \alpha + \delta ), \delta > 0 and a neighborhood V of x such that \gamma V \subset W whenever
\gamma \in (\alpha  - \delta , \alpha + \delta ).

We now give the following important and useful De�nitions and known results.

De�nition 2.9. (Local base)[13] By local base of a TVS (X, \tau ) we mean a neighborhood
base \BbbB of \theta \in X (\theta is the zero vector in X) that is for every neighborhood V of \theta there
exists a member B \in \BbbB such that \theta \in B \subset V.

De�nition 2.10. [13] A TVS X is said to be locally convex if X has a local base whose
members are all convex sets.

Lemma 2.11. [13] A TVS X has a balanced local base.

Lemma 2.12. [13] Every neighborhood of \theta in a TVS X contains an absorbing neigh-
borhood of \theta \in X.

Lemma 2.13. [13] In a locally convex TVS X every neighborhood of \theta contains a ab-
sorbing,balanced and convex neighborhood of \theta .

Lemma 2.14. [13] Every TVS is regular.
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Lemma 2.15. [13] Let X be a TVS. Then the followings hold.
(i) If A \subset X then A = \cap (A + V ), where V \in \scrN (\theta ), \scrN (\theta ) is the collection of all

neighborhoods of \theta \in X.
(ii) If A \subset X and B \subset X then A+B \subset A+B.
(iii) If Y is a subspace of X then Y is also a subspace of X.
(iv) If C is a convex set in X then C and Int(C) are also so.
(v) If E \subset X is balanced then E is also balanced, moreover if \theta \in Int(E) then Int(E)

is also balanced.
(vi) If A is an absorbing subset of X then A is also so.

Lemma 2.16. [13] The following conditions are equivalent in a TVS X.
(i) X is T0.
(ii) X is T2.
(iii) \cap V \in \scrN (\theta )V = \{ \theta \} , where \scrN (\theta ) is the collection of all neighborhoods of \theta \in X.

Lemma 2.17. [13] In a locally convex TVS X, the balanced, closed, convex neighborhood
of \theta forms a neighborhood base of \theta \in X.

De�nition 2.18. [13] Let X be a TVS. Fix a base \BbbB for X. A sequence \{ xn\} in X is
said to be a Cauchy sequence if to every V \in \BbbB there corresponds a N \in \BbbN such that
xn  - xm \in V whenever m > n \geq N.

De�nition 2.19. [13] A sequence \{ xn\} \subset X is said to be convergent to an element
x \in X if for any basic neighborhood V , there exists a positive integer N \in \BbbN such that
xn  - x \in V whenever m \geq N and we write xn \rightarrow x as n \rightarrow \infty and we say that x is the
limit of \{ xn\} .

De�nition 2.20. [13] A TVS X is said to be complete if every Cauchy sequence in X
is convergent to an element in X.

Lemma 2.21. [13] A TVS X is Hausdor� i� every sequence in X has atmost one limit.

Lemma 2.22. [13] A complete subset of a Hausdor� TVS is closed.

Lemma 2.23. [13] Let A \subset X be complete. Then every closed subset of A is complete.

De�nition 2.24. [13] A TVS X is said to be a F - space if its topology \tau is induced by a
complete invariant metric. A TVS X is a Frechet space if it is a locally convex F - space.

De�nition 2.25. [13] Let X and Y be two TVSs. Also let T : X \rightarrow Y be a mapping.
Then T is said to be continuous at x0 \in X if \{ xn\} \in X such that xn \rightarrow x0 as n \rightarrow \infty 
implies Txn \rightarrow Tx0 as n \rightarrow \infty .

In [13] the authors have proved Kannan-type �xed point theorem in the framework
of a complete locally convex topological vector space and have applied it to show the
stability of �xed point problem.

De�nition 2.26. [13] Let (X, \tau ) be a locally convex TVS and T : X \rightarrow X be a mapping.
Then T is said to be sequentially convergent if for any sequence \{ yn\} in X, convergence
of \{ Tyn\} in X implies that \{ yn\} is convergent in X.

