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NONLOCAL EIGENVALUE PROBLEMS WITH INDEFINITE
WEIGHT

SAID TAARABTI

ABSTRACT. In the present paper, we consider a class of eigenvalue problems driven
by a nonlocal integro-differential operator L%@ with Dirichlet boundary conditions.
Under certain assumptions on p and g, we establish that any A > 0 suficiently small
is an eigenvalue of the nonhomogeneous nonlocal problem (Py).

Posraganaerbesa Kiaac CeKTpaJbHUAX 33184, MOB’SI3aHUX 13 HEJOKAJbHUM 1HTErpo-
AudEPEHITIAJIEHAM OIEPATOPOM L%(z) i3 KpaiioBow ymoBow Jlupuxiae. 3a meBHHUX
NPUIYIEHb MO0 P i ¢ AOBEJEHO, IO KOXKHE A0CTaHbO Majge A > 0 € BiacHuUM
3HAUEHHAM HEOJHOPIAHO! HeJIOKaJbHO! 3amadi (Py).

1. INTRODUCTION

Let @ ¢ RN, N > 2, be a bounded regular open domain and consider the following
problem involving the Fractional p(x,y)-Laplacian with Dirichlet boundary condition:

(py d LKTuH WO w = W@ e i 0
u = 0 in RV\Q,

IS

(1.1)

where A > 0 is a real number, K is a suitable kernel, p = p(z,z),V : @ — R is an
indefinite weight function, p : RV x RY — (1,+00) is a continuous function satisfying
the following assumptions:

1l<p = ; , < , < pt = a 7 < 1.9
s (z,ﬁgmp(x y)splwy)<p (x’glegmp(ﬂf y) < +oo  (1.2)
p is symmetric, that is, p(z,y) =p(y,z) V(z,y) € 2 x Q (1.3)

and ¢ : Q — (1, +0o0) is a bounded continuous function such that

1< ¢ =ming(r) < ¢" =maxq(z) <p~ Vze. (1.4)
€N e

Recently, a great deal of attention has been focused on studying of problems involving
integro-differential operators of nonlocal fractional type. In [25], Wenjing Chen and
Shengbing Deng studied the following fractional elliptic problem

{—EKu:)\uq+up,u>0 in Q

uw=0 in R™MQ, (15)

where L is an integro-differential operators of nonlocal fractional type defined as follows:

Lxw) = [ (ulaty) +ule=y) - 2@)K )y, zR, (19

they showed the multiplicity of solutions to equations driven by a nonlocal integro-
differential operator Ly with homogeneous Dirichlet boundary conditions.
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R. Servadei and E. Valdinoci studied the following problem

(=A)*u — du = |u|?> “2u  in Q
{ u=0 in R™\Q (1.7)
where (—A)® is the fractional Laplace operator, s € (0,1),2 is an open bounded set of
R™ n > 2s, with Lipschitz boundary, A > 0 is a real parameter and 2* = 2n/(n — 2s) is
a fractional critical Sobolev exponent. In [29], they proved that there exists A; > 0 such
that for any A > ), different from the eigenvalues of (—A)® problem (1.7) admits a weak
solution u € H?® (R™), which is not identically zero, and such that u = 0 a.e. in R™\.

After that, the same authors, in [30], studied the problem in a general framework;
indeed they considered the following equation

Lru+ A+ |u? 2u+ fz,u) =0 inQ
w=0 in R"\Q)

where Ly is a general non-local integrodifferential operator of order s and f is a lower
order perturbation of the critical power |u|2**2u. In this setting they proved an existence
result through variational techniques.

