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NONLOCAL EIGENVALUE PROBLEMS WITH INDEFINITE

WEIGHT

SAID TAARABTI

Abstract. In the present paper, we consider a class of eigenvalue problems driven

by a nonlocal integro-di�erential operator \scrL p(x)
K with Dirichlet boundary conditions.

Under certain assumptions on p and q, we establish that any \lambda > 0 su�ciently small
is an eigenvalue of the nonhomogeneous nonlocal problem (\scrP \lambda ).
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§­ ç¥­­ï¬ ­¥®¤­®à÷¤­®ù ­¥«®ª «ì­®ù § ¤ ç÷ (\scrP \lambda ).

1. Introduction

Let \Omega \subset \BbbR N , N \geq 2, be a bounded regular open domain and consider the following
problem involving the Fractional p(x, y)-Laplacian with Dirichlet boundary condition:

(\scrP \lambda )

\biggl\{ 
\scrL p(x)
K u+ | u| \=p(x) - 2 u = \lambda V (x)| u| q(x) - 2u in \Omega 

u = 0 in \BbbR N\setminus \Omega ,
(1.1)

where \lambda > 0 is a real number, K is a suitable kernel, \=p = p(x, x), V : \Omega  - \rightarrow \BbbR is an
inde�nite weight function, p : \BbbR N \times \BbbR N  - \rightarrow (1,+\infty ) is a continuous function satisfying
the following assumptions:

1 < p - = \mathrm{m}\mathrm{i}\mathrm{n}
(x,y)\in \=\Omega \times \=\Omega 

p(x, y) \leq p(x, y) \leq p+ = \mathrm{m}\mathrm{a}\mathrm{x}
(x,y)\in \=\Omega \times \=\Omega 

p(x, y) < +\infty (1.2)

p is symmetric, that is, p(x, y) = p(y, x) \forall (x, y) \in \=\Omega \times \=\Omega (1.3)

and q : \=\Omega  - \rightarrow (1,+\infty ) is a bounded continuous function such that

1 < q - = \mathrm{m}\mathrm{i}\mathrm{n}
x\in \=\Omega 

q(x) \leq q+ = \mathrm{m}\mathrm{a}\mathrm{x}
x\in \=\Omega 

q(x) < p - \forall x \in \=\Omega . (1.4)

Recently, a great deal of attention has been focused on studying of problems involving
integro-di�erential operators of nonlocal fractional type. In [25], Wenjing Chen and
Shengbing Deng studied the following fractional elliptic problem\Biggl\{ 

 - \scrL Ku = \lambda uq + up, u > 0 in \Omega 

u = 0 in \BbbR n\setminus \Omega , (1.5)

where \scrL K is an integro-di�erential operators of nonlocal fractional type de�ned as follows:

\scrL K(u) =

\int 
\BbbR N

(u(x+ y) + u(x - y) - 2u(x))K(y)dy, x \in \BbbR n, (1.6)

they showed the multiplicity of solutions to equations driven by a nonlocal integro-
di�erential operator \scrL K with homogeneous Dirichlet boundary conditions.
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R. Servadei and E. Valdinoci studied the following problem\biggl\{ 
( - \Delta )su - \lambda u = | u| 2\ast  - 2u in \Omega 
u = 0 in \BbbR n\setminus \Omega (1.7)

where ( - \Delta )s is the fractional Laplace operator, s \in (0, 1),\Omega is an open bounded set of
\BbbR n, n > 2s, with Lipschitz boundary, \lambda > 0 is a real parameter and 2\ast = 2n/(n - 2s) is
a fractional critical Sobolev exponent. In [29], they proved that there exists \lambda s > 0 such
that for any \lambda > \lambda s di�erent from the eigenvalues of ( - \Delta )s problem (1.7) admits a weak
solution u \in Hs (\BbbR n) , which is not identically zero, and such that u = 0 a.e. in \BbbR n\setminus \Omega .

After that, the same authors, in [30], studied the problem in a general framework;
indeed they considered the following equation\biggl\{ 

\scrL Ku+ \lambda u+ | u| 2\ast  - 2u+ f(x, u) = 0 in \Omega 
u = 0 in \BbbR n\setminus \Omega 

where \scrL K is a general non-local integrodi�erential operator of order s and f is a lower
order perturbation of the critical power | u| 2\ast  - 2u. In this setting they proved an existence
result through variational techniques.

In the [15], the authors investigated the following Br�ezis-Nirenberg type problem:\Biggl\{ 
\scrL Ku = \mu | u| 2

 \star  - 2u+ \lambda g(u) in \Omega 

u = 0 in \BbbR n\setminus \Omega ,
(1.8)

they proved the existence of one weak solution of (1.8) through direct minimization of
the energy in a small ball of a certain fractional Sobolev space.
Also, in [23], Nguyen Thanh Chung considered the following problem\Biggl\{ 

\scrL p(x,y)u+ | u| q(x) - 2u = \lambda V (x)| u| r(x) - 2u in \Omega 

u = 0 on \partial \Omega 
(1.9)

where \scrL p(x,y) is the fractional p(x, y)-Laplace operator given by

\scrL p(x,y)u =
\bigl( 
 - \Delta p(x)

\bigr) s
(u) = p.v.

