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ABSTRACT. In this present paper, we establish Cantor’s intersection like theorem in
a locally convex topological vector spaces. Some fixed point and common fixed point
theorems are proved for Reich and Caccioppoli type contractive mappings in such a
locally convex topological vector space. Also in this setting we prove a fixed point
theorem for some mapping which is the uniform limit of a sequence of Reich type
contractive mappings therein.

Bceranosmena teopema, moxi6ma Teopemi KanTopa mpo meperuH, y BHIAAKY
JIOKAJBHO OMYKJUX BEKTOPHHUX HPOCTOPiB. [IjIs CTHCKYHOUMX BimobpakKeHb THITY
Paiixa i Kagdionosi Bigmosigrux mpocTopiB goBegeHi TeOpeMHu PO HEPYXOMY TOUKY
Ta CHITbHY HepyxXoMy TO4YKy. Takoxk y miff mocTtaHoBIi JOBeIeHa TeopeMa PO
HEPYXOMY TOYKY [JIsl BifoOparkeHHsI, sike € PIBHOMIPHOIO TPAHUIEIO MOCiJOBHOCTI
CTHUCKYIOYHUX BinmoOpaxkeHnb Tuny Paiixa.

1. INTRODUCTION

Nowadays fixed point Theory is one of the most emerging areas of research in contem-
porary Mathematics. The research in this area has been more useful for its numerous
applications in various branches in Mathematics, like Solution of nonlinear matrix equa-
tions, nonlinear differential and integral equations, boundary value problem, implicit
function theorem, homotopy Theory and many more. S. Banach had been first person
to prove well known Contraction Principle Theorem [4] in fixed point Theory using con-
traction mapping in a complete metric space. Since then many researchers had been
attracted in fixed point Theory resulting in enormous growth enriching and enlarging
frontiers of fixed point theory. By relaxation of spatial structure many researchers had
discovered several metric-like structures in underlying spaces and proved important fixed
point theorems (See [3], [6], [7], [9], [11] and [16]), where polygonal type inequalities
had been extensively used. Attempts have now been in progress to establish fixed point
Theorems with Frechet Topological Vector space as underlying space [1]. Very recently
Roy and Saha in 2019 (See [13]) have developed fixed point theory in Topological Vector
spaces, specially in Locally Convex Topological Vector spaces so far unexplored, and they
have proved fixed point theorems involving Kannan type contractive mappings. Since
not necessarily continuous mappings are also now welcome in fixed point theory as de-
veloped by Roy and Saha [13], we have been prompted to look into problems involving
like-Kannan mappings and our investigations in the concerned area have shown that we
can derive some interesting and useful too fixed point theorems by taking Reich and
Caccioppoli-type mappings over Locally Convex Topological Vector space where Cantor-
Intersection Theorem has been proved. We have not used Minkowski functional over the
space in our fixed point theorems. It may now be seen that our findings in fixed point
theory choice of a suitable local base in underlying Locally Convex Topological Vector
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space has played an important part and motivation throughout the text of the paper as
presented.

Before we start with actual text we need giving some preliminaries and recall some
definitions that help reading the materials with ease and comfort.

2. PRELIMINARIES

The following basic definitions and basic results together with its consequences are
relevant to our findings.

Definition 2.1. [13] Let X be a real vector space and C be a subset of X. Then C
is said to be convex if for any two elements z,y € C' and for any scalar 0 < a < 1,
ax + (1 — a)y € C that is the line segment joining two points x,y must lie in the set C.
Equivalently, aC + (1 — «)C C C for all scalars « satisfying 0 < o < 1.

Lemma 2.2. [13] A subset C of a vector space X is convex iff for all positive scalars s
and t, (s +1t)C = sC +tC.

Definition 2.3. [13] A subset S of a vector space X is said to be symmetric if —S C S,
equivalently S = —S.

Definition 2.4. [13] A subset B of a vector space X is said to be balanced if aB C B
for all scalars «, whenever |a| < 1.