In the [15], the authors investigated the following Brézis-Nirenberg type problem:

Lxu=plul? 2u+Ag(u) inQ (1.8)
u=0 in R™"\€Q, '
they proved the existence of one weak solution of (1.8) through direct minimization of
the energy in a small ball of a certain fractional Sobolev space.
Also, in [23], Nguyen Thanh Chung considered the following problem

Lozt + Ju| @) =2y = AV (2)]u)" P2y in Q (1.9)
u=20 on 0f) ’
where L, ) is the fractional p(x,y)-Laplace operator given by
s |u(z) — u(y)[P@Y) 2 (u(e) - uly))
Lpapu = (—Bpw))” (u) = p.v./ﬂ |z — y[NFsp(a.y) dy, s€(0,1),
(1.10)

where p.v. is a commonly used abbreviation in the principal value sense. He established
some results on the existence of a continuous family of eigenvalues using variational tech-
niques and Ekeland’s variational principle.

Note that the operator (—A, )" is the fractional version of well known p(z)-Laplacian
operator Ay u(z) = div (|Vu(z)[P@~2u(z)) . On the other hand, we remark that in
the constant exponent case it is known as the fractional p -Laplacian operator (—A,)®.
This nonlocal nonlinear operator is consistent, up to some normalization constant de-
pending upon N and s, with the linear fractional Laplacian (—A)® in the case p = 2.
The interest for this last operator and more generally pseudo-differential operators has
constantly increased over the last few years, although such operators have been a classi-
cal topic of functional analysis since long ago. Nonlocal operators such as (—A)® and its
generalisation L like in probleme (1.8) (for more details see [26, 27, 28]) naturally arise
in continuum mechanics, phase transition phenomena, population dynamics and game
theory, as they are the typical outcome of stochastical stabilization of Lévy processes,
see e.g. [6, 21, 22].

The interest in studying non-local integro-differential was stimulated by their applica-
tions. Indeed, they have impressive applications in different fields, as the thin obstacle
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problem, optimization, finance, stratified materials, anomalous diffusion, crystal dislo-
cation, deblurring and denoising of images, and so on. For further details we refer to
[7, 8,9, 10, 20, 24] and the references therein.

Now, we introduce the nonlocal integro-differential operator of elliptic type E%m) which
generalizes (—A,)”, for any fixed s € (0, 1), as follows:

0u=pov. [ u(e) =u@)P 2 (o) - ) K@)y, @ RV

~ lim [u(z) — u(@)PE 2 (u(z) — u(y)) K (2, y)dy, = €RY,
e—0 ]RN\Be(w)
where p : RV x RN — (1, +00) is a continuous bounded function satifying (1.2), (1.3)
and
p((2,9) = (2,2)) = plz,y) V(z,y),(z,2) € RN x RY, (1.11)
The kernel K : RY x RY — (0,+00) is a measurable function with the following
properties:

K(z,y) = K(y,z) VY(z,y) e RN x RY (1.12)

and Jkg > 0 such that
K(z,y) > kolz — y|~NV+P@v) (2 ) e RV x RV with z#y (1.13)
gK € L' (RN xR"Y), where g(z,y)=min {1, |z — y|p(w’y)} . (1.14)

A typical example for K is given by the singular kernel K (x,y) = |z — y|~ N +sP(=¥) in
this case L") = (=A,)".

We will introduce the functional space which was introduced in [2] by Benkirane et al.,
we give the general fractional Sobolev space with variable exponent as follows

u: RV — R measurable, such that u € LP(*) with
K= W@ = [ ) uPen
)
Q

7

P x,y)drdy < +oo,  for some A > 0

where Q be an open bounded subset of RY and @ defined by
Q :=RN xRM\(CQ x CQ), with CQ=RY\Q.

Note that, the space W P(@¥)(Q) is a Banach space (see [2] ) and endowed with the
norm

lullwx.re @) = Ul K pay) = [UllLee @) + WK pey) (1.15)
where,
; [u(z) — u(y) [P
(U] K p(z,y) = Inf {/\ >0: /Q ) K(z,y)dzedy < 1.
The space (X, || - ||x) is separable and uniformly convex reflexive, see [2].