\int 
\Omega 

| u(x) - u(y)| p(x,y) - 2(u(x) - u(y))

| x - y| N+sp(x,y)
dy, s \in (0, 1),

(1.10)
where p.v. is a commonly used abbreviation in the principal value sense. He established
some results on the existence of a continuous family of eigenvalues using variational tech-
niques and Ekeland's variational principle.

Note that the operator
\bigl( 
 - \Delta p(x)

\bigr) s
is the fractional version of well known p(x)-Laplacian

operator \Delta p(x)u(x) = \mathrm{d}\mathrm{i}\mathrm{v}
\bigl( 
| \nabla u(x)| p(x) - 2u(x)

\bigr) 
. On the other hand, we remark that in

the constant exponent case it is known as the fractional p -Laplacian operator ( - \Delta p)
s
.

This nonlocal nonlinear operator is consistent, up to some normalization constant de-
pending upon N and s, with the linear fractional Laplacian ( - \Delta )s in the case p = 2.
The interest for this last operator and more generally pseudo-di�erential operators has
constantly increased over the last few years, although such operators have been a classi-
cal topic of functional analysis since long ago. Nonlocal operators such as ( - \Delta )s and its
generalisation \scrL K like in probleme (1.8) (for more details see [26, 27, 28]) naturally arise
in continuum mechanics, phase transition phenomena, population dynamics and game
theory, as they are the typical outcome of stochastical stabilization of L�evy processes,
see e.g. [6, 21, 22].
The interest in studying non-local integro-di�erential was stimulated by their applica-
tions. Indeed, they have impressive applications in di�erent �elds, as the thin obstacle
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problem, optimization, �nance, strati�ed materials, anomalous di�usion, crystal dislo-
cation, deblurring and denoising of images, and so on. For further details we refer to
[7, 8, 9, 10, 20, 24] and the references therein.

Now, we introduce the nonlocal integro-di�erential operator of elliptic type \scrL p(x)
K which

generalizes ( - \Delta p)
s
, for any �xed s \in (0, 1), as follows:

\scrL p(x)
K u = \mathrm{p}. \mathrm{v}.

\int 
\BbbR N

| u(x) - u(y)| p(x,y) - 2(u(x) - u(y))K(x, y)dy, x \in \BbbR N

= \mathrm{l}\mathrm{i}\mathrm{m}
\varepsilon \rightarrow 0

\int 
\BbbR N\setminus B\varepsilon (x)

| u(x) - u(y)| p(x,y) - 2(u(x) - u(y))K(x, y)dy, x \in \BbbR N ,

where p : \BbbR N \times \BbbR N  - \rightarrow (1,+\infty ) is a continuous bounded function satifying (1.2), (1.3)
and

p((x, y) - (z, z)) = p(x, y) \forall (x, y), (z, z) \in \BbbR N \times \BbbR N , (1.11)

The kernel K : \BbbR N \times \BbbR N  - \rightarrow (0,+\infty ) is a measurable function with the following
properties:

K(x, y) = K(y, x) \forall (x, y) \in \BbbR N \times \BbbR N (1.12)

and \exists k0 > 0 such that

K(x, y) \geq k0| x - y|  - (N+sp(x,y)) (x, y) \in \BbbR N \times \BbbR N with x \not = y (1.13)

gK \in L1
\bigl( 
\BbbR N \times \BbbR N

\bigr) 
, where g(x, y) = \mathrm{m}\mathrm{i}\mathrm{n}

\Bigl\{ 
1, | x - y| p(x,y)

\Bigr\} 
. (1.14)

A typical example for K is given by the singular kernel K(x, y) = | x - y|  - (N+sp(x,y)), in

this case \scrL p(x)
K = ( - \Delta p)

s
.

We will introduce the functional space which was introduced in [2] by Benkirane et al.,
we give the general fractional Sobolev space with variable exponent as follows

X = WK,p(x,y)(\Omega ) =

\left\{   
u : \BbbR N  - \rightarrow \BbbR measurable, such that u \in L\=p(x) with\int 
Q

| u(x) - u(y)| p(x,y)

\lambda p(x,y)
K(x, y)dxdy < +\infty , for some \lambda > 0

\right\}   ,

where \Omega be an open bounded subset of \BbbR N and Q de�ned by

Q := \BbbR N \times \BbbR N\setminus (\scrC \Omega \times \scrC \Omega ), with \scrC \Omega = \BbbR N\setminus \Omega .

Note that, the space WK,p(x,y)(\Omega ) is a Banach space (see [2] ) and endowed with the
norm

\| u\| WK,p(x,y)(\Omega ) = \| u\| K,p(x,y) = \| u\| Lp(x)(\Omega ) + [u]K,p(x,y), (1.15)

where,

[u]K,p(x,y) = \mathrm{i}\mathrm{n}\mathrm{f}

\biggl\{ 
\lambda > 0 :

\int 
Q

| u(x) - u(y)| p(x,y)

\lambda p(x,y)
K(x, y)dxdy \leq 1

\biggr\} 
.