Definition 2.5. [13] A set A in a vector space X is said to be absorbing if for each
x € X there exists a € > 0 such that ax € A, whenever |a| <e.

Lemma 2.6. [13] A convez set C of a vector space X is balanced iff it is symmetric.

Definition 2.7. [13] A balanced set B of a vector space X is absorbing iff for each
x € X, there corresponds a scalar 5 # 0 such that Sz € B.

Definition 2.8. [13] A vector space X over R or C equipped with a T3 topology T is
said to be a topological vector space(TVS) if the following conditions are satisfied.

(i) The mapping from X x X to X defined by (z,y) = x +y, x,y € X, is continuous,
that is for every neighborhood W of z + y we can find neighborhoods V; of # and V4 of
y such that V3 + V5 C W and also

(ii) The mapping from F x X — X defined by (a,2) = az, a € F,xz € X, is
continuous, that is for any neighborhood W of ax we can find a neighborhood of «
say (o — 0, + 9),0 > 0 and a neighborhood V of x such that vV C W whenever
v € (a—6,a+9).

We now give the following important and useful Definitions and known results.

Definition 2.9. (Local base)[13] By local base of a TVS (X, 7) we mean a neighborhood
base B of § € X (6 is the zero vector in X)) that is for every neighborhood V of 6 there
exists a member B € B such that € B C V.

Definition 2.10. [13] A TVS X is said to be locally convex if X has a local base whose
members are all convex sets.

Lemma 2.11. [13] A TVS X has a balanced local base.

Lemma 2.12. [13] Every neighborhood of 6 in a TVS X contains an absorbing neigh-
borhood of 6 € X.

Lemma 2.13. [13] In a locally convex TVS X every neighborhood of 6 contains a ab-
sorbing,balanced and convex neighborhood of 6.

Lemma 2.14. [13] Every TVS is regular.
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Lemma 2.15. [13] Let X be a TVS. Then the followings hold.

(i) If A C X then A = N(A+ V), where V.€ N(0), N(0) is the collection of all
neighborhoods of 6 € X.

(i) If AC X and B C X then A+ BC A+ B.

(iii) If Y is a subspace of X thenY is also a subspace of X.

(iv) If C is a convez set in X then C and Int(C) are also so.

(v) If E C X is balanced then E is also balanced, moreover if 0 € Int(E) then Int(E)
is also balanced.

(vi) If A is an absorbing subset of X then A is also so.

Lemma 2.16. [13] The following conditions are equivalent in a TVS X.
(i) X is Ty.
(ii) X is T».
(iii) Nyen(o)V = {0}, where N'(0) is the collection of all neighborhoods of 6 € X.

Lemma 2.17. [13] In a locally convex TVS X, the balanced, closed, convez neighborhood
of 0 forms a neighborhood base of 0 € X.

Definition 2.18. [13] Let X be a TVS. Fix a base B for X. A sequence {z,} in X is
said to be a Cauchy sequence if to every V € B there corresponds a N € N such that
Tn, — Ty € V whenever m > n > N.

Definition 2.19. [13] A sequence {z,} C X is said to be convergent to an element
x € X if for any basic neighborhood V', there exists a positive integer N € N such that
T, —x € V whenever m > N and we write x,, — = as n — oo and we say that x is the
limit of {z,}.

Definition 2.20. [13] A TVS X is said to be complete if every Cauchy sequence in X
is convergent to an element in X.

Lemma 2.21. [13] A TVS X is Hausdorff iff every sequence in X has atmost one limit.
Lemma 2.22. [13] A complete subset of a Hausdorff TVS is closed.
Lemma 2.23. [13] Let A C X be complete. Then every closed subset of A is complete.

Definition 2.24. [13] A TVS X is said to be a F'—space if its topology 7 is induced by a
complete invariant metric. A TVS X is a Frechet space if it is a locally convex F'—space.

Definition 2.25. [13] Let X and Y be two TVSs. Also let T': X — Y be a mapping.
Then T is said to be continuous at zg € X if {z,} € X such that =, — zp as n — o
implies Tx,, — Tz as n — oo.