In this paper, we are inspired by the results on the p(z)-Laplacian problems with
weight introduced in [1, 5, 18] and some results on the theory of fractional Sobolev
spaces with variable exponent due to Kaufmann et al. [17] and Bahrouni et al. [4].

The aim of this paper is to investigate problem (1.1) by adapting the variational tech-
niques. We will study a class of eigenvalue problems with indefinite weight for frac-
tional p(zx,y)-Laplacian equations and we establish that any A > 0 suficiently small is
an eigenvalue of the above nonhomogeneous nonlocal problem. The proof relies on some
variational arguments based on Ekeland’s variational principle.

The main result of the present paper reads as follows:
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Theorem 1.1. Let 2 be a smooth bounded domain in RN and let s € (0,1). Suppose
that
(Hy) p: RN xRN — (1,+00) be a continuous variable exponent with sp(x,y) < N
for all (z,y) € RN x RN satisfying (1.2) and (1.3).
(Hz) q:Q «— (1,400) be a continuous bounded variable exponent satisfy (1.4).
(H3) K : RY x RY(0,+00) is a measurable function satisfying (1.12), (1.18) and
(1.14).
(Hy) V € L°@)(Q) and there exists a measurable set Qg CC 2 of positive measure
such that V(z) > 0 for all z € Qo, where o : Q) — R.
(Hs) 1 <q(z) <p~ <p" <& <o) for all z € Q.
Then there exists \* > 0 such that for all X € (0,\*) is an eigenvalue of problem (Pk).
The rest of this paper is structured as follows. Section 2 states some preliminary
properties to establish our results presented in Section 3. In section 3, we establish and
prove our main theorem.

2. PRELIMINARIES AND TECHNICAL LEMMAS

In this section, we recall some definitions and some properties about generalized
Lebesgue spaces LT(I)(Q) and fractional Sobolev spaces with variable exponent, which
we will use later (For more details see [2, 13, 14, 19]).

Define the generalized Lebesgue space by:

L'@(Q) = {u : Q— R, measurable and / lu(z) [P dz < oo}
Q
where

reCy(Q) and C (Q)={reCQ):r(z)>1, VreQ}
)

Denote r* = maxr(x) and v~ = minr(z), such that
TEQN z€QN

1<r™ <r(z)<rt < +oo.

The space L"(*)(Q) endowed with the Luxemburg norm

()
|t (z) = inf {u > 0; / @) dr < 1}
Q

and the space (L"®)(Q), | |,)) is a Banach.
Proposition 2.1. ([14]) The space (L"*)(Q), |l,(z)) is separable, uniformly convez, re-

1

flexive and its conjugate space is L") (Q) where #(z) is the conjugate function of r(x)
i.e

1 1
~ =1, VzeQ.
@) @)
For all w € L"™®)(Q) and v € L™*)(Q) the Holder’s type inequality
/uvdw < ( >|u| )07 () (2.16)
Q

holds true.

Moreover, if 11, 72,75 € C4(Q) and o5+ 5515y + 550y = L, then for any u € Ln@)(Q),
ve L@ (Q) and w € L) (Q) the followmg inequality holds (see [14],proposition 2.5):

1
\uvw|dw ( — 4+ > ||y (2) |07y (@) [W]rg () - (2.17)

5
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Furthermore, if we define the mapping p : L"*)(Q) — R by

o= [
Q

we have the following proposition:
Proposition 2.2. ([14])
|u‘7"(;c) < 1(_ 1,> 1) <~ pr(w)(u) < 1(: 1,> 1)
Ul ) > 1= \U|T(z p(W)r(zy < lulifyy
|u|r(m) <l= ‘ulr(m < Pr(x) (u) < |u|:(;)
[un = ul,(m) — 0 pr(z) (un —u) — 0
We recall the following proposition, which will be needed later:

Proposition 2.3. ([12]) Let r1 and ro be measurable functions such that r1 € L (Q)
and 1 < ry(x)re(x) < 0o, for a.e. x € Q. Let u € L") (Q),u # 0. Then
Ty

