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THE QUENCHED CENTRAL LIMIT THEOREM FOR A MODEL OF

RANDOM WALK IN RANDOM ENVIRONMENT

VIKTOR BEZBORODOV AND LUCA DI PERSIO

Abstrat. In the present paper we provide a proof of the quenhed entral limit the-

orem for the random walk in random environment model introdued by Boldrighini,

Minlos, and Pellegrinotti in [3℄.

Ó öié ñòàòòi äàíî äîâåäåííÿ êâåí÷-öåíòðàëüíî¨ ãðàíè÷íî¨ òåîðåìè äëÿ âèïàäêîâèõ

áëóêàíü ó ìîäåëi ç âèïàäêîâèì ñåðåäîâèùåì, çàïðîïîíîâàíié Áîëäðiãiíi, Ìiíëîñîì

i Ïåëëåãðèíîòòi [3℄.

1. Introdution

In this artile we prove the quenhed Central Limit Theorem (CLT) for a model of

random walk in random environment, as it has been introdued by Boldrighini, Minlos,

and Pellegrinotti, see in partiular [3, 4, 6℄. At eah site the transition probability kernel

is a�eted by the urrent state of the environment at this site. A more detailed desrip-

tion an be found in Setion 2. For a nie overview of the literature on the subjet, we

refer to [5℄, and a survey on the reent progress in the related models an be found in

[10℄ or [2℄. In [7℄ the anomalous behavior of the orretions to the CLT in low dimensions

has been studied. Moreover, related models are onsidered in [1℄ and [9℄.

We underline that the novelty of this work is that the proofs are essentially based on

the the multidimensional martingale CLT by K�uhler and Sørensen, see [8℄.
The paper is organized as follows: in Setion 2 we desribe the model and give the

statement; while in Setion 3 we provide all the proofs and some further omments.

2. Model, onditions and results

Consider a partile moving in a n-dimensional in�nite lattie and denote by Xt is

position at time t. On the lattie, a dynamial random environment is onsidered. It is

desribed by the random �eld

ξ =
{

ξt(x) : x ∈ Z
n, t ∈ Z

+
}

Note that the time is disrete. We assume that ξ is the result of independent opies of the

same random variable taking values in some �nite spae S. The spae of on�gurations is

given by Ω̃ = SZ
n×Z

+

. Thus,

{

ξt(x)
}

(x,t)∈Zn×Z+ is a olletion of i.i.d random variables,

distributed aording to a given probability measure on S denoted by π. We denote by

Π the distribution of ξ in Ω̃.
The one step transition probability from position x at time t to position y at the

subsequent time step t+ 1 is given by

P {Xt+1 = y|Xt = x, ξ} = P (y − x, ξt(x)) = P0(y − x) + c(y − x, ξt(x))

where P0 is the transition probability of a free random walk and c is the funtion whih

provides the in�uene of the environment on the partile's dynami. We note that in the

original work [3℄ there was a small fator ε before the funtion c.
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In order for the probability P to be well-de�ned, the following onditions must be

ful�lled:

• 0 ≤ P (u, s) = P0(u) + c(u, s) ≤ 1 ∀s ∈ S ∀u ∈ Zn
;

• ∑

u∈Zn c(u, s) = 0 ∀s ∈ S.

Without loss of generality we assume that the random environment has the following

property:

∑

s∈S

c(u, s)π(s) = 0 for any u ∈ Z
n , (2.1)

whih means that P0 is the mean transition probability. Indeed, if (2.1) is not satis�ed,

then we an replae P0(u) with P̃0(u) := P0(u) +
∑

s∈S
c(u, s)π(s) and c with c̃(u, s) =

c(u, s)− P̃0(u) + P0(u). This replaement wouldn't hange the law of the random walk

and (2.1) would hold.

Additionally, let P0 and c be of bounded range. We denote by Pξ the onditional

probability with respet to the environment ξ.

We will also assume that

∑

u∈Zn uc(u, s1) =
∑

u∈Zn uc(u, s2) for s1, s2 ∈ S. It then

follows from (2.1) that in fat

∑

u∈Zn

uc(u, s) = 0 ∀s ∈ S . (2.2)

Let Y =
{

Yt

}

t∈Z+ be the stohasti proesses de�ned by Yt = Xt − tb, where b =
∑

u∈Zn uP0(u). Note that
∑

u∈Zn

(u− b)P0(u) = 0. (2.3)

For a vetor u ∈ Rn
, ui denotes its i-th oordinate.

Theorem 1. For almost every realization ξ of the random environment we have

1√
t
Yt ⇒ η2U, (2.4)

Pξ -a.s., where U is a standard normal vetor and η2 is the positive semide�nite matrix

with entries

(η2)ij =
∑

u∈Zn

(ui − bi)(uj − bj)P0(u) . (2.5)

3. Proofs

Lemma 1. For every ξ ∈ Ω̃, the proess Y is a martingale under Pξ.

