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ANALYSIS RESULTS FOR DYNAMIC CONTACT PROBLEM WITH
FRICTION IN THERMO-VISCOELASTICITY

MUSTAPHA BOUALLALA AND EL HASSAN ESSOUFIL

ABsTRACT. We present a mathematical model which describes the dynamic fric-
tional contact between a thermo-viscoelastc body and a conductive foundation. The
contact is modeled using the normal compliance condition, the quasistatic version
of Coulomb’s law of fry friction. We derive the weak formulation and we prove the
existence and uniqueness result. The proofs are based on the theory of first-order and
second-order evolution inequalities and Banach fixed point theorem. We introduce a
new problem on perturbation of the contact boundary condition and we establish its
continuous dependence result.

IIpencraBieno MaTeMaTWdHy MOJENb, IO OMHCYE JUHAMIYHHNA KOHTAaKT TepTs
Mi2K T€PMOB’SIBKOLPYKHHUM TiJIOM i OCHOBOIO-mpOBimHEKOM. KOHTAKT MOJEIIOETHCS
3 BHKOPHUCTAHHSM YMOBH HOPMAJIbHOI €JaCTHYHOCTI, KBa3icTaTHIHOI Bepcil 3aKOHY
dpuxnitaoro reprsa Kymona. llponomyerscs o3HatMeHEsS C/1a0KOro PO3B’a3Ky, JOBEICHA
TeopeMa iCHyBaHHA Ta enuHOCTi. JloBeneHH: 06a3yrOTbCA Ha TeOpii eBOJIIOIIHHUX
HEpIBHOCTEH IepIIoro Ta APyroro mopsikis i reopemi bamaxa mpo HepyXoMy TOUKY.
CraBuTbCs HOBa 3ajada NpO 30ypeHHsS KOHTAKTHOI IDAHUYIHOI YMOBH; OTPHMAHA
TEOpEMa [P0 HEIEPEPBHY 3aJIEXKHICTh.

1. INTRODUCTION

The contact of deformable elastic bodies, with or without friction, is the relationship
between the normal forces (contact pressure) and the relative movement between the
body and the foundation. Contact problems are present in many industrial processes
and daily life.

Dynamic frictional contact problems between a viscoelastic body and an obstacle
with thermal effect was made in [6, B, [7] and more recently in [I, 2I]. The result in
[14], 15, 16} [I7], we can find several classes of dynamic frictional contact problems by
hemivariational inequalities with or without thermal effects. For more information of the
quasistatic and dynamic problem without thermal effects refer to [I8] [0, [10]. A number
of papers investigating quasistatic thermo-viscoelastic contact problems with friction can
be found in |2, 13}, 19].

Essoufi et.al [12] [1T] study two dynamic frictional contact models between a piezoelec-
tric and electro-viscoelastic body and a rigid, non conductive obstacle, using Tresca and
Coulomb model for the contact. The authors in [4] introduced an evolution quasistatic
contact problem of a viscoelastic body with a foundation, they modeled the contact with
normal damped response and a local friction law. They established the existence of a
unique solution and the continuous dependence of the solution on the contact boundary
conditions.

In this paper, we study the process of dynamical frictional contact between a thermo-
viscoelastic body and a rigid foundation which, is thermally conducting. We assume
that the process is dynamic and the contact is modeled with the normal compliance,
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the quasistatic version of Coulomb’s law of dry friction, a regularizing condition of ther-
mal contact. The weak variational formulation which consists of a system coupling a
variational inequality for displacement field and a parabolic variational equality for the
temperature. We establish the existence of unique solution using Banach fixed theorems
and we prove the dependence of the solution on the contact boundary conditions and its
convergence result.

The rest of the paper is structured as follows. In section 2, we describe the dynamic
model of the frictional thermo-viscoelastic contact problem. In section 3, we list the
assumptions of the problem data, we derive its variational formulation. In section 4,
we state and prove our existence and uniqueness result. In the last section we study a
contact problem for thermo-electro-viscoelastic with a small perturbation of the contact
condition and we prove a convergence result.