(@) < |u
o) S @@

|u|r1(w)r2(m) 1= |u|r1(r Yra(z) < ||U|

r1(x)

|u|r1(m)7“2(90) 1= |u|r1(m )r2(z) <l ra(z) < u |T1(I)7‘2( )

Theorem 2.4. ([2]) Let 2 be a smooth bounded domain in RY and let s € (0,1). Let
p: RY x RV — (1,400) be a continuous variable ezponent with sp(x,y) < N for all
(r,y) € RN x RN, Let (1.2) and (1.3) be satisfied and q : Q@ — (1,+00) be a continuous
bounded variable exponent such that,

Np(x)
N —p(x)’
Suppose that K : RN xRN — (0, +00) is a measurable function satisfying (1.12), (1.18)
and (1.14). Then

(i) There exists a positive constant C = C(N,p,q,s,Q2) > 0, such that for any
u € WEP@Y)(Q), we have

e < Clltll piey < € max {1,Fo e

where ko = ko (ko,p~,pt) is a positive constant. That is, the space WP=¥)(Q)
is continuously embedded in LY (Q). Moreover, this embedding is compact.

(ii) There exists a positive constant Cy = Cy (N,p, s, ko, Q) > 0, such that

l<r(z)<p,= vz € Q.

(WK p(z,y) < Nullkpy) < Colulkpiy)-

For any u € WXP(=¥) we define the modular px () by
preat () = [ 0e) —up)Pe D Koy + [ o)

and it is convex on WX-P(#:¥) The norme associated with py (., is given by

el iy = i0E {2 > 05 pic ) (%) <1}.

Remark 2.5. pg (., also check the results of Proposition 2.2.

Using the same argument as in ([11], Theorem 2.17), we prove that |||, ,(., is a
norm on W¥P(#:¥)(Q) which is equivalent to the norm -l & .. -
We also define the closed linear subspace of W5P(@¥)(Q) by

Xo = WIPEv) () = {u e WEP@N(Q) :u(z) =0 ae.  in RN\Q} .
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Remark 2.6. (i) The assertion (i) in Theorem 2.1 implies that W-»(¥)(Q) and
WEPEY) Q) are continuously embedded in LI (Q), where 1 < q(z) < p*(x)
for all z € Q.

(ii) As a consequence of Theorem 2.4. 1 — (i), [] x p(s,y) i an equivalent norm of
ol o) 00 W77 (9).
(iii) (W()K’p(m’y) (Q), HK,p(m;y)) is a separable, reflexive, and uniformly convex Banach

space (see [2] , Lemma 3.5).
On the other hand, for any u € W% (Q), we define the functional
Piept.o ) = [ [0) —u@) P K, oy
P p(...) 15 & convexe modular on WEoP®¥)(Q). The norm associated with P p(..) 18 given
by
: u
lullpg ., = oy = 0f (A >0 g5,y (5) <1 = lullxe:

Remark 2.7. p‘l’(,p(m) also check the results of Proposition 2.2.

We recall also the following properties:

Lemma 2.8. ([2]) Let p : R x R — (1,+00) be a continuous variable exponent and
K :Rx R — (0,400) is a measurable function satisfy (1.12) and (1.14) . Then For

any u € WOK’p(x’y) , we have
. - o +
) 1< Wlicaten) = Wl pion) < Py (@) < g

.o + (o]
(ii) [U}K,p(x,y) <l= [u]z;(?p(x’y) < PKJ,(.,.)(U)

IN

IN

[u]jlgﬂp(rvy) ’

Lemma 2.9. ([2]) Let (1.2), (1.3) and (1.11) be satisfied. Then the space C§° (RY) of
smooth functions with compact support is dense in WKvp(“"*y)(Q).