Proof. This is a onsequene of the de�nition of Y along with the ondition (2.2).

Indeed, by (2.3), we have

E [Yt+1|Yt, Yt−1, ..., Y0] = E [Yt + (Yt+1 − Yt)|Yt]

= Yt +
∑

u∈Zn

(u− b) [P0(u) + c(u, ξt)] = Yt .

�

Let us de�ne the following n × n matries: Ht = E (YtY
′
t ), where Y ′

t the transposed

matrix, the matrix [Y ]t = ([Y i, Y j ]t)1≤i,j≤n, and H
ξ
t = Eξ(YtY

′
t ) (here and below we

treat Yt as a olumn-vetor). Let also Kt =
1√
t
In, where In is the n× n identity matrix.

Then, the following result holds true.
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Lemma 2. We have

Eξ

[

(Y i
r+1 − Y i

r )(Y
j
r+1 − Y j

r )
]

=
∑

y∈Y
P {Yr = y | ξ}

∑

u∈Zn

(ui − bi)(uj − bj) [P0(u) + c(u, ξr(y))] .
(3.6)

The above sum by y is taken over the ountable set

Y := {z1 + z2b | z1, z2 ∈ Z} .

(Note that P {Yt ∈ Y for all t ∈ N} = 1).

Proof. By de�nition of Y and Pξ, we have

Eξ

[

(Y i
r+1 − Y i

r )(Y
j
r+1 − Y j

r )
]

= E

[

(Y i
r+1 − Y i

r )(Y
j
r+1 − Y j

r )
∣

∣

∣
ξ
]

= E

[

E

{

(Y i
r+1 − Y i

r )(Y
j
r+1 − Y j

r )
∣

∣

∣
ξ, Yr

}∣

∣

∣
ξ
]

= E

[

∑

u

(ui − bi − Y i
r )(uj − bj − Y j

r )[P0(u− Yr) + c(u− Yr, ξ(Yr)]

∣

∣

∣

∣

∣

ξ

]

= E

[

∑

u

(ui − bi)(uj − bj)[P0(u) + c(u, ξ(Yr)]

∣

∣

∣

∣

∣

ξ

]

=
∑

y∈Y
P{Yr = y | ξ}

∑

u∈Zn

(ui − bi)(uj − bj) [P0(u) + c(u, ξr(y))] .

�

Lemma 3. For Π-a.a. ξ, we have Pξ-a.s.

#{r : r ≤ t, ξr(Yr) = s}
t

→ π(s), t → ∞. (3.7)

Proof. Reall that Π is de�ned on Page 311. The events {Yr = y} and {ξr(y) = s}
are independent, so (3.7) holds P-a.s. by the law of large numbers. Hene (3.7) also holds

Pξ-a.s for Π-a.a. ξ, otherwise, denoting the event in (3.7) by A, we would have

P(A) =

∫

Pξ(A)Π(dξ) < 1 .

Lemma 4. We have

1

t
[Y ]t → η2, (3.8)

Pξ-a.s. for Π-a.a. ξ.

Proof. Note that for 1 ≤ i, j ≤ n,

([Y ]t)ij =
∑

0≤r<t

∆r,ij ,

where

∆r,ij =
[

Y i
r+1 − Y i

r

][

Y
j
r+1 − Y j

r

]

.

Under Pξ onditionally on {Yt = y} the distribution of Yt+1 − Yt is P0(u)+ c(u, ξt(y)).
Sine under Pξ the random vetors Yt+1 − Yt are independent of eah other for di�erent

t, the statement of the lemma follows from the law of large numbers. Indeed, by (3.7)

and the law of large numbers Pξ-a.s.

∑

{r:r≤t,ξr(Yr)=s}

∆r,ij

#{r : r ≤ t, ξr(Yr) = s} →
∑

u∈Zn

(ui − bi)(uj − bj)P (u, s) ,
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and hene by (3.7) we obtain

∑

{r:r≤t,ξr(Yr)=s}

∆r,ij

π(s)t
→

∑

u∈Zn

(ui − bi)(uj − bj)P (u, s) . (3.9)

Therefore, Pξ-a.s.

lim
t→∞

∑

{r:r≤t}

∆r,ij

t
= lim

t→∞

∑

s∈S

∑

{r:r≤t,ξr(Yr)=s}

∆r,ij

t
= lim

t→∞

∑

s∈S

π(s)
∑

{r:r≤t,ξr(Yr)=s}

∆r,ij

π(s)t

∑

s∈S

π(s)
∑

u∈Zn

(ui − bi)(uj − bj)P (u, s) =
∑

u∈Zn

(ui − bi)(uj − bj)P0(u) .