In [13] the authors have proved Kannan-type fixed point theorem in the framework
of a complete locally convex topological vector space and have applied it to show the
stability of fixed point problem.

Definition 2.26. [13] Let (X, 7) be a locally convex TVS and T': X — X be a mapping.
Then T is said to be sequentially convergent if for any sequence {y,} in X, convergence
of {Ty,} in X implies that {y, } is convergent in X.

Definition 2.27. [13] Let (X, 7) be alocally convex TVS and T': X — X be a mapping.
Then T is said to be subsequentially convergent if for any sequence {y, } in X, convergence
of {T'y,} in X implies that {y,} has a convergent subsequence in X.

Definition 2.28. [13] Let (X, 7) be a locally convex TVS and {7} be a sequence of
self maps on X. Then {T,} converges uniformly to a self map T on X if for each
neighborhood U of 6 € X there exists V € N such that T,,o — Tx € U whenever n > N
for all z € X.
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Lemma 2.29. [13] Let (X, 7) be a locally convex TVS and {x,} be a sequence in X.
If for any neighborhood V' of 0 € X there exists some t > 0 such that for any n € N,
Ty — Tpt1 € a™tV for some o € (0,1) then {z,,} is Cauchy in X.

Definition 2.30. [13] Let (X, 7) be a locally convex TVS. A mapping T : X — X is
said to be a Kannan-type contractive mapping if for every neighborhood U of 6 € X
there exists 0 < a < 3 such that (T — Ty) — a(y — Ty) € aU whenever z — Tz € U,
Vz,y € X.

Theorem 2.31. [13] Let (X, 7) be a complete locally convex topological vector space and
let T : X — X be a Kannan-type contractive mapping with the constant a. Then T has
a unique fized point in X.

Theorem 2.32. [13] Let (X, 7) be a complete locally convex topological vector space and
let T : X — X be a Kannan-type contractive mapping with the constant . Then the
fized point equation of T is Ulam-Hyers stable.

3. CANTOR’S INTERSECTION THEOREM

In this section we prove a Cantor’s intersection like theorem in the context of locally
convex topological vector space.

Theorem 3.1. Let (X, 1) be a locally convez topological vector space. Then X is complete
if and only if the following condition holds:

If {F,,} is a decreasing sequence of non-empty closed subsets of X such that for any
neighborhood U of 8 € X there exists some N € N such that Fy — Fy C U then N2, F,
is a singleton in X.

Proof. First let us suppose that X is complete and {F,} is a decreasing sequence of
nonempty closed subsets in X. Take a neighborhood V of § € X. Without loss of
generality we can assume that V is convex, balanced and absorbing. Then by the
assumed condition there exists some N € N such that Fy — F)y C V. Therefore
VOFN—Fny D Fny1— Fny1 D ... Suppose m > n > N, then we have z, — z,,, €
F, — F, C Fy — Fy C V, which implies {z,,} is a Cauchy sequence in X and therefore
there exits some u € X such that {x,} converges to u. For any n € N we have z,, € F,
whenever m > n. Since F, is closed we get v € F;,. Hence u € NS, F,.

Suppose that w € N2, F,. For any neighborhood U of § € X there exists Ny € N
such that Fiy, — Fiv, C U and therefore w — w € Fi, — Fn, C U. Since U is arbitrary
neighborhood of 6 in X we have u — w = 6 implies u = w. Therefore N2, F,, = {u}.

Conversely suppose that the condition holds and {z,} is a Cauchy sequence in X.
Put, H,, = {&pn, Zny1,...} for all n € N. Then {H,,} is a decreasing sequence of nonempty
closed sets in X. Let V' be a neighborhood of § € X. Since {z,} is Cauchy there exists
N € N such that @, — z,, € $V, whenever n,m > N. Thus Hy — Hy C 3V. Also
let a,b € Hy\Hy then there exists {z,, } and {zs,} in Hy and z,, — a, 4, — b as
k — oo.