Let (1.2) and (1.3), be satisfied and let K : RxR — (0, +00) is a measurable function
satisfy (1.12), (1.13) and (1.14). Then

Lo Xo — X5
U E’I’((I)(u) : Xo — R
@ < L2 (1), 0 >

such that

<L g >= [ Jua) = ulm) P (o) = u(w) ple) = ¢(0)) K (o) dndy.

Where X = (W()K’p(w’y)(Q)> is the the dual of Xo = W% (Q).

In the following Lemma, we introduce fundamental properties of the operator E’;((x).

Lemma 2.10. ([2]) Suppose that (1.2) and (1.3) be satisfied and let K : R x R —
(0, +00) be a measurable function which satisfies (1.12), (1.13) and (1.14). Then, The
following assertions hold:

(i) E’I}@) is well defined and bounded.

(i) EI;((CE) is a strictly monotone operator.
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(iii) EI;(@) is mapping of type (S4), that is,

ur —u i Xp
lim sup<£p ( )k—ﬁzl’((z)(u),uk—u>§ 0,

k—+o00

S up —u i WEPEY(Q)

(iv) /JI;((I) is a homeomorphisme.
(v) L) is coercive.

3. MAIN RESULT

We begin by the following definition.

Definition 3.1. We say that u € Xy is a weak solution of problem (Pk), if for all
¢ € Xo, we have

| 1)~ w2 )~ ) ot — o) K )y
(3.18)

/ lu(z)|P@~2u(x) o (z)de — )\/ 1) =2y (2)p(x)dz = 0.
Moreover, we say that X is an eigenvalue of problem (Pk), if there exists u € Xo\{0}

which satisfies (3.18), i.e. u is the corresponding eigenfunction to .

Let us consider the functional I : Xo — R associated with problem (Px) by

Iy(u) = J(u) + ®(u) — AT (u) (3.19)
where
1) = [ ) P K ey, b = [ st s
and
U(u) = /Q ﬁv (x)|u(x)|q(g”)dx
for any A > 0.

We use the same arguments as in ([3, 23]), we show the following lemma:

Lemma 3.2. Let Q be a smooth bounded domain in RN and let s € (0,1). Let p :
RN x RY — (1,4+00) be a continuous variable exponent with sp(z,y) < N for all
(z,y) € RN xRN Let (1.2) and ( 1.3 ) be satisfied. Let q: Q — (1,+00) be a continuous
bounded variable exponent satisfy (1.4). Suppose that K : RN x RN — (0, +00) is a
mesurable function satisfying (1.13) and (1.14). Then:

(1) I is well defined.
(2) I, € (W()K’p(x’y)(Q),R) and for all u,p € WoK’p(z’y) (Q), its Gateauz derivative
is given by:

= /Q Ju(@) = u(y) P72 (u(z) — u(y))(o(z) — () K (z,y)dedy

w(z)[P@)—2 T — q(x 2u(x)o(z)dz.
[ a9 2u(e)p(w)d A/ )1 2u(2) p(x)d

The following result shows that the functional I satisfies the first geometrical condi-
tion of the mountain pass theorem.
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Lemma 3.3. Let be Q a smooth bounded domain in R™ and let s € (0,1). Let p :
RN x RN — (1,400) be a continuous variable exponent with sp(x,y) < N for all
(z,y) € RN xRN, Let (1.2) and (1.3) be satisfied. Let q: Q — (1,+00) be a continuous
bounded variable exponent satisfy (1.4). Suppose that K : RN x RN — (0,+0c0) is a
measurable function satisfying (1.12), (1.18) and (1.14). Then, there exists A\* > 0 such
that for any X € (0,\*), there exist R,a > 0 such that Ix(u) > a > 0 for any u € Xy
with ||u|lx, = R.
Proof of Lemma 3.3: Using the same argument as in ([23], see Theorem 3.2).