De�nition 2.27. [13] Let (X, \tau ) be a locally convex TVS and T : X \rightarrow X be a mapping.
Then T is said to be subsequentially convergent if for any sequence \{ yn\} inX, convergence
of \{ Tyn\} in X implies that \{ yn\} has a convergent subsequence in X.

De�nition 2.28. [13] Let (X, \tau ) be a locally convex TVS and \{ Tn\} be a sequence of
self maps on X. Then \{ Tn\} converges uniformly to a self map T on X if for each
neighborhood U of \theta \in X there exists N \in \BbbN such that Tnx - Tx \in U whenever n \geq N
for all x \in X.
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Lemma 2.29. [13] Let (X, \tau ) be a locally convex TVS and \{ xn\} be a sequence in X.
If for any neighborhood V of \theta \in X there exists some t > 0 such that for any n \in \BbbN ,
xn  - xn+1 \in \alpha ntV for some \alpha \in (0, 1) then \{ xn\} is Cauchy in X.

De�nition 2.30. [13] Let (X, \tau ) be a locally convex TVS. A mapping T : X \rightarrow X is
said to be a Kannan-type contractive mapping if for every neighborhood U of \theta \in X
there exists 0 < \alpha < 1

2 such that (Tx  - Ty)  - \alpha (y  - Ty) \in \alpha U whenever x  - Tx \in U ,
\forall x, y \in X.

Theorem 2.31. [13] Let (X, \tau ) be a complete locally convex topological vector space and
let T : X \rightarrow X be a Kannan-type contractive mapping with the constant \alpha . Then T has
a unique �xed point in X.

Theorem 2.32. [13] Let (X, \tau ) be a complete locally convex topological vector space and
let T : X \rightarrow X be a Kannan-type contractive mapping with the constant \alpha . Then the
�xed point equation of T is Ulam-Hyers stable.

3. Cantor's intersection theorem

In this section we prove a Cantor's intersection like theorem in the context of locally
convex topological vector space.

Theorem 3.1. Let (X, \tau ) be a locally convex topological vector space. Then X is complete
if and only if the following condition holds:

If \{ Fn\} is a decreasing sequence of non-empty closed subsets of X such that for any
neighborhood U of \theta \in X there exists some N \in \BbbN such that FN  - FN \subset U then \cap \infty 

n=1Fn

is a singleton in X.

Proof. First let us suppose that X is complete and \{ Fn\} is a decreasing sequence of
nonempty closed subsets in X. Take a neighborhood V of \theta \in X. Without loss of
generality we can assume that V is convex, balanced and absorbing. Then by the
assumed condition there exists some N \in \BbbN such that FN  - FN \subset V . Therefore
V \supset FN  - FN \supset FN+1  - FN+1 \supset ... . Suppose m > n \geq N , then we have xn  - xm \in 
Fn  - Fn \subset FN  - FN \subset V, which implies \{ xn\} is a Cauchy sequence in X and therefore
there exits some u \in X such that \{ xn\} converges to u. For any n \in \BbbN we have xm \in Fn

whenever m \geq n. Since Fn is closed we get u \in Fn. Hence u \in \cap \infty 
n=1Fn.

Suppose that w \in \cap \infty 
n=1Fn. For any neighborhood U of \theta \in X there exists N0 \in \BbbN 

such that FN0  - FN0 \subset U and therefore u  - w \in FN0  - FN0 \subset U. Since U is arbitrary
neighborhood of \theta in X we have u - w = \theta implies u = w. Therefore \cap \infty 

n=1Fn = \{ u\} .
Conversely suppose that the condition holds and \{ xn\} is a Cauchy sequence in X.

Put, Hn = \{ xn, xn+1, ...\} for all n \in \BbbN . Then \{ Hn\} is a decreasing sequence of nonempty
closed sets in X. Let V be a neighborhood of \theta \in X. Since \{ xn\} is Cauchy there exists
N \in \BbbN such that xn  - xm \in 1

2V, whenever n,m \geq N. Thus HN  - HN \subset 1
2V . Also

let a, b \in HN\setminus HN then there exists \{ xnk
\} and \{ x\'nk

\} in HN and xnk
\rightarrow a, x\'nk

\rightarrow b as
k \rightarrow \infty .
Now,

a - b = (a - xnk
) + (xnk

 - x\'nk
) + (x\'nk

 - b) for all k \in \BbbN .