2. PROBLEM STATEMENT

We consider a body made of thermo-viscoelastic material which occupies in the ref-
erence configuration the domain Q € R¢, d = 1,2, 3, which will be supposed bounded
with a smooth boundary 92 = I' that is divided into three disjoint measurable parts
Ty, I'p and T'¢ such that meas(T'p) > 0. Let T > 0 and [0, 7] be the time interval of
and p : Q — RT mass density of the body. The body is clamped on I'p x (0,7) and
so the displacement field vanish there; a volume force of density fo acts in Q x (0,7)
and a volume thermal of density ¢o. Surface traction of density fi act on I'y x (0,7).
In I'c x (0,T) the body can arrive in frictional contact with the so called foundation
which is thermally conductive. The variation of temperature is assumed to be zero on
TpUTyN x (0,7). We assume that the thermal potentials is maintained fix on 6. The
normalized gap between I'c x (0,7) and the rigid foundation is denoted by g.

The space of second order symmetric tensors in the space R? is denoted by S while ».”
and ||.|| will represent the inner product and the Euclidean norm on R? and S%, that is
Yu,v € R, Vo, € S¢

1 1
wv =uv;, v = (v,0)? and o1 =041, ||| =(r,7)2.

We use the notation w, and u, for the normal and tangential displacement that is
uy, = u.v and u, = u —u,v. We also denote by o, the normal and tangential stress give
by o0, = ov.v, 0, =ov —o,v.

The classical formulation of the thermo-viscoelastic contact problem is as follows:
e Problem (P) : Find a displacement field u : 2x]0, T[— R and a temperature field
0 : Qx]0,T[— R such that

o(t) = As(u(t)) + Be(u(t)) — 0(t)M in Qx (0,7), (2.1

q(t) = —KVO(t) in Qx (0,7), (2.2

pii(t) = Div o(t) + fo(t) in Q% (0,7), (2.3)

0(t) + divg(t) — Re(u(t)) = qo(t) in Qx(0,T), (2.4)

u = on I'px(0,7), (2.5)

o(t)v = f1(t) on Ty x(0,7), (2.6)

=0 on (CyUTp)x(0,7), (2.7)

u(0,x) = ug, w(0,2) = o, 0(0,2) =0 in Q, (2.8)

—ou(u(t) = g) = pu(u(t) — 9), on T x (0,7, (2.9)
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lo- (@) < pr(un(t) — 9),

(1) 20 = 07(6) = =pr(un )~ )z, [ O e T @0
ag—f) = ke(uu(t) — 9)or(0(t) — 0r) on Tex(0,7), (2.11)

where (2I) and (22) are the thermo-viscoelastic constitutive law of the material, o =
(0i5) : 2 x (0,T) — S? the stress tensor, ¢ = (g;) : Q x (0,7) — R? the heat flux vector,
e(u) = (gi(u) = 3(uij+uji), A= (Aijw), B = (Biji), M = (My;) and K = (K;;) are
respectively the linearized strain tensor, elastic tensor, (fourth-order) viscosity tensor,
thermal expansion tensor and thermal conductivity tensor.

Equation (23) is the equation of motion. Equation (24]) is the Fourier law of heat
conduction where the function R = (R;;) describe the influence of the displacement
field. Here and below Div o0 = 045, and div ¢ = (g;,;) denote the divergence operator
for tensor and vector valued functions. Conditions ([Z.35)-([2.7) are the displacement and
thermal boundary condition. The initials conditions are represented in the equation
(28). Relation ([29) represents the normal compliance contact condition, where p, is a
prescribed function. When it is positive, u, — g represents the penetration of the surface
as parities into those of the foundation. The Coulomb’s law of friction is considered
in relation (2.I0) where p, is a prescribed non-negative function, the so-called friction
bound. Finally, the relation (2I1]) represents a regularized thermal contact condition

0
where a—z is the normal derivative of ¢ such that:
—L if s < —L .
. ’ kc(r)y=0 if r<o0
or(s) = s if —-L<s<L, { . ’
T s> L. ke(r) >0 if r >0,

where L is a large positive constant, see [§].