Indeed, since a(z) = 2((3;))(;5;?) < pt(x) for all z € Q, the embedding Xy — L) (Q) is

continuous, there exists ¢; > 0 such that
”uHa(w) < ClHUHXO,VU € XO' (320)
From (3.20), for any u € Xy with ||u|| = R small enough, we have

1 1 _
I uZ—/ux—u PEY K (z, y)ded +—/u:c”(“”)da:
) 2 o [ )~ ul) PV K ey + o ute)

-2 [ V@@l
> o | o)~ st K ooy + [ )P

A
-2 [ Vi)

q Q

2\
B —

=
1 + 2\ - _
ijRp 7;0‘11 |V|<7(9:)Rq

- 1 +_ - 20\ -

> RY <p+Rp q _qic‘f |V|U($)>.

]. + - -
2 FHUII’S(O 1 Vlo@llulk,

Defining
)\* — RP+—Q7 . q_

2pt  2e1| Vo)
we can conclude that for any A € (0,\*) and any v € Xy with ||ulx, = R, there exists

a= % > 0 such that

(3.21)

Iy >a>0,
this completes the proof of Lemma 3.3.

The following result shows that the functional I, satisfies the second geometrical
condition of mountain pass theorem.

Lemma 3.4. Let Q be a smooth bounded domain in RY and let s € (0,1). Let p : R x
R — (1,400) be a continuous variable exponent with sp(z,y) < N for all (z,y) € RxR.
Let (1.2) and (1.8) be satisfied. Let q: Q — (1,+00) be a continuous bounded variable
exponent satisfy (1.4). Suppose that K : R x R — (0,4+00) is a measurable function
satisfying (1.12) , (1.13) and (1.14).

Then, there exists o € Xy such that ¢ > 0, # 0 and I\(tp) < 0 for any t small enough.

Proof of Lemma 3.4: Using the same argument as in ([23], see Theorem 3.3).
Assumption (1.14) implies that ¢~ < p~. Let ¢ > 0 be such that ¢~ +¢ < p~ since
g € C()), then we can find an open set Qg C  such that

lg(z) —q~| <e Vae.
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Consequently
glz) <q  +e<p  Vze.

Let ¢ € C5°(2) be such that Qy C supp(p), p(z) = 1 for all z € Qp, and 0 < ¢ < 1in Q.
Then for any ¢t € (0,1) we have

tP(z.y) (@.9) P(x) B(a)
L(tg) = /Q —)ww)—w(ynp VK (2, y)dedy + /z P o) P@dz

p(z,y 5(2)
(f)
/\/t (z)]4 ®) doe
[/ lo(z |pmy K (z, y)dxdy+/ lo(a |P(m da:]
3y @) ()
_ v oz .
Qo q()
P A -
< prcp( (W) = St +€/ V(@) ()| 1@ dx
= K () (1) = . ()] ()|
e [Prp()@) e A )
<tQ+[ptp q A Vi 9@ gz |
< = | v@lew)
Therefore
1
Initp) <0 forany t<&r—a—<,
where

0<£<min{1 2 Jo, Vet )q%}

PK,p(., )(90)

Finally, we point out that p, )(¢) > 0 (this fact implies that ¢ # 0 ). Indeed, since
Qo Csupp(p) C Q, and 0 < o < 1in Q, so we get

2)9®) dg 2)9®) dz )9 de. .
0</QOI<P( )ja) s/ﬂ@( ) S/Q\so( ) d (3.22)

On the other hand, since 1 < ¢~ < p%(z) for all x € Q, then X is continuously embedded
in L7 (Q), so there exists ca > 0 such that

100 (@ < e2llello: (3.23)
Combining (3.22) and (3.23), we get

1
< = < .
el < el
Using the last relation and Proposition 2.2, we deduce that

Pp(..) (@) >0,

and the conclusion is completed.