The space (X, \| \cdot \| X) is separable and uniformly convex re
exive, see [2].

In this paper, we are inspired by the results on the p(x)-Laplacian problems with
weight introduced in [1, 5, 18] and some results on the theory of fractional Sobolev
spaces with variable exponent due to Kaufmann et al. [17] and Bahrouni et al. [4].
The aim of this paper is to investigate problem (1.1) by adapting the variational tech-
niques. We will study a class of eigenvalue problems with inde�nite weight for frac-
tional p(x, y)-Laplacian equations and we establish that any \lambda > 0 su�ciently small is
an eigenvalue of the above nonhomogeneous nonlocal problem. The proof relies on some
variational arguments based on Ekeland's variational principle.
The main result of the present paper reads as follows:
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Theorem 1.1. Let \Omega be a smooth bounded domain in \BbbR N and let s \in (0, 1). Suppose
that

(H1) p : \BbbR N \times \BbbR N  - \rightarrow (1,+\infty ) be a continuous variable exponent with sp(x, y) < N
for all (x, y) \in \BbbR N \times \BbbR N satisfying (1.2) and (1.3).

(H2) q : \=\Omega \leftarrow  - (1,+\infty ) be a continuous bounded variable exponent satisfy (1.4).
(H3) K : \BbbR N \times \BbbR N (0,+\infty ) is a measurable function satisfying (1.12), (1.13) and

(1.14).

(H4) V \in L\sigma (x)(\Omega ) and there exists a measurable set \Omega 0 \subset \subset \Omega of positive measure
such that V (x) > 0 for all x \in \Omega 0, where \sigma : \=\Omega  - \rightarrow \BbbR .

(H5) 1 < q(x) < p - \leqslant p+ < N
s < \sigma (x) for all x \in \=\Omega .

Then there exists \lambda  \star > 0 such that for all \lambda \in (0, \lambda  \star ) is an eigenvalue of problem (\scrP K).

The rest of this paper is structured as follows. Section 2 states some preliminary
properties to establish our results presented in Section 3. In section 3, we establish and
prove our main theorem.

2. Preliminaries and technical lemmas

In this section, we recall some de�nitions and some properties about generalized
Lebesgue spaces Lr(x)(\Omega ) and fractional Sobolev spaces with variable exponent, which
we will use later (For more details see [2, 13, 14, 19]).
De�ne the generalized Lebesgue space by:

Lr(x)(\Omega ) =

\biggl\{ 
u : \Omega  - \rightarrow \BbbR , measurable and

\int 
\Omega 

| u(x)| p(x)dx <\infty 
\biggr\} 

where

r \in C+(\=\Omega ) and C+(\=\Omega ) = \{ r \in C(\=\Omega ) : r(x) > 1, \forall x \in \=\Omega \} .
Denote r+ = \mathrm{m}\mathrm{a}\mathrm{x}

x\in \Omega 
r(x) and r - = \mathrm{m}\mathrm{i}\mathrm{n}

x\in \Omega 
r(x), such that

1 < r - \leq r(x) \leq r+ < +\infty .

The space Lr(x)(\Omega ) endowed with the Luxemburg norm

| u| r(x) = \mathrm{i}\mathrm{n}\mathrm{f}

\Biggl\{ 
\mu > 0;

\int 
\Omega 

\bigm| \bigm| \bigm| \bigm| u(x)\mu 

\bigm| \bigm| \bigm| \bigm| r(x) dx \leq 1

\Biggr\} 
and the space

\bigl( 
Lr(x)(\Omega ), | \cdot | r(x)

\bigr) 
is a Banach.

Proposition 2.1. ([14]) The space (Lr(x)(\Omega ), | .| r(x)) is separable, uniformly convex, re-


exive and its conjugate space is L\^r(x)(\Omega ) where \^r(x) is the conjugate function of r(x)
i.e

1

r(x)
+

1

\^r(x)
= 1, \forall x \in \Omega .

For all u \in Lr(x)(\Omega ) and v \in L\^r(x)(\Omega ) the H\"older's type inequality\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

uvdx

\bigm| \bigm| \bigm| \bigm| \leq \biggl( 
1

r - 
+

1

\^r - 

\biggr) 
| u| r(x)| v| \^r(x) (2.16)

holds true.

Moreover, if r1, r2, r3 \in C+(\=\Omega ) and
1

r1(x)
+ 1

r2(x)
+ 1

r3(x)
= 1, then for any u \in Lr1(x)(\Omega ),

v \in Lr2(x)(\Omega ) and w \in Lr3(x)(\Omega ) the following inequality holds (see [14],proposition 2.5):\int 
\Omega 

| uvw| dx \leqslant 

\biggl( 
1

r - 1
+

1

r - 2
+

1

r - 3

\biggr) 
| u| r1(x)| v| r2(x)| w| r3(x). (2.17)
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Furthermore, if we de�ne the mapping \rho : Lr(x)(\Omega )\rightarrow \BbbR by

\rho r(x)(u) =

\int 
\Omega 

| u| r(x)dx

we have the following proposition:

Proposition 2.2. ([14])

| u| r(x) < 1(= 1, > 1)\leftrightarrow \rho r(x)(u) < 1(= 1, > 1)
| u| r(x) > 1\Rightarrow | u| r - r(x) \leqslant \rho (u)r(x) \leqslant | u| r+r(x)
| u| r(x) < 1\Rightarrow | u| r+r(x) \leqslant \rho r(x)(u) \leqslant | u| r - r(x)
| un  - u| r(x)  - \rightarrow 0\leftrightarrow \rho r(x) (un  - u)  - \rightarrow 0

We recall the following proposition, which will be needed later:

Proposition 2.3. ([12]) Let r1 and r2 be measurable functions such that r1 \in L\infty (\Omega )
and 1 < r1(x)r2(x) \leqslant \infty , for a.e. x \in \Omega . Let u \in Lr2(x)(\Omega ), u \not = 0. Then

| u| r1(x)r2(x) \leqslant 1\Rightarrow | u| r
+
1

r1(x)r2(x)
\leqslant | | u| r1(x)

\bigm| \bigm| \bigm| 
r2(x)

\leqslant | u| r
 - 
1

r1(x)r2(x)

| u| r1(x)r2(x) \geqslant 1\Rightarrow | u| r
 - 
1

r1(x)r2(x)
\leqslant \| u| r1(x)

\bigm| \bigm| \bigm| 
r2(x)

\leqslant | u| r
+
1

r1(x)r2(x)

.

Theorem 2.4. ([2]) Let \Omega be a smooth bounded domain in \BbbR N and let s \in (0, 1). Let
p: \BbbR N \times \BbbR N  - \rightarrow (1,+\infty ) be a continuous variable exponent with sp(x, y) < N for all
(x, y) \in \BbbR N \times \BbbR N . Let (1.2) and (1.3) be satis�ed and q : \=\Omega  - \rightarrow (1,+\infty ) be a continuous
bounded variable exponent such that,

1 < r(x) < p \star s =
N \=p(x)

N  - \=p(x)
, \forall x \in \=\Omega .

Suppose that K : \BbbR N\times \BbbR N  - \rightarrow (0,+\infty ) is a measurable function satisfying (1.12), (1.13)
and (1.14). Then

(i) There exists a positive constant C = C(N, p, q, s,\Omega ) > 0, such that for any

u \in WK,p(x,y)(\Omega ), we have

\| u\| q(x) \leq C\| u\| s,p(x,y) \leq C\mathrm{m}\mathrm{a}\mathrm{x}
\Bigl\{ 
1, \~k0

\Bigr\} 
\| u\| K,p(x,y)

where \~k0 = \~k0 (k0, p
 - , p+) is a positive constant. That is, the space WK,p(x,y)(\Omega )

is continuously embedded in Lq(x)(\Omega ). Moreover, this embedding is compact.

(ii) There exists a positive constant C0 = C0

\Bigl( 
N, p, s, \~k0,\Omega 

\Bigr) 
> 0, such that

[u]K,p(x,y) \leq \| u\| K,p(x,y) \leq C0[u]K,p(x,y).

For any u \in WK,p(x,y), we de�ne the modular \rho K,p(..,) by

\rho K,p(.,.)(u) =

\int 
Q

| u(x) - u(y)| p(x,y)K(x, y)dxdy +

\int 
\Omega 

| u(x)| \=p(x)dx

and it is convex on WK,p(x,y). The norme associated with \rho K,p(.,.) is given by

\| u\| \rho K ,p(.,.) = \mathrm{i}\mathrm{n}\mathrm{f}
\Bigl\{ 
\lambda > 0 : \rho K,p(.,.)

\Bigl( u
\lambda 

\Bigr) 
\leq 1

\Bigr\} 
.

Remark 2.5. \rho K,p(.,.) also check the results of Proposition 2.2.

Using the same argument as in ([11], Theorem 2.17), we prove that \| .\| \rho K ,p(..,) is a

norm on WK,p(x,y)(\Omega ), which is equivalent to the norm \| .\| K,p(.,.).

We also de�ne the closed linear subspace of WK,p(x,y)(\Omega ) by

X0 = W
K,p(x,y)
0 (\Omega ) =

\Bigl\{ 
u \in WK,p(x,y)(\Omega ) : u(x) = 0 a.e. in \BbbR N\setminus \Omega 

\Bigr\} 
.
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Remark 2.6. (i) The assertion (i) in Theorem 2.1 implies that WK,p(x,y)(\Omega ) and

W
K,p(x,y)
0 (\Omega ) are continuously embedded in Lq(x)(\Omega ), where 1 < q(x) < p \star s(x)

for all x \in \Omega .
(ii) As a consequence of Theorem 2.4. 1  - (ii), [\cdot ]K,p(x,y) is an equivalent norm of

\| u\| K,p(x,y) on W
K,p(x,y)
0 (\Omega ).

(iii)
\Bigl( 
W

K,p(x,y)
0 (\Omega ), [.]K,p(x;y)

\Bigr) 
is a separable, re
exive, and uniformly convex Banach

space (see [2] , Lemma 3.5).