By a suitable choice of k we can show that a  - b \in V. Also if p \in HN and q \in HN\setminus HN

then there exists some \{ xmk
\} \in HN such that xmk

\rightarrow q as k \rightarrow \infty , and we have

p - q = (p - xmk
) + (xmk

 - q) for all k \in \BbbN .

Similarly as above we can show that p - q \in V. From this it follows that HN  - HN \subset V.
Therefore by the assumed condition we have \cap \infty 

n=1Hn = \{ z\} for some z \in X. Let W be
a neighborhood of \theta \in X, then there exists N0 \in \BbbN such that HN0  - HN0 \subset W and
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therefore xn  - z \in W whenever n \geq N0. So \{ xn\} is convergent in X and converges to z.
Hence X is complete. \square 

4. Main results

In this section following the literatures [2], [5], [8], [10], [12], [14] and [15] we de�ne
Reich-type contractive mapping, Caccioppoli-type contractive mapping, T - Reich-type
contractive mapping and T - Caccioppoli-type contractive mapping over a locally convex
TVS and with these mappings we have been able to prove some �xed point theorems
and common �xed point theorems over it.

De�nition 4.1. Let (X, \tau ) be a locally convex TVS. A mapping T : X \rightarrow X is said to
be a Reich-type contractive mapping if for every neighborhood U of \theta \in X there exists
\alpha , \beta \geq 0 with 0 < \alpha + 2\beta < 1 such that (Tx  - Ty)  - \beta [(x  - Tx) + (y  - Ty)] \in \alpha U
whenever x - y \in U , \forall x, y \in X.

De�nition 4.2. Let (X, \tau ) be a locally convex TVS and T : X \rightarrow X be a mapping. Then
a mapping S : X \rightarrow X is said to be a T - Reich-type contractive mapping if there exists
\alpha , \beta \geq 0 with 0 < \alpha +2\beta < 1 such that (TSx - TSy) - \beta [(Tx - TSx)+(Ty - TSy)] \in \alpha U
whenever Tx - Ty \in U for all x, y \in X and for any neighborhood U of \theta \in X.

De�nition 4.3. Let (X, \tau ) be a locally convex TVS. A mapping T : X \rightarrow X is said to
be a Caccioppoli-type contractive mapping if T satis�es the following conditions:

(i) an > 0 for all n \in \BbbN and
\sum \infty 

n=1 an < \infty ,
(ii) for every neighborhood U of \theta \in X, Tmx  - Tmy \in amU whenever x  - y \in U ,

\forall x, y \in X and for any m \in \BbbN .

De�nition 4.4. Let (X, \tau ) be a locally convex TVS and T : X \rightarrow X be a mapping..
A mapping S : X \rightarrow X is said to be a T - Caccioppoli-type contractive mapping if S
satis�es the following conditions:

(i) an > 0 for all n \in \BbbN and
\sum \infty 

n=1 an < \infty ,
(ii) for every neighborhood U of \theta \in X, TSmx - TSmy \in amU whenever Tx - Ty \in U ,

\forall x, y \in X and for any m \in \BbbN .

Theorem 4.5. Let (X, \tau ) be a complete locally convex topological vector space and let
T : X \rightarrow X be a Reich-type contractive mapping with constants \alpha , \beta (See De�nition 4.1).
Then T has a unique �xed point in X.

Proof. Let x0 \in X and let U be a neighborhood of \theta \in X. Let us de�ne a sequence \{ xn\} 
in X by xn = Txn - 1 = Tnx0 for all n \in \BbbN . We may assume that U is convex, balanced
and absorbing. Now x0  - x1 \in X. So there exists a scalar \lambda > 0 such that x0  - x1 \in \eta U
whenever | \eta | \geq \lambda . As x0 - x1 \in \lambda U then (Tx0 - Tx1) - \beta [(x0 - Tx0)+(x1 - Tx1)] \in \alpha \lambda U

that is x1 - x2 \in (\alpha +\beta )
1 - \beta \lambda U. Proceeding in a similar fashion we get xn - xn+1 \in ( (\alpha +\beta )

1 - \beta )n\lambda U

for all n \in \BbbN . Then by Lemma 2.29 we see that \{ xn\} is Cauchy in X. Since X is complete,
so there exists z \in X such that xn \rightarrow z as n \rightarrow \infty .