3. VARIATIONAL FORMULATION

In order to obtain the variational formulation of Problem (P), let us denote by

d

H = [LZ(Q)] = {u = (’U,Z) Du; € LQ(Q)}, H = {O’ = (O'ij) 104 =04 € LQ(Q)},

Hy = {u=(w): e(u) e} = [HQ)]", Hi={oeH: DivoecH}.
These are real Hilbert spaces endowed with the inner products

(u,v)g = / uvidx,Yu,v € H, (o,7)n = / oijTijdr,No, T € H,
Q Q
(u,v) g, = (u,v) g + (e(w),e(v))3, (0,7)y, = (0,7)n + (Div o, Div 7) g,

and the associated norms, [|.||m, ||.|la, |-, and ||.||%;,-

Let X be a Banach space. For every 1 < p < oo, we will use the spaces LP(0,T; X),
C(0,T; X) and WkP(0,T; X) with their standard norm.
Moreover, keeping in mind (2.3 and (2.1), we introduce the following space

V=4{veH(Q): v=00nTp}, Vig={veV:u <gonlc},
Q={neH(Q): n=00onTpUTly}.

endowed with the inner products and norms given by
(u,v)y = (E(u),&(’l)))q{, ||U||V = (va)

0,mq = (V0,Vn)u, Inlle = (n,m)

)

Q= o=
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Since meas(I'p) > 0, the following Korn’s inequality holds
le@)lln = Cxllvlla,, Yv €V, (3.12)

where C' > 0 is a constant which depends only on 2 and I'p.
The following Frierichs-Poincaré inequality holds on @ at the bottom

IVnllz > Crlinllq, Vne Q. (3.13)

Using Sobolev trace theorem, we have constants Cs, and Cs, depends only on €, I'p
and I'c such that

[vllir2raye < Csillvllv, Yo € Veand [Inflz2re) < Cs.linlle, Yn € Q. (3.14)
Next, we define the elements f(t) € V and ¢(t) € @ respectively by

(f(t),v)y = 5 fo(t).vdz + g fi(t).vda, Vv € V. (3.15)

(@) ma = / wo(tyndz, ¥n € Q. (3.16)

We consider j: V xV =R, x: V xQ x Q — R as follows:

jlu(t),v) = /Fpu(uu(t)—g)vyda+/ pr(ur(t) = g)llvrllda, (3.17)

I'e
(w00 = [ el (t) = 9)61(6() ~ O, (318)
and the following operators
a:VxV-oR alu,v) = (Ae(u),e(v))n,
b:VxV =R, buwv) :=(Be(u)e))y,
d:QxQ—=R, dO,n) :=(KV,Vn)m,
m:QxV =R, mb,v) :=(Mbev))y,

C:VxQoR  elun) = (Re(v),n)x).
Now, in order to study the problem (ZI))-(2II), we need the following hypotheses on
the data

(H1) The operators a, b, d, m and e satisfy the usual property of symmetry
Aijer = Ajit = Aij € L(Q),  Bijri = Bjitn = Birij € L=(Q),
Kij =Kji € L%(Q), M;j =M ; € L®(Q), Rij = Rji € L=(Q).
(H2) There exist positive constants m,, m;, and mg such that
a(v,v) = ma|lvll}, b(v,v) = me|olly,, d(n,m) = mallnll?,.
(H3) The operators a, b, d, m and e satisfy the usual property of boundedness
la(u, )| < Mallullvllullv, 16w, v)] < Mylullvllolly,
|d(0,n)| < Mal|fllqlInllq, [m(0,v)] < Mun|0llellvllv, le(u,n)] < Mc[ullvnlle,
(H4) i) The forces, the traction and the thermal flux satisfy
foe WHHO,T; LA()%), fr € WHH0,T; L*(Tn)?) and go € L*(0,T; L*(2)).
ii) The gap function and the thermal potential satisty
g>0,ge L>T¢), and O € L*(0,T; L*(T¢)).