Now,

a—b=(a—xn,)+ (Tn, —Tpn,) + (zs, —b) for all k € N.
By a suitable choice of k we can show that a —b € V. Also if p € Hy and q € Hy\Hy
then there exists some {x,,, } € Hy such that x,,, — ¢ as k — oo, and we have
p—q=(D—xm,)+ (Tm, —q) for all k € N.

Similarly as above we can show that p — ¢ € V. From this it follows that Hy — Hy C V.
Therefore by the assumed condition we have N2, H,, = {z} for some z € X. Let W be
a neighborhood of § € X, then there exists Nyo € N such that Hy, — Hy, C W and
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therefore x,, — z € W whenever n > Ny. So {z,} is convergent in X and converges to z.
Hence X is complete. O

4. MAIN RESULTS

In this section following the literatures [2], [5], [8], [10], [12], [14] and [15] we define
Reich-type contractive mapping, Caccioppoli-type contractive mapping, T'—Reich-type
contractive mapping and T'—Caccioppoli-type contractive mapping over a locally convex
TVS and with these mappings we have been able to prove some fixed point theorems
and common fixed point theorems over it.

Definition 4.1. Let (X, 7) be a locally convex TVS. A mapping 7' : X — X is said to
be a Reich-type contractive mapping if for every neighborhood U of 6§ € X there exists
a,8 >0 with 0 < a4+ 28 < 1 such that (Tz — Ty) — B[(x — Txz) + (y — Ty)] € aU
whenever x —y € U, Vz,y € X.

Definition 4.2. Let (X, 7) be alocally convex TVS and T': X — X be a mapping. Then
a mapping S : X — X is said to be a T—Reich-type contractive mapping if there exists
a, B> 0 with 0 < a+28 < 1such that (T'Sz—TSy)—B|(Tx—TSz)+(Ty—TSy)] € aU
whenever Tx — Ty € U for all z,y € X and for any neighborhood U of 6 € X.

Definition 4.3. Let (X, 7) be a locally convex TVS. A mapping T : X — X is said to
be a Caccioppoli-type contractive mapping if T satisfies the following conditions:

(i) a, >0foralln € Nand Y )7 | a, < 0o,

(ii) for every neighborhood U of § € X, Tz — T™y € a,, U whenever © —y € U,
Vz,y € X and for any m € N.

Definition 4.4. Let (X, 7) be a locally convex TVS and T : X — X be a mapping..
A mapping S : X — X is said to be a T—Caccioppoli-type contractive mapping if S
satisfies the following conditions:

(i) a, >0foralln € Nand Y )7 | a, < 0o,

(ii) for every neighborhood U of § € X, T'S™x—TS™y € a,,U whenever Tx:—Ty € U,
Vz,y € X and for any m € N.

Theorem 4.5. Let (X, 1) be a complete locally convex topological vector space and let
T : X — X be a Reich-type contractive mapping with constants «, 3 (See Definition 4.1).
Then T has a unique fized point in X.

Proof. Let p € X and let U be a neighborhood of 6 € X. Let us define a sequence {x,,}
in X by z, = Tx,_1 =T"x for all n € N. We may assume that U is convex, balanced
and absorbing. Now z¢o —x1 € X. So there exists a scalar A > 0 such that zqg — z; € nU
whenever || > A. As g —x1 € AU then (Txo—Tx1) — Bl(x0 —Txo) + (21 —Tx1)] € aAU
that is x4 —x9 € %/\U. Proceeding in a similar fashion we get x,, — 2,41 € (%)”)\U
for all n € N. Then by Lemma 2.29 we see that {z,,} is Cauchy in X. Since X is complete,
so there exists z € X such that x,, — z as n — oo.