Let V be a neighborhood of \theta \in X. Then there exists a balanced, convex and absorbing
neighborhood W of \theta \in X such that W \subset 1 - \beta 

1+\alpha +\beta V. Now since xn \rightarrow z as n \rightarrow \infty so

there exists N \in \BbbN such that xn  - z \in W and xn  - xn+1 \in W for all n \geq N. So for all
n \geq N ,

(z  - Tz) - \beta (z  - Tz)

= z  - xn+1 + xn+1  - Tz  - \beta (xn  - Txn) + \beta (xn  - Txn) - \beta (z  - Tz)

= (z  - xn+1) + \{ (Txn  - Tz) - \beta [(xn  - Txn) + (z  - Tz)]\} + \beta (xn  - xn+1)

\in W + \alpha W + \beta W \subset (1 - \beta )V. (4.1)
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Then (1  - \beta )(z  - Tz) \in (1  - \beta )V whenever n \geq N that is z  - Tz \in V. Since V is any
neighborhood of \theta \in X then we have Tz = z. Clearly the �xed point of T is unique. \square 

Theorem 4.6. Let (X, \tau ) be a complete locally convex topological vector space and f be
a continuous self map on X. Let g : X \rightarrow X be a mapping such that it commutes with f
and satis�es g(X) \subset f(X). If for every neighborhood U of \theta \in X there exists constants
\alpha , \beta \geq 0 with 0 < \alpha + 2\beta < 1 such that (gx  - gy)  - \beta [(fx  - gx) + (fy  - gy)] \in \alpha U
whenever fx - fy \in U for all x, y \in X then f and g have a unique common �xed point
in X.

Proof. Let x0 \in X. Then there exists x1 \in X such that fx1 = gx0. Since x1 \in X so
there exists x2 \in X such that fx2 = gx1. Continuing in this way we get fxn = gxn - 1

\forall n \in \BbbN . Let us take \{ yn\} \subset X de�ned by yn = fxn = gxn - 1 for all n \in \BbbN .
Let U be a neighborhood of \theta in X. Assume that U is convex, absorbing and balanced.
So there exists a t > 0 such that y1  - y2 = fx1  - fx2 \in \zeta U whenever | \zeta | \geq t. Therefore

(gx1 - gx2) - \beta [(fx1 - gx1)+(fx2 - gx2)] \in \alpha tU that is y2 - y3 \in (\alpha +\beta )
1 - \beta tU . Proceeding in

this manner we get yn  - yn+1 \in ( (\alpha +\beta )
1 - \beta )n - 1tU for all n \in \BbbN . So by applying Lemma 2.29

we see that \{ yn\} is Cauchy sequence in X. Since X is complete, so there exists z \in X
such that yn \rightarrow z as n \rightarrow \infty . Since f is continuous we have fyn \rightarrow fz as n \rightarrow \infty . Now
fyn = fgxn - 1 = gfxn - 1 = gyn - 1 for all n \geq 2. Therefore gyn \rightarrow fz as n \rightarrow \infty . Now,

gyn  - gz

= gyn  - gz  - \beta [(fyn  - gyn) + (fz  - gz)] + \beta [(fyn  - gyn) + (fz  - gz)]

= gyn  - gz  - \beta [(fyn  - gyn) + (fz  - gz)]

+ \beta [(fyn  - gyn) + (fz  - gyn) + (gyn  - gz)]. (4.2)

