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WEAK SOLUTION FOR FRACTIONAL p(z)-LAPLACIAN PROBLEM
WITH DIRICHLET-TYPE BOUNDARY CONDITION

ABDELALI SABRI, AHMED JAMEA, AND HAMAD TALIBI ALAOUI

ABSTRACT. In the present paper, we prove the existence and uniqueness result of
weak solutions to a class of fractional p(z)-Laplacian problem with Dirichlet-type
boundary condition, the main tool used here is the varitional method combined with
the theory of fractional Sobolev spaces with variable exponent.

Jss omHOrO KJtacy 3amad i3 gpo6oBuM p(z)-jamiaciaHoM 3 TPAHUYHOI YMOBOIO
Tuny Jupuxie noBegeHO TeOpeMy IPO ICHYBAaHHS Ta €IMHICTH CJIAOKOrO PO3B’SA3KY.
BukopuctoByrorhcs Bapiamifiuit mMeroxn i teopis apoboeux mpocrtopie CobosieBa
3MIHHOTO HOPSIAKY.

1. INTRODUCTION

This paper is devoted to study the existence and uniqueness question of weak solutions
for the fractional p(z)-Laplacian problem

{ Zi g,A;L(mgQ’(u —O(u) +afu) = f inQ, (1.1)

where (—A);(z) is the fractional p(z)-Laplacian operator which can be defined as

s () — u(y)[P9 2 (u(z) — u(y))
(—Ap(:r:)) u(x)=P-V- /Q 7 — y‘Nﬁp(m’y) dy, for all x € Q,

and P.V. is a commonly used abbreviation in the principal value sense. €2 is a bounded
open domain of RV(N > 3). p : Q@ x Q@ — (1,00) is a continuous function with
s X p(z,y) < N for any (z,y) € Q x Q. s is a fixed number between 0 and 1. « is
a non decreasing continuous real function defined on R and © is a continuous function
defined from R to R, the datum f is in L°°.

Note that (—Ap(x))s is a generalized operator of fractional p-Laplacian operator (—A,)*
(i.e., when p(x,y) = p = constant ) and it is the fractional version of the p(z)-Laplacian
operator Apyu = div (|Vu[P®)~2y) which is associated with the variable exponent
Sobolev space.

A very interesting area of nonlinear analysis lies in the study of elliptic equations
involving fractional operators. Recently, great attention has been focused on these prob-
lems, both for pure mathematical research and in view of concrete real-world applications.
Indeed, this type of operator arises in a quite natural way in different contexts, such as
the description of several physical phenomena, optimization, population dynamics and
mathematical finance. The fractional Laplacian operator (—A)®, 0 < s < 1, also pro-
vides a simple model to describe some jump Lévy processes in probability theory (see for
example [2], [8], [9], [11], [20] and the references therein).

As examples of applications of problem (1.1), we state the following two models:
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e Model 1. Filtration in a porous medium . The filtration phenomena of fluids
in porous media are modeled by the following equation,

dc(p)
ot

where p is the unknown pressure, ¢ volumetric moisture content, k the hydraulic conduc-
tivity of the porous medium, a the heterogeneity matrix and —e is the direction of gravity.

= Va[k(c(p))(Vp +e)], (1.2)

e Model 2. Fluid flow through porous media. This model is governed by the
following equation,

% — div (|[Vp(0) — K(0)eP*(Ve(0) — K (0)e)) =0, (1.3)
where 6 is the volumetric content of moisture, K(#) the hydraulic conductivity, ¢(6) the
hydrostatic potential and e is the unit vector in the vertical direction.

In last years, a large number of papers are written on fractional Sobolev spaces and
nonlocal problems driven by this operator (see for example [3], [7], [8], [9], [10], [22], [23]
and [24] for further details). Specifically, we refer to Di Nezza, Palatucci and Valdinoci
[10], for a full introduction to study the fractional Sobolev spaces and the fractional
p-Laplacian operators.