Let V be a neighborhood of # € X. Then there exists a balanced, convex and absorbing
neighborhood W of # € X such that W C 1i;£ﬁv' Now since z,, — z as n — 00 SO
there exists N € N such that z,, — z € W and x,, — 2,41 € W for all n > N. So for all

n >N,
(z—=Tz)—B(z—T2)
=2z—Tpt1+ Tnt1 — Tz —Bxy, — Tay) + B(xy, — Txy) — B(z —T2)
(2 = 2py1) +{(Tzn — T2) = Bl(wn — Tzn) + (2 = T2)]} + B(Tn — Tnt1)
eW+aW+ W C (1-p0)V. (4.1)
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Then (1 — 8)(z —Tz) € (1 — B)V whenever n > N that is z — Tz € V. Since V is any
neighborhood of 8 € X then we have Tz = z. Clearly the fixed point of T" is unique. [

Theorem 4.6. Let (X, 7) be a complete locally convex topological vector space and f be
a continuous self map on X. Let g: X — X be a mapping such that it commutes with f
and satisfies g(X) C f(X). If for every neighborhood U of 0 € X there exists constants
a,f >0 with 0 < a+ 28 < 1 such that (g9 — gy) — B[(fr — gz) + (fy — gy)] € aU
whenever fx — fy € U for all z,y € X then f and g have a unique common fixed point
mn X.

Proof. Let xy € X. Then there exists 1 € X such that fz; = gxy. Since z; € X so
there exists xo € X such that fxo = gx;. Continuing in this way we get fx,, = gx,_1
V¥n € N. Let us take {y,} C X defined by y, = fz, = gz,—1 for all n € N.

Let U be a neighborhood of 6 in X. Assume that U is convex, absorbing and balanced.

So there exists a t > 0 such that y; — y2 = fx1 — fas € (U whenever || > ¢. Therefore

(971 —gz2) — Bl(fx1 —9g21) + (fT2 — g2)] € tU that is yo —y3 € (‘ffg) tU. Proceeding in

this manner we get ¥, — Ynt1 € (%)”*%U for all n € N. So by applying Lemma 2.29
we see that {y,} is Cauchy sequence in X. Since X is complete, so there exists z € X
such that y,, — z as n — oo. Since f is continuous we have fy, — fz as n — co. Now
fyn = fgxn_1=gfxn_1 = gyn_1 for all n > 2. Therefore gy,, — fz as n — co. Now,

9yn — 9z
= gyn — 92 = Bl(fyn — gyn) + (fz — g2)] + Bl(fyn — gyn) + (fz — g2)]
= gyn — 92 — Bl(fyn — gyn) + (fz — 92)]
+ BI(fyn — gyn) + (f2 = gyn) + (9Yn — 92)]. (4.2)

Which implies that gy, — 92 = 25{(9yn — 92) = Bl(fyn — 9yn) + (2 — 92)] + B(fyn —
fyn+1) + B(fz — fyns1)}. Since {fyn} converges to fz, by a routine calculation we can
obtain gy, — gz as n — co. Thus fz = gz. Let V be a neighborhood of § € X. So there
exists some y > 0 such that gz — g?z € uV, which implies fz — f(gz) € uV. Hence,
(92—g%2) = Bl(f2z—g2)+(f(g2) — g°?2)] € auV implying that gz —g?z € auV. Continuing
in this way we have gz —¢?z € a"uV for all n > 1. Since 0 < o < 1 we have gz — g%z € V.
Since V is arbitrary we get g?z = gz. So f(gz) = g(fz) = g2 = gz. Therefore gz = a
(say) is a common fixed point of f and ¢ in X. Uniqueness of a is apparent. ]

Theorem 4.7. Let (X, 7) be a complete locally convex topological vector space. Also let
T,S : X — X be two mappings satisfying (i) (Tx — Sy) — Bl(x — Tz) + (y — Sy)] € aU
and (i) (Sx—Ty) — Bl(x — Sz) + (y — Ty)] € aU whenever x —y € U, for any z,y € X
and for any neighborhood U of 0 € X, where o, > 0 with 0 < a4+ 25 < 1. Then T, S
have a unique common fized point in X.