Which implies that gyn  - gz = 1
1 - \beta \{ (gyn  - gz) - \beta [(fyn  - gyn) + (fz  - gz)] + \beta (fyn  - 

fyn+1) + \beta (fz  - fyn+1)\} . Since \{ fyn\} converges to fz, by a routine calculation we can
obtain gyn \rightarrow gz as n \rightarrow \infty . Thus fz = gz. Let V be a neighborhood of \theta \in X. So there
exists some \mu > 0 such that gz  - g2z \in \mu V, which implies fz  - f(gz) \in \mu V . Hence,
(gz - g2z) - \beta [(fz - gz)+(f(gz) - g2z)] \in \alpha \mu V implying that gz - g2z \in \alpha \mu V. Continuing
in this way we have gz - g2z \in \alpha n\mu V for all n \geq 1. Since 0 \leq \alpha < 1 we have gz - g2z \in V.
Since V is arbitrary we get g2z = gz. So f(gz) = g(fz) = g2z = gz. Therefore gz = a
(say) is a common �xed point of f and g in X. Uniqueness of a is apparent. \square 

Theorem 4.7. Let (X, \tau ) be a complete locally convex topological vector space. Also let
T, S : X \rightarrow X be two mappings satisfying (i) (Tx - Sy) - \beta [(x - Tx) + (y  - Sy)] \in \alpha U
and (ii) (Sx - Ty) - \beta [(x - Sx) + (y - Ty)] \in \alpha U whenever x - y \in U , for any x, y \in X
and for any neighborhood U of \theta \in X, where \alpha , \beta \geq 0 with 0 < \alpha + 2\beta < 1. Then T, S
have a unique common �xed point in X.

Proof. Let us choose some x0 \in X. The sequence \{ xn\} in X is de�ned by

xn =

\Biggl\{ 
Txn - 1, when n is odd

Sxn - 1, when n is even

Now let U be any neighborhood of \theta \in X. We can assume that U is balanced, absorbing
and convex. Now x0  - x1 \in X, so there exists some l > 0 such that x0  - x1 \in \beta U
whenever | \beta | \geq l. Thus we get x0  - x1 \in lU implying that (Tx0  - Sx1) - \beta [(x0  - Tx0) +

(x1  - Sx1)] \in \alpha lU (Using condition (i)). That is x1  - x2 \in (\alpha +\beta )
1 - \beta lU , which implies that

(Sx1  - Tx2)  - \beta [(x2  - Tx2) + (x1  - Sx1)] \in \alpha (\alpha +\beta )
1 - \beta lU (Using condition (ii)). Thus

x2  - x3 \in ( (\alpha +\beta )
1 - \beta )2lU , proceeding in a similar way we have xn  - xn+1 \in ( (\alpha +\beta )

1 - \beta )nlU

for all n \in \BbbN . So by Lemma 2.29 \{ xn\} is a Cauchy sequence in X, since X is complete
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so there exists z \in X to which \{ xn\} converges. So \{ Tx2n\} n\geq 0 converges to z and also
\{ Sx2n - 1\} n\in \BbbN converges to z.

Let V be any neighborhood of \theta inX. It can be assumed that V is convex, balanced and
absorbing. Then there existsN \in \BbbN such that x2n - x2n+1 \in 1 - \beta 

\alpha +2\beta V , Sx2n - 1 - z \in 1 - \beta 
\alpha +2\beta V

and Tx2n  - z \in 1 - \beta 
\alpha +2\beta V whenever n \geq N. Therefore using condition (i) we obtain

(Tx2n  - Sz)

= (Tx2n  - Sz) - \beta [(x2n  - Tx2n) + (z  - Sz)] + \beta [(x2n  - Tx2n) + (z  - Sz)]

= (Tx2n  - Sz) - \beta [(x2n  - Tx2n) + (z  - Sz)] + \beta [(x2n  - x2n+1) + (z  - Tx2n)

+ (Tx2n  - Sz)],

which in turn implies that (1 - \beta )(Tx2n  - Sz) = \{ (Tx2n  - Sz) - \beta [(x2n  - Tx2n) + (z  - 
Sz)]\} + \beta [(x2n  - x2n+1) + (z  - Tx2n)] and therefore (Tx2n  - Sz) \in V for all n \geq N.
Since V is arbitrary neighborhood of \theta in X we have Tx2n \rightarrow Sz as n \rightarrow \infty . Since X is
Hausdor� then Sz = z. In a similar fashion using condition (ii) we get Tz = z. So z is a
common �xed point of T and S. Uniqueness of z is also clear. \square 