On the other hand, for any u \in W
K,p(x,y)
0 (\Omega ), we de�ne the functional

\rho oK,p(.,.)(u) =

\int 
Q

| u(x) - u(y)| p(x,y)K(x, y)dxdy.

\rho oK,p(..,) is a convexe modular on W
K,p(x,y)
0 (\Omega ). The norm associated with \rho oK,p(.,.) is given

by

\| u\| \rho o
K,p(...)

= [u]K,p(x,y) = \mathrm{i}\mathrm{n}\mathrm{f}
\Bigl\{ 
\lambda > 0 : \rho oK,p(.,.)

\Bigl( u
\lambda 

\Bigr) 
\leq 1

\Bigr\} 
= \| u\| X0

.

Remark 2.7. \rho oK,p(...) also check the results of Proposition 2.2.

We recall also the following properties:

Lemma 2.8. ([2]) Let p : \BbbR \times \BbbR  - \rightarrow (1,+\infty ) be a continuous variable exponent and
K : \BbbR \times \BbbR  - \rightarrow (0,+\infty ) is a measurable function satisfy (1.12) and (1.14) . Then For

any u \in W
K,p(x,y)
0 , we have

(i) 1 \leq [u]K,p(x,y) \Rightarrow [u]p
 - 

K,p(x,y) \leq \rho oK,p(...)(u) \leq [u]p
+

K,p(x,y).

(ii) [u]K,p(x,y) \leq 1\Rightarrow [u]p
+

K,p(x,y) \leq \rho oK,p(\cdot ,\cdot )(u) \leq [u]p
 - 

K,p(x,y).

Lemma 2.9. ([2]) Let (1.2), (1.3) and (1.11) be satis�ed. Then the space C\infty 
0

\bigl( 
\BbbR N

\bigr) 
of

smooth functions with compact support is dense in WK,p(x,y)(\Omega ).

Let (1.2) and (1.3), be satis�ed and let K : \BbbR \times \BbbR  - \rightarrow (0,+\infty ) is a measurable function
satisfy (1.12), (1.13) and (1.14). Then

\scrL p(x)
K :X0  - \rightarrow X \star 

0

u \mapsto \rightarrow \scrL p(x)
K (u) : X0  - \rightarrow \BbbR 

\varphi \mapsto \rightarrow < \scrL p(x)
K (u), \varphi >

such that

< \scrL p(x)
K (u), \varphi >=

\int 
\BbbR 2N

| u(x) - u(y)| p(x,y) - 2(u(x) - u(y))(\varphi (x) - \varphi (y))K(x, y)dxdy.

Where X \star 
0 =

\Bigl( 
W

K,p(x,y)
0 (\Omega )

\Bigr)  \star 

is the the dual of X0 = W
K,p(x,y)
0 (\Omega ).

In the following Lemma, we introduce fundamental properties of the operator \scrL p(x)
K .

Lemma 2.10. ([2]) Suppose that (1.2) and (1.3) be satis�ed and let K : \BbbR \times \BbbR  - \rightarrow 
(0,+\infty ) be a measurable function which satis�es (1.12), (1.13) and (1.14). Then, The
following assertions hold:

(i) \scrL p(x)
K is well de�ned and bounded.

(ii) \scrL p(x)
K is a strictly monotone operator.
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(iii) \scrL p(x)
K is mapping of type (S+) , that is,\Biggl\{ 

uk \rightharpoonup u in X0

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow +\infty 

\mathrm{s}\mathrm{u}\mathrm{p} < \scrL p(x)
K (u)k  - \scrL p(x)

K (u), uk  - u >\leq 0,
\Rightarrow uk  - \rightarrow u in W

K,p(x,y)
0 (\Omega ).

(iv) \scrL p(x)
K is a homeomorphisme.

(v) \scrL p(x)
K is coercive.

3. Main result

We begin by the following de�nition.

De�nition 3.1. We say that u \in X0 is a weak solution of problem (\scrP K), if for all
\varphi \in X0, we have\int 

Q

| u(x) - u(y)| p(x,y) - 2(u(x) - u(y))(\varphi (x) - \varphi (y))K(x, y)dxdy

+

\int 
\Omega 

| u(x)| \=p(x) - 2u(x)\varphi (x)dx - \lambda 

\int 
\Omega 

V (x)| u(x)| q(x) - 2u(x)\varphi (x)dx = 0.
(3.18)

Moreover, we say that \lambda is an eigenvalue of problem (\scrP K), if there exists u \in X0\setminus \{ 0\} 
which satis�es (3.18), i.e. u is the corresponding eigenfunction to \lambda .