iii) The mass density p satisfies p € L>°(2), and there exists p* > 0 such that
p(x) > p* ae. xeR.
iv) The functional j is proper, convex and lower semi-continuous on V.
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(H5) The coefficient of heat exchange k. : Tc x R — RT satisfy
i) There exists My, > 0 such that |k.(x,u)] < My, for all u € R,z € T'¢
2+ ke(z,u) is measurable on I'c for all © € R, kq(x,u) =0 for all x € T
and u < 0.
ii) There exists Lg, > 0 such that |kc(z,u1) — ke(x, u2)| < Ly, Jus — ugl, for all
uy,us € R.
(H6) The normal compliance function p, and the friction bound p, satisfy the following
hypothesis for r = v, 17
i) pr:Toe xR — Ry,
ii) * — py(x,u) is measurable on I'c, for all u € R,
iii) = pr(z,u) =0 for u <0, a.e. z € I'c,
iv) There exists L, > 0 such that |p,(.,u)—p,(.,v)| < Ly|Ju—v|, for all u,v € Ry.
(H7) i) The initial data up and o of Problem (P) satisfy

ug € Vad, ug € D(aj),

where 95 denotes the subdifferential of j and D(9j) represents its domain.
ii) There exists h € L?(Q2)? such that

b (49, v — o) + a (ug, v — o) + j (ug,v) — j (ug,Gg) > (h,v — 1), Yo € V.

According to this notation and by using a standard procedure based on Green’s for-
mula, we can state the variational formulation of 2J)-(2I1l), in terms of displacement
field and temperature.

Problem (PV): Find a displacement field u : Qx]0,7[— R? and a temperature
0:0x]0,T[— R a.e. t €]0,T[, v € V and n € Q such that

(i), v —a(t)) + a(u(t),v —u(t)) + blu(t),v — w(t)) —m(O(t),v —a(t)) (3.19)

. +j(u(t)7v) - ](u(t)v u(t)) > (f(t)v v = Q(ﬁ))v,
(0(t),n) +d(0(t),n) — e(u(t),n) + x(u(t),0(t),n) = (qn(t),n)q, (3.20)
u(0) = ug, w(0) = 1, 6(0) = 6. (3.21)

4. AN EXISTENCE AND UNIQUENESS RESULT
In this section, we present and we prove an existence and uniqueness result.

Theorem 4.1. Assume that the assumptions (H1)-(H7) hold. Then, there exists a unique
solution (u, ) to problem BI9)-B2I) that satisfies

uw € Whe(0,T; V)N W2>(0,T; H), (4.22)
6 € L*0,T;Q)NC([0,T]; L*(£)). (4.23)

The proof of this theorem is carried out in several steps and it is based on argument of
second-order non linear evolution variational inequality and Banach fixed point theorem.

Let o € L?*(0,T;V) and 8 € L?(0,T; L*(Q)) given by
(a(t),v —ua(t)) = m(0s(t),v — ta(t)), (4.24)
(B(t),n) = —e(ualt),n) + x(ua(t), O5(t), n). (4.25)

In the first, we consider the following variational problem of displacement field
Problem (PVy): Find a displacement field u,, : 2x]0, T[— R? a.e. t €]0, T[ such that

(lia(t), v — Ua(t)) + alua(t), v — 4 (t)) + bt (t),v — us(t)), (4.26)
_(O‘(t)v v = ua(t)) +j(uo¢(t)7 U) - j(ua(t)v ua(t)) > (f(t)v v = ua(t))Va Vo € ‘/7
o (0) = g, Tia(0) = . (4.27)

We have the following existence and uniqueness result.
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Lemma 4.2. For allv € Vyq and for a.e t €]0,T[, the problem ([L20)-217) has a unique
solution u,, satisfies the reqularity (E22).