Theorem 4.8. Let (X, \tau ) be a complete locally convex topological vector space and T :
X \rightarrow X be an one-one, continuous and subsequentially convergent mapping. If S is a
T -Reich-type contractive mapping then S has a unique �xed point in X. Also if T is
sequentially convergent then for each x0 \in X, the sequence of iterates \{ Snx0\} converges
to this �xed point.

Proof. Let, x0 \in X and let us construct the sequence \{ xn\} in X by xn = Sxn - 1 = Snx0

for all n \in \BbbN .
Let U be a neighborhood of \theta \in X. Without loss of generality we can assume that U
is convex, balanced and absorbing. So there exists h > 0 such that Tx0  - Tx1 \in \gamma U
whenever | \gamma | \geq h. In particular, Tx0  - Tx1 \in hU , we get (TSx0  - TSx1)  - \beta [(Tx0  - 
TSx0) + (Tx1  - TSx1)] \in \alpha hU implying that Tx1  - Tx2 \in (\alpha +\beta )

1 - \beta hU . Proceeding in this

way we get, Txn  - Txn+1 \in ( (\alpha +\beta )
1 - \beta )nhU for all n \in \BbbN . Then by Lemma 2.29 we see that

\{ Txn\} is Cauchy sequence in X and since X is complete so there exists a \in X such that
\mathrm{l}\mathrm{i}\mathrm{m}Txn = a. Now since T is subsequentially convergent then there exists a subsequence
\{ xnk

\} of \{ xn\} such that it is convergent and converges to b \in X. Since T is continuous,
so \mathrm{l}\mathrm{i}\mathrm{m}Txnk

= Tb, implying that Tb = a. Also,

Tb - TSb

= (Tb - TSxnk
) + (TSxnk

 - TSb)

= (Tb - TSxnk
) + (TSxnk

 - TSb) - \beta [(Txnk
 - TSxnk

) + (Tb - TSb)]

+ \beta [(Txnk
 - TSxnk

) + (Tb - TSb)]

= \{ (TSxnk
 - TSb) - \beta [(Txnk

 - TSxnk
) + (Tb - TSb)]\} + (Tb - Txnk+1)

+ \beta [(Txnk
 - Txnk+1) + (Tb - TSb)].

This implies that

(1 - \beta )(Tb - TSb)

= \{ (TSxnk
 - TSb) - \beta [(Txnk

 - TSxnk
) + (Tb - TSb)]\} + (Tb - Txnk+1)

+ \beta (Txnk
 - Txnk+1).

Now let V be a neighborhood of \theta \in X. Since \{ Txn\} is convergent then there exists

N \in \BbbN such that Txnk
 - Txnk+1 \in 1 - \beta 

1+\alpha +\beta V and Txnk
 - Tb \in 1 - \beta 

1+\alpha +\beta V whenever k \geq N,.

Therefore Tb  - TSb \in V. Since V is an arbitrary neighborhood of \theta \in X then we get
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TSb = Tb. Since T is injective then we have Sb = b and therefore b is a �xed point of S
in X. Uniqueness of b is obvious. The last conclusion is now clear. \square 

Theorem 4.9. Let (X, \tau ) be a complete locally convex topological vector space and let
T : X \rightarrow X be a Caccioppoli-type contractive mapping (See De�nition 4.3). Then T has
a unique �xed point in X.