�

Corollary 1. The onvergene in Lemma 4 also holds P-a.s.

Lemma 5.

(i) We have

(Hr+1)ij − (Hr)ij =
∑

s∈S

π(s)
∑

u∈Zn

(ui − bi)(uj − bj) [P0(u) + c(u, s)] . (3.10)

(ii) We also have

(Hξ
r+1)ij − (Hξ

r )ij

=
∑

y∈Y
Pξ{Yr = y}

∑

u∈Zn

(ui − bi)(uj − bj) [P0(u) + c(u, ξr(y))] .
(3.11)

Proof. (i) We start by noting that for i, j ∈ {1, ..., n},

E

(

(Y i
t+1 − Y i

t )Y
j
t

)

= 0 . (3.12)

Indeed,

E

(

(Y i
t+1 − Y i

t )Y
j
t

)

= EE

[

(Y i
t+1 − Y i

t )Y
j
t

∣

∣

∣
Yt

]

=
∑

y∈Y
P{Yt = y}

∑

u∈Zn

(yi+ui− bi− yi)yjP0(u) =
∑

y∈Y
P{Yt = y}yj

∑

u∈Zn

(ui− bi)P0(u) = 0

by (2.3). Moreover, by (3.12), we have

(Hr+1)ij − (Hr)ij = E

(

Y i
t+1Y

j
t+1 − Y i

t Y
j
t

)

= E

(

(Y i
t+1 − Y i

t )(Y
j
t+1 − Y

j
t )

)

+ E

(

(Y i
t+1 − Y i

t )Y
j
t

)

+ E

(

Y i
t (Y

j
t+1 − Y

j
t )

)

= E

(

(Y i
t+1 − Y i

t )(Y
j
t+1 − Y

j
t )

)

.

Conditioning on Yt, we get

(Hr+1)ij − (Hr+1)ij =
∑

y

P{Yt = y}
∑

u

(ui − bi)(uj − bj) [P0(u) + E [c(u, ξr(y))|Yt = y]]

=
∑

u

(ui − bi)(uj − bj)P0(u).

(ii) (3.12) holds for Eξ too, sine

EE

[

(Y i
t+1 − Y i

t )Y
j
t

∣

∣

∣
Yt, ξ

]

=
∑

y∈Y
P{Yt = y}

∑

u∈Zn

(yi + ui − bi − yi)yj[P0(u) + c(u, ξt(y))]
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=
∑

y∈Y
P{Yt = y}yj

∑

u∈Zn

(ui − bi)P0(u) +
∑

y∈Y
P{Yt = y}yj

∑

u∈Zn

uic(u, ξt(y))

−bi
∑

y∈Y
P{Yt = y}yj

∑

u∈Zn

c(u, ξt(y)) = 0

and the proof ontinues as in (i). �

Lemma 6. We have

1

t
Ht → η2,

1

t
H

ξ
t → η2, (3.13)

where η2 is as in (2.5), Pξ-a.s for Π-a.a. ξ .

Proof. Let us only prove the seond onvergene in (3.13). By Lemma 5,

(Hξ
t )ij =

t−1
∑

r=0

∑

y∈Y
Pξ{Yr = y}

∑

u∈Zn

(ui − bi)(uj − bj) [P0(u) + c(u, ξr(y))]

= t
∑

u∈Zn

(ui − bi)(uj − bj)P0(u)

+
∑

u∈Zn

(ui − bi)(uj − bj)

t−1
∑

r=0

∑

y∈Y
Pξ{Yr = y}c(u, ξr(y)) .

(3.14)

Sine

∑

y∈Y
Pξ{Yr = y}c(u, ξr(y))

(d)
= c(u, ξr(0)) under P (the symbol

(d)
= means here

`equal in distribution'), where 0 is the origin, and

∑

y∈Y
Pξ{Yr = y}c(u, ξr(y)), r ∈ N,

onstitute a sequene of independent random variables indexed by r ∈ N, by the law of

large numbers for Π-a.a. ξ

1

t

t−1
∑

r=0

∑

y∈Y
Pξ{Yr = y}c(u, ξr(y)) →

∑

s∈S

π(s)c(u, s) . (3.15)

Combining (3.14) and (3.15) and realling the de�nition of η2, we get the desired result.

�

Reall that we de�ned Kt =
1√
t
In.

Proof of Theorem 1. Theorem 2.1 in [8℄ and Lemmas 4 and 6 imply that Pξ -a.s.

1√
t
Yt ⇒ η2U, (3.16)

where U is a standard n-dimensional Gaussian vetor. The theorem in [8℄ is formulated

for ontinuous time proesses, so to apply it we de�ne Yt, Ht, et. for t ∈ (1,∞) by

Yt = Y⌊t⌋, Ht = H⌊t⌋, et. �
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