Proof. By Riesz’s representation theorem, we define the operator

(fa(t),v)v = (f(£),v)v — (a(t), v)v. (4.28)
Then ([@26)-[27) can be written
(i (1), v — e (t)) + b(t1a (1), v — 16 () + a(ua(t),v — 1 (1)) (4.29)

+j(uo¢(t)7 U) - j(ua(t)v (s (t)) > (f(t)v U= Qa(t))v-
By assumptions (H1) and (H2) the operator a is continuous symmetric bilinear and
coercive.
Next, we define the set-valued operator B : V — V by B = b+ 0j.
From (H2), b is maximal monotone and by (H4)(iv), we observe that Jj is maximal
monotone. Consequently, [5, P. 39| the operator B is maximal monotone.
Moreover, by (H7), the initial data ug and g satisfy the condition {aug + big JNL?(Q)¢ #

Keeping in mind the regularity f € W11(0,T; H) and o € L?(0,T;V), we deduce from
@E2]) that f, € WH(0,T; H).
Finally, using the Theorem presented in [5l P. 268], we obtain result. O

In the second step, we consider the following variational problem of the temperature.
Problem (PVy,): Find a temperature 65 : 2x]0,7[— R a.e. t €]0,T[ and n € Q such
that

(Op(t),m) +d(Ba(t),n) + (B(t),n) = (@ (t), e, (4.30)
03(0) = 6. (4.31)
The result of this problem presented in the following lemma.

Lemma 4.3. There exists a unique solution for the problem ([A30)-{@31) which satisfies
@23).

Proof. Using Riesz’s representation theorem, there exists an operator gz defined by

Then, the problem (@30)-[31) can be written as follows
(05(t),m) + d(65(t),n) = (a5(t), n), (4.33)
03(0) = 6y. (4.34)

From (H1)-(H2) the operator d is a hemicontinuous and monotone.
By [#32) and the regularity of ., we obtain that gg € L?(0,T; Q).
It follows now from Theorem presented [20], P. 48] that there exists a unique function 63

which satisfies ([@.23)). O
In the last step, for all ¢ € [0,T] we define the operator
Aa, B)(t) := (Ar(e, B)(t), Aa(a, B)(1)) € V X Q, (4.35)
given by
(Ar(e, B)(t),0) == m(0s,0), (4.36)
(Ao, B)(8),m) = —e(ualt),n) + x(ualt), 05(t),n), (4.37)

and we have the following result

Lemma 4.4. For (o, 3) € L?>(0,T; V) x L?(0,T; Q) the operator A is continuous. More-
over, there exists a unique (o, 3*) € L?(0,T;V x Q) such that A(a*, B*) = (a*, 5%).
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Proof. Let (o, 8) € L2(0,T;V x Q) and let t1, to € [0,7T].
From (@36) and assumption (H3), it follows that

[Ax(ev, B)(t1) = Aa(ev, B)(E2)ly g < M [|05(t1) = O5(L2) ¢, - (4.38)

Taking into account the regularity of 63, we found that Aq(«, 5) € C([0,T]; V).
The relation (£37) combined with (H3), (H5) and (3.14), there exists a positive constant
¢ depending on M, My,, L, M., Cs, and Cg, such that

[A2(c, B)(t1) — Aa(a, B)(E2) Iy w (4.39)
< ¢ (Iuat) = walt2)lly + 165(t1) = 05(t2)llg ) -

Then, As(a, 8) € C(]0,T],Q). Consequently, we deduce that A is continuous.
Let (al,ﬁl), (a2,B2) € L*(0,T;V x Q) and t € [0,T]. Similar to (Z38) and {@39), we
have that