On the other hand, attention has been paid to the study of partial differential equations
involving the p(z)-Laplacian operators (see [13], [14], [15], [16], [18], [21] and the refer-
ences therein). So the natural question that arises is to see which result can be obtained,
if we replace the p(x)-Laplacian operator by its fractional version (the fractional p(z)-
Laplacian operator). Currently, as far as we know, the only results for fractional Sobolev
spaces with variable exponents and fractional p(x)-Laplacian operator are obtained by
[4], [5], [12], [17] and [25]. In particular, the authors generalized the last operator to frac-
tional case. Then, they introduced an appropriate functional space to study problems in
which a fractional variable exponent operator is present.

In [6] and [26], the authors used the Browder-Minty Theorem to establish the existence

of weak solutions, they proved the boundedness, the coerciveness, the hemi-continuity,
and the monotonicity condition of the operator to achieve their work. Motiveted by
the ideas in [6] and [26], we will show the existence and uniqueness of weak solutions for
problem (1.1) in the fractional Sobolev space with variable exponent, using the variational
method under the conditions on «,© and f (see (H;),(Hs2) and (H3) below) . In the
particular case when © = 0, the existence of weak solutions for problem (1.1) was treated
by several authors (see for example [5] and [17]).
The plan of our paper is divided into three sections, organized as follows: In Section 2,
we present some preliminaries on fractional Sobolev spaces with variable exponent and
some basic tools to prove Theorem 3.2 . In Section 3, we introduce the assumptions and
we give the definition of weak solution of problem (1.1), we finish this section by proving
the main result.

2. PRELIMINARIES AND NOTATIONS

In this section, we will recall some notations and definitions and we will state some
results which will be used in this work.
We introduce the fractional Sobolev space with the variable exponent as it is defined in
[17].
Let © be a smooth bounded open set in RY and let p: Q x Q@ — (1,4+00) and ¢ : Q —
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(1,00) be two continuous functions such that

l<p = min _p(z,y) <plz,y) <p" = max p(z,y) < +00 (2.1)
(z,y)€QXQ (z,y)eQXQ
and
1 <q = inf g(x) < ¢" =supq(z) < .
z€eQ z€ER
We set
CT(Q) ={q: Q2 — RT':qis continuous and such that 1 < ¢_ < ¢ < o<}
and

p(z) = p(x,z) for all z € Q.
We assume that
p is symmetric, that is, p(z,y) = p(y,z) for all (z,y) € Q x Q. (2.2)

For 0 < s < 1, we define the fractional Sobolev space with variable exponent via the
Gagliardo approach as follows:

Wwea(@).p(z.y) ()

(z,y)
_ @) (y)[P
- {u c L1 / / 2, y)|x — y|ép($7y)+N dxdy < 400, for some A >0,

where L4(*)(Q) is the variable exponent Lebesgue space.

Let (
()P
[U] s, p(z,y) (€2) = inf {)\ >0: / / e y)|x — y|N+sp(x7y) dedy <15¢.

It is the variable exponent seminorm. For simplicity, we omit the set €2 from the notation.
The space W*4(®):2(=.¥)(Q)) is a Banach space with the norm

[ullw s a@.pe @) = Ul pae @) + [Ulspiz.y)s

a(x)
ull oo () = inf {)\ >0: / dx < 1} )
Q

By WP () we denote the subspace of W@ 2(=¥)(Q) which is the closure
of compactly supported functions in € with respect to norm || - ||y s.ate) pe0) (). In
particular, if ¢(z) = p(z) for all z € Q, we denote W*4(*):2(=.¥) () and Wg’q(I)’p(w’y)(Q)
by We@:9)(Q) and Wg’p(x’y) (Q) (see [17]), respectively.

where

u(z)
A

Definition 2.1. Let p : O x Q —]1, +o0[, be a continuous variable exponent and let s €
(0,1). For any u € W*4@-»(@¥)(Q), we define the modular p,(, ) : W@P@v)(Q) —;
R by

) =P g |
. = dxd (@) g
Pp(a,y) (1) /QXQ |z — y|N+sp(ay) xray + o lu()] T
and

ullp,,.,, = inf {)x >0 Pp(ay) (%) < 1} )

It is easy to see that || - is a norm which is equivalent to norm

”F’p(w,y)
|| ’ ||W5=f1(z),p(m,y)(Q).