Proof. Let us choose some xy € X. The sequence {x,} in X is defined by
Tx,_1, when n is odd
Ly = .
Sr,_1, when n is even

Now let U be any neighborhood of § € X. We can assume that U is balanced, absorbing
and convex. Now zg — x1 € X, so there exists some [ > 0 such that xg — x; € BU
whenever || > I. Thus we get zg — 1 € IU implying that (T'xo — Sz1) — B[(zo — Txo) +
(1 — Sz1)] € adU (Using condition (i)). That is 1 —z9 € (@5) 11, which implies that

-4
(Sx1 — Txa) — Bl(xe — Taz) + (x1 — Sz1)] € a(?fg)lU (Using condition (ii)). Thus
Tg — T3 € (%J?)QZU, proceeding in a similar way we have z, — x,11 € (%Jrg))”lU

for all n € N. So by Lemma 2.29 {z,} is a Cauchy sequence in X, since X is complete
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so there exists z € X to which {z,,} converges. So {T'z2,},>0 converges to z and also
{So,—1}nen converges to z.
Let V be any neighborhood of § in X. It can be assumed that V' is convex, balanced and

absorbing. Then there exists N € Nsuch that x9, —x2,41 € al_:mV Stop_1—2 € o}jﬁv

and Tz, — z € ==LV whenever n > N. Therefore using condition (i) we obtain

(Txo, — Sz)
= (Txon — Sz) — Bl(x2n — Txayn) + (2 — S2)] + Bl(x2n — Txan) + (2 — S2)]
= (Txan — Sz) — Bl(x2n — Txan) + (2 — S2)] + Bl(x2n — ant1) + (2 — Tx2y,)
+ (Txan — S2)],
which in turn implies that (1 — 8)(Txa, — Sz) = {(Twan — Sz) — Bl(wan — Tx2n) + (2 —
Sz2)]} + Bl(z2n — Tan+1) + (2 — Txa,)] and therefore (Taxg, — Sz) € V for all n > N.
Since V' is arbitrary neighborhood of 6 in X we have T'zq, — Sz as n — oco. Since X is

Hausdorff then Sz = z. In a similar fashion using condition (ii) we get Tz = 2. So z is a
common fixed point of 7" and S. Uniqueness of z is also clear. (]

oHrZB

Theorem 4.8. Let (X,7) be a complete locally convex topological vector space and T :
X — X be an one-one, continuous and subsequentially convergent mapping. If S is a
T-Reich-type contractive mapping then S has a unique fized point in X. Also if T is
sequentially convergent then for each xg € X, the sequence of iterates {S™xo} converges
to this fized point.

Proof. Let, o € X and let us construct the sequence {z,} in X by x,, = Sxz,—1 = S"zg
for all n € N.

Let U be a neighborhood of 6§ € X. Without loss of generality we can assume that U
is convex, balanced and absorbing. So there exists A > 0 such that Txg — Tz, € YU
whenever |y| > h. In particular, Taxg — Tz1 € hU, we get (T'Szog — T'Sx1) — B[(Txo —
TSwo) + (Txy — TSz1)] € ahU implying that Ty — Tz € AU Proceeding in this

way we get, Ta, — Txpi1 € ((O‘+g )*hU for all n € N. Then by Lemma 2.29 we see that
{T'z,} is Cauchy sequence in X and since X is complete so there exists a € X such that
limTx,, = a. Now since T is subsequentially convergent then there exists a subsequence
{zn,} of {z,} such that it is convergent and converges to b € X. Since T is continuous,
so lim Tz, = T'b, implying that Tb = a. Also,
To—T5Sb
=(Tb—TSxz,,)+ (T'Sx,, —TSH)
= (Tb— TSz, )+ (T'Sxy, —TSb) — B(Txn, —TSxy,) + (Tb—TSD)]
+ Bl(Txp, —TSxy, )+ (T'b—TSb)]
={(T'Szp, —TSb) — B[(Txyn, —TSpn,)+ (Tb—TSb)|}+ (T —Txp,+1)
+ B[(Txp, — Txp, 1) + (T —TSH)].
This implies that
(1= p5)(Tb—TSh)
={(TSzy, —TSb) — B[(Txyn, —TSxp,)+ (Tb—TSb)}+ (T —Txp,+1)
+ 5(Txnk - Txnk+1)'
Now let V' be a neighborhood of 0 € X. Since {Tz,} is convergent then there exists