Proof of Theorem 1.1:
Let A* be defined as in (3.21) and let A € (0, A*). By Lemma 3.3, it follows that
f I 0, 3.24
) éI; Foy 1> (3.24)
where 0BR(0) = {u € 9Br(0) : |ul|x, = R} and 0Bgr(0) is the ball centered at the origin
and of radius R in Xj.
On the other hand, by Lemma 3.4, there exists ¢ € Xy such that I(ty) < 0 for any ¢
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small enough.
Moreover, for all v € Br(0), we have

1 + A - -
Ii(u) > EIIUII% - 7_65‘ Vo) lull, - (3.25)
Then we have
—oco<é= inf Iy(u)<O. (3.26)
UEBR(O)

Combining (3.22) and (3.24), then we can assume that

0<e< inf Iy— inf I,.
9Br(0) Br(0)

Then, by applying Ekeland’s variational principale ([16]) to the functional Iy : Br(0) —
R, there exists u. € Br(0) such that

I,\(u5)< inf I)\(u)—l-&
u€B 7 (0) (3.27)
Iy (ue) < In(u) + € flu — uel 5, » VU # e
So,

I inf Ty (u).
2 (ue) < IR g D)

It follows that u. € Br(0).
Now, we consider
IS : BR(0) — R

u — I (u) +<€||u—u€\|X0 )

By (3.23), we get
5 (1) = In(u) < I5(u), % # ..

Thus u. is a minimum point of I§ on Br(0). It follows that for any ¢ > 0 small enough
and v € Bg(0)

I% (ue + tv) — I% (ue)

t

> 0.

By this fact, we claim that

I (ue + tv) — Iy (ue)
t

+eflvllx, > 0.

When t tends to 0T, we get
< I (ue) v > +elv]|x, > 0.

This implies that
[ (UE)HXS <e (3.28)

From ( 3.28 ), we deduce that there exists a sequence (wy,) C Br(0) such that
I\ (wy,) — ¢ and I} (w,) — 0. (3.29)

By the relations (3.25) and (3.29), we have that (w,) is bounded in Xj. Thus there exists
w € Xy such that w,, — w in Xj.

By (1.4), we have that q(x) < p%(x) for all x € €, so by Theorem 2.4 and Remark 2.6
we deduce that X is compactly embedded in L) (Q), then

w, — w in  LI®(Q). (3.30)
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and

< 3|V|U($) ‘w”|Q(z)72w” |wn - w|5(m)

/ V(:c)\wn|q(z)72wn (w, —w) dx
Q

q(z)
(a(z)—1)

q+
< 31Vl (1 + lwally = 1) lwn = wlyq,)

—0 asn— oo,

(3.31)
By the same argument, we have
lim / wy P2 w,, (w, — w) dz = 0. (3.32)
n—+oo Jo

According to ( 3.29 ), we conclude that

li 1 =0.
o, < I (wn),wn >

Namely,
/Q><Q [wy, () — wn(y)|p(w’y)72 (Wi () — wn(y)) (wn(z) —w(z)) — (Wa(y) —w(y)))
x x w, PP 2w, (w, — w) dz
< Ka)dady + [ funl (wn — w)d

— )\/ V() lwa|*™ 2wy, (w, — w)dz — 0 as n — oo
Q

And so,

lim [wn () — W ()P 72 (wn (@) — wa(y)) (wn(x) — wa(y))

n=+ Joxn
= (w(z) —w(y))) x K(z,y)dzdy = 0.
Consequently, using Lemma 2.10 ( ii), and the fact that w,, — w in Xy, we get

limsup,, < £ (w,),w, —w ><0
w, = w in Xq, = w, —w in Xg.
L is a mapping of type  (S4)

From the relation (3.29), we deduce that
I(w) = lilf Iy(w,)=¢<0 and I{(w)=0.
n—-+oo

We conclude that w is a nontrivial critical point of Iy. Then w is a nontrivial weak
solution for problem (Pg).

Therefore, for any A € (0, \*) is an eigenvalue of problem (P ).

The proof of Theorem 1.1 is complete.

Acknowledgements. I am very grateful to the reviewer for the careful reading of the
paper and the valuable suggestions and constructive comments which helped to enrich
the content and improve the presentation of the result in this paper.
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