Lemma 2.2 ([25]). (WS’Q(I)’p($’y)(Q)a Il - ||pp(m,y>
Wea@)p@v)(Q) is a reflerive Banach space.

) is uniformly convex and the space

We have the following properties:
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Lemma 2.3 ([25], Lemma 2.1). . Let p: Q x Q — (1, +00), be a continuous variable
exponent and let s € (0,1). For any u € Ws’q(w)’p(x’y)(ﬂ), we have

Ju(e) —u(y) [P P
sw(ay) = | ,p<m,y> < Jo Jo T dady < [ul? .

w(z)—u p(z,y)
fQ fQ [u(z)—u(y)| dxdy < [ ]

|z —y|NFsp(@y)

i): 1< [u]

11) [ ]sp(;v,y < 1:>

s p(x y) — s,p(z,y)°

We would like to mention that the continuous and compact embedding theorem is
proved in [17] under the assumption g(z) > p(z) for all z € Q. Here, we give a slightly
different version of compact embedding theorem assuming that q¢(z) = p(z) for all = € €,
which can be obtained by following the same discussions in [17].

Theorem 2.4. Let Q C RY be a smooth bounded domain and s € (0,1). Let p(z,y) be
continuous variable exponent with s X p(z,y) < N for all (z,y) € Q x Q. Let 2.1 and 2.2
be satisfied. Assume that r: Q — (1,+00) is a continuous variable exponent such that

_ _Np(=)

pa(x) = N >r(x) >r” =minr(x) >1 for all z € Q.

— sp(x) v€Q

Then, there exists a positive constant C = C(N,s,p,r,Q) such that, for any u €
WerEy)(Q)

Jullzror gy < Clluleste -

Thus, the space W*P(@¥)(Q) is continuously embedded in L™*)(Q) for any r € (1,p%).
Moreover, this embedding is compact.

Remark 2.5. i) Theorem 2.4 remains true if we replace WSP@¥)(Q) by
Wgw(%y)(g)‘
i) Since N]\i’;%”(zﬁ) > p(x) > p_ > lforallz € €, then Theorem 2.4 implies

that [u]s () is @ norm on Wg’p(x’y)(ﬂ), which is equivalent to the norm
” ' HWSJ)(ZJ/)(Q)-

Let ¢’ € C, () be the conjugate exponent of ¢, that is, ﬁ + q,%m) =1forallz€Q,
then we have the following Hélder-type inequality :

Lemma 2.6 ([16]). (Hélder-type inequality). If u € LY (Q) and v € LY @) (Q), then
[Jywwde] < (& + 2=) full ooy llolzar @ < 2l oo o ol oo -

Definition 2.7 ([19]). Let Y be a reflexive Banach space and let P be an operator from
Y to its dual Y. We say that P is monotone if and only if

(Pu— Pv,u—v) >0, YuuveyY.

Theorem 2.8 ([19]). Let Y be a reflexive real Banach space and P :' Y — Y’ be
a bounded operator, hemi-continuous, coercive and monotone on space Y. Then, the
equation Pu = h has at least one solution u € Y for each h € Y.

Lemma 2.9 ([1]). For &, n € RY and 1 < p < oo, we have
1 1 _
~[¢P = =[nlP < |€P72E(E —n).
p p

Lemma 2.10. Fora >0,b>0 and 1 <p < +o00, we have

(a4 b)P < 2P~ (aP + bP).
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3. ASSUMPTIONS AND MAIN RESULT

In this section, we will introduce the concept of weak solutions for problem (1.1) and
we will state the existence and uniqueness result for this type of solutions. Firstly, we
cite the following assumptions

(H1) : «is a non decreasing continuous real function defined on R, surjective such that
«(0) = 0 and there exists a positive constant \; such that |a(z)| < A;|z[P(®)~1
for all z € R and = € Q.