N € N such that Ty, —Tp, 11 € 7525V and Ty, —Tb € =45V whenever k > N,
Therefore Th — T'Sb € V. Since V is an arbitrary nelghborhood of 0 € X then we get
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TSb=Tb. Since T is injective then we have Sb = b and therefore b is a fixed point of S
in X. Uniqueness of b is obvious. The last conclusion is now clear. O

Theorem 4.9. Let (X, 1) be a complete locally convex topological vector space and let
T:X — X be a Caccioppoli-type contractive mapping (See Definition 4.3). Then T has
a unique fixed point in X.

Proof. Take xg € X and construct the Picard iterative sequence {z,} as x,, = Tx,_1 =
T"xq for all n € N. Assume that Tzg # x9. Now let U be a neighborhood of 6 € X.
Without loss of generality we can assume that U is convex, balanced and absorbing. So
there exists k > 0 such that zo — 1 € 7U whenever |7| > k. In particular 2o — 21 € kU,
thus we get z,, — xp41 = T"xg — T"21 € a,kU for all n € N. Therefore, for any
1 <n<mweget, z, — &y = (xn - xn+1) + (anrl - xn+2) +o+ (xmfl - xm) €
(an + any1 + oo + apm_1)kU = Z:’;Ll a;kU. As 372 a; < oo, we have Z:n:;tl a; = 0 as
n — oo. Therefore x,, — x,, € U for all n,m > N, for some N € N. Since U is arbitrary
neighborhood of 6 € X we see that {z,} is Cauchy in X. Thus for completeness of X
there exists some u € X such that z,, — u as n — co. Now,

u—Tu = U—2Tpt1+Tnt1 —Tu
= u—2Zpt1 + (Tz, — Tu) for all n € N. (4.3)

Now for any neighborhood V of 8 € X there exists some Ny > 1 such that z,,—u € ﬁv
for all n > Ny. Therefore w —Tw € V. Since V is arbitrary it follows that 7Tu = u. Hence
u is a fixed point of T

Now let v be any fixed point of T' and W be a neighborhood of § € X. Then by
the absorbing property of W we can find some ¢ > 0 such that u — v € tW. Therefore
u—v="T"u—T"v € a,tW for all n > 1. Since the series > -, a; converges we have
a, — 0 as n — oco. Then we can find some N; € N such that a,t < 1 for all n > Nj.
Hence u — v € W and we get u = v. Therefore the fixed point of T' is unique. a

Theorem 4.10. Let (X,7) be a complete locally convez topological vector space and
T : X — X be an one-one, continuous and subsequentially convergent mapping. If S
is a T-Caccioppoli-type contractive mapping then S has a unique fized point in X. Also
if T is sequentially convergent then for each o € X, the sequence of iterates {S™xo}
converges to this fized point.

Proof. Let us take an element xyp € X and we construct the sequence {x,} in X by
Ty = Sxp_1 = S™xg for all n € N. Let U be a neighborhood of § € X. Without loss
of generality we can assume that U is convex, balanced and absorbing. So there exists
r > 0 such that Tzg — Tzy € (U whenever |¢| > r. Thus Txg — Tz € rU and therefore
we get Tx,, —Txpy1 =TS xg — TS 21 € a,rU for all n € N. Now for any 1 <n <m
we see that Tx,, — Tz, = (Txyy — Txpy1) + (Txpy1 — Txpyo) + oo + (T — Txp) €
(an + Qng1 + oo+ am_1)kU = S a;kU. As S2°° a; converges, we have 37" 1 a; — 0
as n — oo. Therefore we can find some N > 1 such that Tx, —Tx,, € U for all n,m > N.
Since U is arbitrary we see that {7z, } is Cauchy in X. Since X is complete, there exists
some z € X such that Tz, — z as n — oo. As T is subsequentially convergent then
there exists a subsequence {z,,} of {x,} such that it is convergent and converges to
some z’ € X. Since T is continuous, so lim Tz, = Tz', implies that Tz" = z. Here,

T —TSZ =T% — Txn+1 +Txn, 11 — TS
= (T2 — Twp,11) + (T'Szy, — TS).