Let us consider the functional I\lambda : X0  - \rightarrow \BbbR associated with problem (\scrP K) by

I\lambda (u) = J(u) + \Phi (u) - \lambda \Psi (u) (3.19)

where

J(u) =

\int 
Q

1

p(x, y)
| u(x) - u(y)| p(x,y)K(x, y)dxdy, \Phi (u) =

\int 
\Omega 

1

\=p(x)
| u(x)| \=p(x)dx

and

\Psi (u) =

\int 
\Omega 

1

q(x)
V
\Bigl( 
x)| u(x)| q(x)dx

for any \lambda > 0.
We use the same arguments as in ([3, 23]), we show the following lemma:

Lemma 3.2. Let \Omega be a smooth bounded domain in \BbbR N and let s \in (0, 1). Let p :
\BbbR N \times \BbbR N  - \rightarrow (1,+\infty ) be a continuous variable exponent with sp(x, y) < N for all
(x, y) \in \BbbR N\times \BbbR N . Let (1.2) and ( 1.3 ) be satis�ed. Let q : \=\Omega  - \rightarrow (1,+\infty ) be a continuous
bounded variable exponent satisfy (1.4). Suppose that K : \BbbR N \times \BbbR N  - \rightarrow (0,+\infty ) is a
mesurable function satisfying (1.13) and (1.14). Then:

(1) I\lambda is well de�ned.

(2) I\lambda \in 
\Bigl( 
W

K,p(x,y)
0 (\Omega ),\BbbR 

\Bigr) 
and for all u, \varphi \in W

K,p(x,y)
0 (\Omega ), its Gâteaux derivative

is given by:

\langle I \prime \lambda (u), \varphi \rangle =
\int 
Q

| u(x) - u(y)| p(x,y) - 2(u(x) - u(y))(\varphi (x) - \varphi (y))K(x, y)dxdy

+

\int 
\Omega 

| u(x)| \=p(x) - 2u(x)\varphi (x)dx - \lambda 

\int 
\Omega 

V (x)| u(x)| q(x) - 2u(x)\varphi (x)dx.

The following result shows that the functional I\lambda satis�es the �rst geometrical condi-
tion of the mountain pass theorem.
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Lemma 3.3. Let be \Omega a smooth bounded domain in \BbbR N and let s \in (0, 1). Let p :
\BbbR N \times \BbbR N  - \rightarrow (1,+\infty ) be a continuous variable exponent with sp(x, y) < N for all
(x, y) \in \BbbR N \times \BbbR N . Let (1.2) and (1.3) be satis�ed. Let q : \=\Omega  - \rightarrow (1,+\infty ) be a continuous
bounded variable exponent satisfy (1.4). Suppose that K : \BbbR N \times \BbbR N  - \rightarrow (0,+\infty ) is a
measurable function satisfying (1.12), (1.13) and (1.14). Then, there exists \lambda  \star > 0 such
that for any \lambda \in (0, \lambda  \star ) , there exist R, a > 0 such that I\lambda (u) > a > 0 for any u \in X0

with \| u\| X0
= R.

Proof of Lemma 3.3: Using the same argument as in ([23], see Theorem 3.2).

Indeed, since \alpha (x) = \sigma (x)q(x)
\sigma (x) - 1 < p \star s(x) for all x \in \Omega , the embedding X0 \lhook \rightarrow L\alpha (x)(\Omega ) is

continuous, there exists c1 > 0 such that

\| u\| \alpha (x) \leq c1\| u\| X0
,\forall u \in X0. (3.20)

From (3.20), for any u \in X0 with \| u\| = R small enough, we have

I\lambda (u) \geq 
1

p+

\int 
Q

| u(x) - u(y)| p(x,y)K(x, y)dxdy +
1

p+

\int 
\Omega 

| u(x)| p(x)dx

 - \lambda 

q - 

\int 
\Omega 

V (x)| u(x)| q(x)dx

\geq 1

p+

\biggl[ \int 
Q

| u(x) - u(y)| p(x,y)K(x, y)dxdy +

\int 
\Omega 

| u(x)| p(x)dx
\biggr] 

 - \lambda 

q - 

\int 
\Omega 

V (x)| u(x)| q(x)dx

\geq 1

p+
\| u\| p+X0

 - 2\lambda 

q - 
cq

 - 

1 | V | \sigma (x)\| u\| 
q - 

X0

\geq 1

p+
Rp+

 - 2\lambda 

q - 
cq

 - 

1 | V | \sigma (x)Rq - 

\geq Rq - 
\biggl( 

1

p+
Rp+ - q -  - 2\lambda 

q - 
cq

 - 

1 | V | \sigma (x)
\biggr) 
.

De�ning

\lambda  \star =
Rp+ - q - 

2p+
.

q - 

2c1| V | \sigma (x)
, (3.21)

we can conclude that for any \lambda \in (0, \lambda  \star ) and any u \in X0 with \| u\| X0 = R, there exists

a = Rp+

2p+ > 0 such that

I\lambda \geq a > 0,

this completes the proof of Lemma 3.3.

The following result shows that the functional I\lambda satis�es the second geometrical
condition of mountain pass theorem.

Lemma 3.4. Let \Omega be a smooth bounded domain in \BbbR N and let s \in (0, 1). Let p : \BbbR \times 
\BbbR  - \rightarrow (1,+\infty ) be a continuous variable exponent with sp(x, y) < N for all (x, y) \in \BbbR \times \BbbR .
Let (1.2) and (1.3) be satis�ed. Let q : \=\Omega  - \rightarrow (1,+\infty ) be a continuous bounded variable
exponent satisfy (1.4). Suppose that K : \BbbR \times \BbbR  - \rightarrow (0,+\infty ) is a measurable function
satisfying (1.12) , (1.13) and (1.14).
Then, there exists \varphi \in X0 such that \varphi \geq 0, \varphi \not = 0 and I\lambda (t\varphi ) < 0 for any t small enough.