(Hs3) : © is a continuous function from R to R such that for all real numbers x,y, we
have |©(z) — O(y)| < Az|lz —y|, where A, is a real constant such that 0 < Ay < 3.

(Hs) : f € L>(Q).

Definition 3.1. A function u € W% (Q) is called a weak solution to problem (1.1)
if and only if

) |P(Ey) =242
/uvdw +// Ve xxy_|y|N+5p(fy)(x :9) (v(z) —v(y)) dz dy +/ o

Q

w)vdr = / fodx
N (3.1)
for all v € WP (Q), where
V6 (z,y) = u(@) —u(y) — O(u(x)) + O(u(y)).
Our main result of this work is the following Theorem

Theorem 3.2. Let p: Q x Q — (1,+00), be a continuous variable exponent satisfying
(2.1) and (2.2) and let s € (0,1), with s xp(x,y) < N for all (x,y) € Q x Q. If hypotheses
(H1),(H2) and (Hs) hold, then, the problem (1.1) has a unique weak solution.

Proof. Existence part. Let the operator T : W(f’p(z’y)(Q) — (Wg’p(z’y)(Q))’ (where
(V[/(f’p(x’y)(Q))' is the dual space of (W{f’p(w’y)(Q)) and let

T=A+I,
where for all u,v € Ws’p(x’y)(Q)

) |Pl@y) =2
() = [ [ JEEIEC ) ) — otrdy + [ alupuds

= (Alu7 v) + (Aqu,v)

(Lu,v>:/ﬂuvdm—/ﬂfvdx.

The proof of existence part of Theorem 3.2 is divided into several steps.
e Step 1. The operator T is bounded.
On the one hand, we use Holder-type inequality, hypothesis (Hs) and Lemma 2.10, we

have for any u,v € W()Sm(z’y)(g)’

and

Ol (z,y)[PEy) -1
A < [ '|x0(y|13+spmy) jo(a) = v(y) | do dy
(z,y)—1
pa [ [ (lute) —u()l
< 2 //( |x7 |N+spzy)
w(z)) — O(u p(z,y)—-1
Sl = ) 'y) ) o) = o)l oy
pt—2ygt 1 [u(a) — u(y) P!
<oy [ f |x_ lNWm,y) jo(z) — v(y)| dz dy
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(z,y)—1

lu(z) — u(y)[PEY) Ecne
< Gy N dx dy

1
_ p(z,y) P(,y)
X/ [v(z) —v(y)| da dy
Q ‘Jj — y|N+SP(fay)

)—1
S C Hqu :l; g(m y)(Q)H’UHW&‘aP(l»y)(Q)
< |p -1

O max (||u||1’

ey 101 ot o ) ol e

where Cy = 2P+—1()\12’+_1 + 1) . This implies that A; is bounded. On the other hand,
using again Holder-type inequality, hypothesis (H;) and Theorem 2.4, we get

(Ao, 0)| < )\1/|u\m‘)_1\v|dx

< 2B ||v||5
< 2>‘10102Hu”p cp(t v) Q)Hvllws’l’(wvy)(g)
-1
< 2\ C1Cymax (Hu”p s, p(z, y)(Q) || ||P ap(av ) Q)>|‘U||W5’p(m’y)(ﬂ)’

where C1,C5 are two constants of continuous embedding given by Theorem 2.4. Then
Ay is bounded. This allows us to deduce that A is bounded. Finally, by Holder-type
inequality, we get immediately the boundedness of operator L . Hence, the operator T
is bounded.

e Step 2. The operator T is hemi-continuous.