Proof. Take x0 \in X and construct the Picard iterative sequence \{ xn\} as xn = Txn - 1 =
Tnx0 for all n \in \BbbN . Assume that Tx0 \not = x0. Now let U be a neighborhood of \theta \in X.
Without loss of generality we can assume that U is convex, balanced and absorbing. So
there exists k > 0 such that x0  - x1 \in \tau U whenever | \tau | \geq k. In particular x0  - x1 \in kU ,
thus we get xn  - xn+1 = Tnx0  - Tnx1 \in ankU for all n \in \BbbN . Therefore, for any
1 \leq n < m we get, xn  - xm = (xn  - xn+1) + (xn+1  - xn+2) + ... + (xm - 1  - xm) \in 
(an + an+1 + ... + am - 1)kU =

\sum m - 1
i=n aikU. As

\sum \infty 
i=1 ai < \infty , we have

\sum m - 1
i=n ai \rightarrow 0 as

n \rightarrow \infty . Therefore xn  - xm \in U for all n,m \geq N , for some N \in \BbbN . Since U is arbitrary
neighborhood of \theta \in X we see that \{ xn\} is Cauchy in X. Thus for completeness of X
there exists some u \in X such that xn \rightarrow u as n \rightarrow \infty . Now,

u - Tu = u - xn+1 + xn+1  - Tu

= u - xn+1 + (Txn  - Tu) for all n \in \BbbN . (4.3)

Now for any neighborhood V of \theta \in X there exists some N0 \geq 1 such that xn - u \in 1
1+a1

V
for all n \geq N0. Therefore u - Tu \in V. Since V is arbitrary it follows that Tu = u. Hence
u is a �xed point of T.

Now let v be any �xed point of T and W be a neighborhood of \theta \in X. Then by
the absorbing property of W we can �nd some t > 0 such that u  - v \in tW. Therefore
u  - v = Tnu  - Tnv \in antW for all n \geq 1. Since the series

\sum \infty 
i=1 ai converges we have

an \rightarrow 0 as n \rightarrow \infty . Then we can �nd some N1 \in \BbbN such that ant < 1 for all n \geq N1.
Hence u - v \in W and we get u = v. Therefore the �xed point of T is unique. \square 

Theorem 4.10. Let (X, \tau ) be a complete locally convex topological vector space and
T : X \rightarrow X be an one-one, continuous and subsequentially convergent mapping. If S
is a T -Caccioppoli-type contractive mapping then S has a unique �xed point in X. Also
if T is sequentially convergent then for each x0 \in X, the sequence of iterates \{ Snx0\} 
converges to this �xed point.

Proof. Let us take an element x0 \in X and we construct the sequence \{ xn\} in X by
xn = Sxn - 1 = Snx0 for all n \in \BbbN . Let U be a neighborhood of \theta \in X. Without loss
of generality we can assume that U is convex, balanced and absorbing. So there exists
r > 0 such that Tx0  - Tx1 \in \zeta U whenever | \zeta | \geq r. Thus Tx0  - Tx1 \in rU and therefore
we get Txn  - Txn+1 = TSnx0  - TSnx1 \in anrU for all n \in \BbbN . Now for any 1 \leq n < m
we see that Txn  - Txm = (Txn  - Txn+1) + (Txn+1  - Txn+2) + ...+ (Txm - 1  - Txm) \in 
(an + an+1 + ...+ am - 1)kU =

\sum m - 1
i=n aikU. As

\sum \infty 
i=1 ai converges, we have

\sum m - 1
i=n ai \rightarrow 0

as n \rightarrow \infty . Therefore we can �nd some N \geq 1 such that Txn - Txm \in U for all n,m \geq N .
Since U is arbitrary we see that \{ Txn\} is Cauchy in X. Since X is complete, there exists
some z \in X such that Txn \rightarrow z as n \rightarrow \infty . As T is subsequentially convergent then
there exists a subsequence \{ xnk

\} of \{ xn\} such that it is convergent and converges to
some z\prime \in X. Since T is continuous, so \mathrm{l}\mathrm{i}\mathrm{m}Txnk

= Tz\prime , implies that Tz\prime = z. Here,

Tz\prime  - TSz\prime = Tz\prime  - Txnk+1 + Txnk+1  - TSz\prime 

= (Tz\prime  - Txnk+1) + (TSxnk
 - TSz\prime ).