Proof of Lemma 3.4: Using the same argument as in ([23], see Theorem 3.3).
Assumption (1.14) implies that q - < p - . Let \varepsilon > 0 be such that q - + \varepsilon \leq p - since

q \in C(\=\Omega ), then we can �nd an open set \Omega 0 \subset \Omega such that\bigm| \bigm| q(x) - q - 
\bigm| \bigm| \leq \varepsilon \forall x \in \Omega 0.
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Consequently

q(x) \leq q - + \varepsilon \leq p - \forall x \in \Omega 0.

Let \varphi \in C\infty 
0 (\Omega ) be such that \=\Omega 0 \subset \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\varphi ), \varphi (x) = 1 for all x \in \Omega 0, and 0 \leq \varphi \leq 1 in \Omega .

Then for any t \in (0, 1) we have

I\lambda (t\varphi ) =

\int 
Q

tp(x,y)

p(x, y)
| \varphi (x) - \varphi (y)| p(x,y)K(x, y)dxdy +

\int 
\Omega 

tp(x)

p(x)
| \varphi (x)| p(x)dx

 - \lambda 

\int 
\Omega 

tq(x)

q(x)
V (x)| \varphi (x)| q(x)dx

\leq tp
 - 

p - 

\biggl[ \int 
Q

| \varphi (x) - \varphi (y)| p(x,y)K(x, y)dxdy +

\int 
\Omega 

| \varphi (x)| p(x)dx
\biggr] 

 - \lambda 

\int 
\Omega 0

tq(x)

q(x)
V (x)| \varphi (x)| q(x)dx

\leq tp
 - 

p - 
\rho K,p(.,.)(u) - 

\lambda 

q+
tq

 - +\varepsilon 

\int 
\Omega 0

V (x)| \varphi (x)| q(x)dx

\leq tq
 - +\varepsilon 

\biggl[ 
\rho K,p(.,)(\varphi )

p - 
tp

 -  - q -  - \varepsilon  - \lambda 

q+

\int 
\Omega 0

V (x)| \varphi (x)| q(x)dx
\biggr] 
.

Therefore

I\lambda (t\varphi ) < 0 for any t < \xi 
1

p -  - q -  - \varepsilon ,

where

0 < \xi < \mathrm{m}\mathrm{i}\mathrm{n}

\Biggl\{ 
1,

\lambda 
q+

\int 
\Omega 0

V (x)| \varphi (x)| q(x)dx
\rho K,p(.,.)(\varphi )

\Biggr\} 
.

Finally, we point out that \rho p(.,.)(\varphi ) > 0 (this fact implies that \varphi \not = 0 ). Indeed, since
\=\Omega 0 \subset \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\varphi ) \subset \Omega , and 0 \leq \varphi \leq 1 in \Omega , so we get

0 <

\int 
\Omega 0

| \varphi (x)| q(x)dx \leq 
\int 
\Omega 

| \varphi (x)| q(x)dx \leq 
\int 
\Omega 

| \varphi (x)| q
 - 
dx. (3.22)

On the other hand, since 1 < q - < p \star s(x) for all x \in \=\Omega , then X0 is continuously embedded

in Lq - (\Omega ), so there exists c2 > 0 such that

\| \varphi \| Lq - (\Omega ) \leq c2\| \varphi \| X0
. (3.23)

Combining (3.22) and (3.23), we get

0 <
1

c2
\| \varphi \| Lq - (\Omega ) \leq \| \varphi \| X0

.

Using the last relation and Proposition 2.2, we deduce that

\rho p(.,.)(\varphi ) > 0,

and the conclusion is completed.

Proof of Theorem 1.1:
Let \lambda  \star be de�ned as in (3.21) and let \lambda \in (0, \lambda  \star ) . By Lemma 3.3, it follows that

\mathrm{i}\mathrm{n}\mathrm{f}
\partial BR(0)

I\lambda > 0, (3.24)

where \partial BR(0) = \{ u \in \partial BR(0) : \| u\| X0
= R\} and \partial BR(0) is the ball centered at the origin

and of radius R in X0.
On the other hand, by Lemma 3.4, there exists \varphi \in X0 such that I\lambda (t\varphi ) < 0 for any t
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small enough.
Moreover, for all u \in BR(0), we have

I\lambda (u) \geq 
1

p+
\| u\| p

+

X0
 - \lambda 

r - 
cq

 - 

1 | V | \sigma (x)\| u\| 
q - 

X0
. (3.25)

Then we have

 - \infty < \=c = \mathrm{i}\mathrm{n}\mathrm{f}
u\in BR(0)

I\lambda (u) < 0. (3.26)

Combining (3.22) and (3.24), then we can assume that

0 < \varepsilon < \mathrm{i}\mathrm{n}\mathrm{f}
\partial BR(0)

I\lambda  - \mathrm{i}\mathrm{n}\mathrm{f}
BR(0)

I\lambda .