Now for any neighborhood V of § € X there exists some Ny > 1 such that Tz, — Tz €
ﬁV for all n > Ny. Therefore Tz’ — TSz’ € V. Since V is arbitrary it follows that
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Tz =TSZ'. Since T is injective then we have Sz’ = 2’ and therefore 2’ is a fixed point
of Sin X.

Now if Z be any fixed point of S and W be any neighborhood of § € X then we can get
some p > 0 such that Z — 2/ € uW, which implies that zZ — 2/ = TS"z — TS"2' € pua, W
for all n € N. Therefore, for any n € N, Tz — T2' € a,uW. Since the series Y .- a;
converges we have a,, — 0 as n — co. Then we can find some N; € N such that a,u <1
for all n > Ni. Hence Tz — T2’ € W and we get Tz = Tz2', implying that z = 2/
Therefore the fixed point of S is unique. Also the final conclusion clearly holds. ]

Theorem 4.11. Let (X, 7) be a complete locally convex topological vector space. Let
{T,} be a sequence of Reich-type contractive mappings on X with the same constants
a, B> 0 satisfying 0 < a+ 20 < 1, which is uniformly convergent to T. Then T is also a
Reich-type contractive mapping with the same constants o, > 0 satisfying 0 < a+28 < 1
and it has a unique fixed point in X.

Proof. Let V be an arbitrary neighborhood of § € X. Also let K be a neighborhood of
f € X such that x —y € K for some x,y € X. Now by Lemma, 2.17 there exists a closed,
balanced and convex neighborhood G of of § € X such that z —y € G C K. For the
neighborhood V of 6 € X, there exists N € N such that for any a € X, T,a —Ta € 3V
for all n > N. Now,

(Tz = Ty) = Bl(x = Tx) + (y = Ty)]
= (1+8)(Tz = Thz) + (1= B)(Thy — Ty)
+{(Thx — Thy) — Bl(x — Thx) + (y — Tpy)]} for all n € N.

Therefore we have

(Tz —Ty) — Bl(x — Tz) + (y — Ty)]
=1 +8)(Tz—Tyz)+ (1 - B)(ITny — Ty)
+{(Tnz — Tny) — Bl(x — Tyz) + (y — Tny)]} € aG + V.

Since V is arbitrary we get (T'x — Ty) — B[(z — Tx) + (y — Ty)] € oG C aK. Thus T
is also a Reich-type contractive mapping with the same constants «, 3 > 0 satisfying
0 < a+ 28 < 1. Hence by Theorem 4.5 T has a unique fixed point in X. O

Let us consider the sequence of subsets { K, },,>1 of R™, where K,, = B[f, m], m € N.
Let us take the space C°(K,,) of infinitely differentiable functions on R™ with compact
support contained in K,,. Then C°(K,,) is a Frechet space, where the topology 7, is
built by the family of seminorms given by, for each r € N, || f| |£«m) =sup,cg, |D"f(z)| for
all f € CX(K,,). Then from the family of topological spaces {(C°(K,,), Tm) : m € N}
we have the natural LF—space structure on C2°(R™). We know that C'2°(R™) with this
structure is a complete locally convex TVS but not a Frechet space.

Any mapping T : X — X, where X = C2°(R"), of the type Tz = Az for all z € X
with A € [0,1) satisfies the contractive condition of Theorem 4.5 with « = A and =0
and thus has a unique fixed point 6, # is the null element, in X.
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