Now for any neighborhood V of \theta \in X there exists some N0 \geq 1 such that Txnk
 - Tz\prime \in 

1
1+a1

V for all n \geq N0. Therefore Tz\prime  - TSz\prime \in V. Since V is arbitrary it follows that
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Tz\prime = TSz\prime . Since T is injective then we have Sz\prime = z\prime and therefore z\prime is a �xed point
of S in X.

Now if z be any �xed point of S and W be any neighborhood of \theta \in X then we can get
some \mu > 0 such that z  - z\prime \in \mu W, which implies that z  - z\prime = TSnz  - TSnz\prime \in \mu anW
for all n \in \BbbN . Therefore, for any n \in \BbbN , Tz  - Tz\prime \in an\mu W . Since the series

\sum \infty 
i=1 ai

converges we have an \rightarrow 0 as n \rightarrow \infty . Then we can �nd some N1 \in \BbbN such that an\mu < 1
for all n \geq N1. Hence Tz  - Tz\prime \in W and we get Tz = Tz\prime , implying that z = z\prime .
Therefore the �xed point of S is unique. Also the �nal conclusion clearly holds. \square 

Theorem 4.11. Let (X, \tau ) be a complete locally convex topological vector space. Let
\{ Tn\} be a sequence of Reich-type contractive mappings on X with the same constants
\alpha , \beta \geq 0 satisfying 0 < \alpha +2\beta < 1, which is uniformly convergent to T. Then T is also a
Reich-type contractive mapping with the same constants \alpha , \beta \geq 0 satisfying 0 < \alpha +2\beta < 1
and it has a unique �xed point in X.

Proof. Let V be an arbitrary neighborhood of \theta \in X. Also let K be a neighborhood of
\theta \in X such that x - y \in K for some x, y \in X. Now by Lemma 2.17 there exists a closed,
balanced and convex neighborhood G of of \theta \in X such that x  - y \in G \subset K. For the
neighborhood V of \theta \in X, there exists N \in \BbbN such that for any a \in X, Tna - Ta \in 1

2V
for all n \geq N. Now,

(Tx - Ty) - \beta [(x - Tx) + (y  - Ty)]

= (1 + \beta )(Tx - Tnx) + (1 - \beta )(Tny  - Ty)

+ \{ (Tnx - Tny) - \beta [(x - Tnx) + (y  - Tny)]\} for all n \in \BbbN .

Therefore we have

(Tx - Ty) - \beta [(x - Tx) + (y  - Ty)]

= (1 + \beta )(Tx - TNx) + (1 - \beta )(TNy  - Ty)

+ \{ (TNx - TNy) - \beta [(x - TNx) + (y  - TNy)]\} \in \alpha G+ V.

Since V is arbitrary we get (Tx  - Ty)  - \beta [(x  - Tx) + (y  - Ty)] \in \alpha G \subset \alpha K. Thus T
is also a Reich-type contractive mapping with the same constants \alpha , \beta \geq 0 satisfying
0 < \alpha + 2\beta < 1. Hence by Theorem 4.5 T has a unique �xed point in X. \square 

Let us consider the sequence of subsets \{ Km\} m\geq 1 of \BbbR n, where Km = B[\theta ,m], m \in \BbbN .
Let us take the space C\infty 

c (Km) of in�nitely di�erentiable functions on \BbbR n with compact
support contained in Km. Then C\infty 

c (Km) is a Frechet space, where the topology \tau m is

built by the family of seminorms given by, for each r \in \BbbN , | | f | | (m)
r = \mathrm{s}\mathrm{u}\mathrm{p}x\in Km

| Drf(x)| for
all f \in C\infty 

c (Km). Then from the family of topological spaces \{ (C\infty 
c (Km), \tau m) : m \in \BbbN \} 

we have the natural LF - space structure on C\infty 
c (\BbbR n). We know that C\infty 

c (\BbbR n) with this
structure is a complete locally convex TVS but not a Frechet space.

Any mapping T : X \rightarrow X, where X = C\infty 
c (\BbbR n), of the type Tx = \lambda x for all x \in X,

with \lambda \in [0, 1) satis�es the contractive condition of Theorem 4.5 with \alpha = \lambda and \beta = 0
and thus has a unique �xed point \theta , \theta is the null element, in X.
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