Then, by applying Ekeland's variational principale ([16]) to the functional I\lambda : BR(0)  - \rightarrow 
\BbbR , there exists u\varepsilon \in BR(0) such that\Biggl\{ 

I\lambda (u\varepsilon ) < \mathrm{i}\mathrm{n}\mathrm{f}
u\in BR(0)

I\lambda (u) + \varepsilon 

I\lambda (u\varepsilon ) < I\lambda (u) + \varepsilon \| u - u\varepsilon \| X0
,\forall u \not = u\varepsilon .

(3.27)

So,

I\lambda (u\varepsilon ) < \mathrm{i}\mathrm{n}\mathrm{f}
u\in \partial BR(0)

I\lambda (u).

It follows that u\varepsilon \in BR(0).
Now, we consider

I\varepsilon \lambda : BR(0)  - \rightarrow \BbbR 
u  - \rightarrow I\lambda (u) + \varepsilon \| u - u\varepsilon \| X0

.

By (3.23), we get

I\varepsilon \lambda (u\varepsilon ) = I\lambda (u) < I\varepsilon \lambda (u),\forall u \not = u\varepsilon .

Thus u\varepsilon is a minimum point of I\varepsilon \lambda on BR(0). It follows that for any t > 0 small enough
and v \in BR(0)

I\varepsilon \lambda (u\varepsilon + tv) - I\varepsilon \lambda (u\varepsilon )

t
\geq 0.

By this fact, we claim that

I\lambda (u\varepsilon + tv) - I\lambda (u\varepsilon )

t
+ \varepsilon \| v\| X0

\geq 0.

When t tends to 0+, we get

< I \prime \lambda (u\varepsilon ) , v > +\varepsilon \| v\| X0 \geq 0.

This implies that

\| I\lambda (u\varepsilon )\| X \star 
0
\leq \varepsilon . (3.28)

From ( 3.28 ), we deduce that there exists a sequence (wn) \subset BR(0) such that

I\lambda (wn)  - \rightarrow \=c and I \prime \lambda (wn)  - \rightarrow 0. (3.29)

By the relations (3.25) and (3.29), we have that (wn) is bounded in X0. Thus there exists
w \in X0 such that wn \rightarrow w in X0.
By (1.4), we have that q(x) < p \star s(x) for all x \in \=\Omega , so by Theorem 2.4 and Remark 2.6
we deduce that X0 is compactly embedded in Lq(x)(\Omega ), then

wn  - \rightarrow w in Lq(x)(\Omega ). (3.30)
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and\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

V (x)| wn| q(x) - 2wn (wn  - w) dx

\bigm| \bigm| \bigm| \bigm| \leq 3| V | \sigma (x)
\bigm| \bigm| \bigm| | wn| q(x) - 2wn

\bigm| \bigm| \bigm| 
q(x)

(q(x) - 1)

| wn  - w| \beta (x)

\leq 3| V | \sigma (x)
\Bigl( 
1 + | wn| q

+

q(x)  - 1
\Bigr) 
| wn  - w| \beta (x)

\rightarrow 0 as n\rightarrow \infty ,

(3.31)

where \beta (x) = \sigma (x)q(x)
(\sigma (x) - q(x)) .

By the same argument, we have

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow +\infty 

\int 
\Omega 

| wn| p(x) - 2
wn (wn  - w) dx = 0. (3.32)

According to ( 3.29 ), we conclude that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow +\infty 

< I \prime \lambda (wn) , wn >= 0.

Namely,\int 
\Omega \times \Omega 

| wn(x) - wn(y)| p(x,y) - 2
(wn(x) - wn(y)) ((wn(x) - w(x)) - (wn(y) - w(y)))

\times K(x, y)dxdy +

\int 
\Omega 

| wn| p(x) - 2
wn (wn  - w) dx

 - \lambda 

\int 
\Omega 

V (x) | wn| q(x) - 2
wn (wn  - w) dx\rightarrow 0 as n\rightarrow \infty .

And so,

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow +\infty 

\int 
\Omega \times \Omega 

| wn(x) - wn(y)| p(x,y) - 2
(wn(x) - wn(y)) ((wn(x) - wn(y))

 - (w(x) - w(y)))\times K(x, y)dxdy = 0.

Consequently, using Lemma 2.10 ( ii), and the fact that wn \rightarrow w in X0 , we get\left\{   \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}n < \scrL (wn) , wn  - w >\leq 0
wn \rightharpoonup w in X0, \Rightarrow wn  - \rightarrow w in X0.
\scrL is a mapping of type (S+)

From the relation (3.29), we deduce that

I\lambda (w) = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow +\infty 

I\lambda (wn) = \=c < 0 and I \prime \lambda (w) = 0.

We conclude that w is a nontrivial critical point of I\lambda . Then w is a nontrivial weak
solution for problem (\scrP K).
Therefore, for any \lambda \in (0, \lambda  \star ) is an eigenvalue of problem (\scrP K).
The proof of Theorem 1.1 is complete.
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