Let {up tnen C Wg’p(m’y) (Q) and u € Wos’p(x’y)(Q) such that u, converges strongly to u

in WPV (Q). Firstly, we will prove that A; is continuous on Wg™¥)(Q), indeed,
<A1u,L—A1u v)

< & (,y) [P 2y (x, )—w%(%y)l”(’”’y)_g%(%y))

|z — y|N+sp(ay)
v(x) —o(y)) de dy
-, / & @yl 2 (@ y) Y8 ) P20 ()
N—O—SP(I y))p(m(,y)w ! z — |(N+sp(z ) P(r(my)y)l

($) —U( )
X N+sp(x,y) dx dy
|5€—y| p(@,y)

Let us set
9" (w,y) P 2 (2, y)
Fon(z,y) = NioaoyEea - € LY @9)(Q x Q),
‘ y| p(z,y)
|98 (z, y) PV 28 (2, y) /(2
Fo(z,y) = =2 O e IFEV(Qx Q)
|JL’ _ y|(N+sp(z Y)) p(z,y)
v(x) —v(y
o(z,y) = % c Lp(x,y)(Q x Q),
|3; — y| p(z,y)
Wherem—i— (zy) =1, for all z,y € Q x Q.

Then, we have by Holder-type inequality

(Arun, — Ayu,v) < 2||Fyn — F9||LP’(11QJ(Q><Q)HSDHLP(IW)(QXQ)'
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This implies that

[ Aruy, — A1U|| st () = sup [(Arun, — Aru, v)|
||<P‘|Lp(w,y)(n><9)§1
< QHFg,n - FGHLP/(JM/)(QXQ)'
Now, we denote
Zon(z,y) = % € L@ x Q)
|z —y| ¥
Zo(2,y) = % € LV (Q % Q)

|1; — y| p(@,y)
Since u,, converges to u strongly in W’ P y)(Q), then
Zon(w,y) — Zo(z,y) in LPEV(Q % Q).

Hence, for a subsequence of Zy ,,(x,y), we get Zy n(z,y) — Zp(z,y) in Q x Q and there
exists an h € LP(®¥)(Q x Q) such that |Zg . (x,y)| < h(z,y).
So, we have
Fon(z,y) — Fy(x,y) a.ein Q x Q
and
|Fo.n (2, 9)| = | Zon (2, y) P07 < R, )P

Then, by Dominated Convergence Theorem, we deduce that
Fyn(z,y) — Fy(z,y) in LV @9 (0 x Q).

Consequently

Avup, — Ayu in (WPEY ()
This implies that the operator A4; is continuous on W @¥)(Q). Secondly, by application
of hypothesis (Hy), we get immediately the continuity of operator As. Therefore, T is
hemi-continuous on Wg’p(m’y)(Q).
e Step 3 . The operator 7T is coercive.
For any u € WP (Q), we have

(Tu, u)
T pzy) 2% (g
/u dx +/ e ()l Vo (.y) (u(z) —u(y)) dz dy
Q

|z — |N+sp(ar,y)

+ wudr — wdzx
J ot =[5

/ |98 (@, )P 28 (2, )

|z — y|N+sp(zy) (u(z) —u(y))dedy + /Q a

w)u dx —/ fudz.
Q

On the one hand, by application of hypothesis (H;), we have

/ a(u)udr > 0.
Q

And, by Holder-type inequality and Theorem 2.4, there exists a positive constant Cj
such that

/qudx < 205111l 1t gy ey

1 1 _
Where m""% = 1

This implies that
<TU7 ’I,L> > <A1ua u> - 203||f||Lﬁ/(m)(Q) Hunwgvp(l‘y)(ﬂ)- (32)
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On the other hand, using Lemma 2.9, we obtain
(Aju, u)
2,u
- [/ 1”‘7;"_1’ |'Z+§f@fji D u(z) — uly) dady
[ ] ) =) = Olate) — OGN — O(u(z) = QNI o,
p(z, )|z — y|N+er(@v)
And Lemma 2.10 allows us to deduce that

Ju(z) — uly) [P

Y

opt-1
= Q,ﬁ%ﬁu(fﬂ) —u(y) — (O(u(x)) — Ou(y))) + (O(u(z)) — O(y)) P&
< Jule) —u(y) — (O(u(@)) — O(u())) P& + [0 (u(w)) — O(u(y)) PH).
Then
St u(e) — (@) P~ 1O (u(x) — Ou(y) P
< Ju(z) —u(y) — (O(u(x)) — @(u(y)))‘P(%y).
Consequently
(Ayu,u)
1 fuz) —u(y)PoY 210(u(x)) — O(u(y))[" ™Y
Z / /Qp q; y |:2p+ 1 | y‘N—Q—sp(ac y) - ‘ZE — y|N+Sp(z,y) :| dx dy
1 |u(z) — u(y) [P - 2)\127(1,74) () — uly)[PEw
= / /Qp (z,v) dx dy

P+ 1 |x — |N+sp(a:,y) p(gg’y) |(p _y|N+sp(w,y)

p p(z,y)
> (g 2 el

1 1 +
o P ; p
> (G 2 )mm(||u| AR s &,w(m)

So, the choice of constant s in (Hj) gives the existence of a positive constant Cj such
that

<A17.L U> > C4Hu|| we p(ﬁ y)(Q)

where
_ p~ if ||/U/||Ws (=, y)(Q)
7 ptif ”'UJ”VVS (=, y>(Q)

Then, inequality (3.2) becomes
(Tu, u) > C'4H“||V swlew) ) 203||f||Lf/(r)(Q)HuHW;’P(”E’y)(Q)'

Therefore
(Tu, u)
———— — 400 as ||uHWS,p<z,y>(Q) — 400.
”uHW(-;,p(x,y)(Q) 0
Hence, the operator T' is coercive.
e Step 4. The operator T is monotone.
For that, it suffices to prove that A is monotone. Firstly ;we have by application of
hypothesis (H;) that

(Aou — Agv,u —v) = / (a(u) - a(v)) (u—wv)dx >0 forall u,ve Wos’p(x’y)(ﬁ).
Q
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It remains to show that (4;u — Ajv,u —v) > 0 . Indeed, we have

(Aju— Ayv,u—v) = (Aju,u) + (Ajv,0) — (A1u,v) — (A0, u)
CyY1(u,v) — CoYa(u,v)
min(Cop, Cy)(T1 (u,v) — To(u,v)),

where Cy and C, are the two constants getting in the proof of boundedness and coer-
civeness of operator T and

AVARAY

p(z,y) p(z,y)
Tl(“a”) ||1LH sp(z y)(Q) + ” H SP(I y)(Q)
TQ(U? U) ”qu(?g(z y)(Q)H ||W p(w, y) ) + || Hp(ajg(z y)(Q)HuHWS p(zx, y>(Q)
This implies that
(Aju— Ajv,u —v)
. x, 1 x,
> min(Co, (i) {(uunp ey~ IR 0 ) (g ey = ||vW;,p<z,y>(m)]

>0. (3.3)

This implies that A; is monotone. Therefore T is monotone. Hence, the existence of
weak solution for problem (1.1) follows from Theorem 2.8.

Uniqueness part. Let v and w be two weak solutions of problem (1.1). As a test
function for the solution u, we take v = u — w in equality (3.1) and for the solution w
we take v = w — u as a test function in (3.1), we have

o [ DD -
—|—/Qa(u)(u—w)dx:/ﬂf(u—w dz
and

x,y) [PEY) =28 (2,
/Q (w — u)dx +/ [v6( |xy_| N+sp(1ﬁy)( v) (w(m) —w(y) — (u(sc) — u(y))) dz dy

+/ﬂo¢(w)(w —u)dr = A flw —u)dx

By summing up the two above equalities, we get

/Q(u—w)2dx + (A1u — Ajw,u — w) +/

Q

(a(u) - a(w)) (u—w)de =0.  (3.4)
On the one hand, we have by application of hypothesis (H;) that
/ (a(u) - a(w)) (uw—w)dx > 0.
Q
On the other hand, by using (3.3), we deduce that

(Aju — Aqw,u —w) > 0.

Therefore, inequality (3.4) becomes

/Q(u — w)2dz <0,

u=w a.ein .

This implies that
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