IA(a, B1)(t) — Alez, B2) (D)7 w0 (4.40)
< ¢ (lua, () = uas ()15 + 105, (8) = 05, (D))
Also from u,, ( fo U, (8)ds + ug for i = 1,2, we found
e () — 11y ()% < / i (5) — tian (5)]1% ds. (4.41)

Using inequality ([@26]), we find
(U’al (t) - U‘Olz (t)7 ual (t) - uaz (t)) +b (’[J’Otl (t) - uaz (t)7 ual (t) - uaz (t)) (442)
a (U’Otl (t) — Uay (t) ual (t) - uaz (t)) + ( 1(t) a2 (t)7 ual (t) - uOtz (t))
J (tay (£),thay (1)) = 5 (e, (£), s () = J (tay (), b, (£)) + 5 (tary (1), thary (£)) < 0.
Moreover, from (BI4), (B.1I1) and (H5), we have
17 (e, (£), o, (£)) = 5 (tary (), thay (£)) = (thers (£), sy (2)) + 5 (wary (), Thars (1)) (4.43)
< 051 (Ly + L7) |[ta, (1) — tas, (t)”V l|ta, () = tay (t)Hv .
We integrate the relation (£42) to 0 at ¢ and use (£43), (H2) and the initial condition

ey (0) = U, (0) = 4o to obtain

i [ i, 6) = s ) s+ 5 i (1) = s (O (444

<- / (01(5) = 2(8), s (£) — ey (1)) ds

0

(M, + C2, (L, + L)) / e (5) = 1y () - ks (5) — ey (5) | .

1

Then, using the inequality zy < xa? + 4—y2, (k£ > 0) and Gornwall inequality, we get
K

that

t
[t () = s (D3, < C/ lot () — az(s)||3, ds. (4.45)
0
In order words from ([@24]), it follows that

(95, (5) = 0521, 05, (1) = 05, (1)) + (05, (1) = 05, (1), 05, (1) = 05, (1)) (4:46)
+ (61 (t) - BQ(t)a 951 (t) - 9ﬁ2 (t)) =0.
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Similar to (£43]), we have
165 (t) = 05, (1)l < C/Ot 1B1(5) = Ba(s) I, ds. (4.47)
Now, we combine ([@40), ([@43) and ([{.47), we obtain
A, B1)(t) — Aoz, B2)(t)l[3 v < C/Ot (ar, B1)(s) — (a2, B2) (5|3 ds.  (4.48)

Reiterating this inequality n times result in

[A™ (a, B1) — A™ (02, B2) 1720 v ) (4.49)
_(cry
- nl
Which implies that for n sufficiently large, A™ is a contraction operator in the Banach
space L?(0,T;V x Q).
Therefore, A has a unique fixed point. a

(1, B1) — (042752)||2Lz(o,T;VXQ) :

Now we have everything that is required to prove Theorem (£.1))
Proof of Theorem ([d.1).
Existence: Let (a*,3*) € L?(0,T;V x L*(2)) be the fixed point of the operator T
and denote uy,., 03. be the solution of (L26)-(@.27) and [E.30)-@31) respectively, for
(o, B) = (a*, %), the definition of A we find that the pair (u;,@;) is a solution of

Problem (PV).
Uniqueness: The uniqueness of the solution is a consequence of the fixed point of
operator A given by (E3%). O

5. CONTINUOUS DEPENDENCE OF PROBLEM DISTURBED

In this section we consider pf, and pi for any 6 > 0 the perturbation of p, and p,
which satisfies (H6) and we study the dependence of the solution to (B19)-(B21]).
We define the functional j° from j by replacing p, and p, with pS and p®. We introduce
the following variational problem
Problem (PV?): For ¢ > 0 find a displacement field u® : Qx]0, T[— R? and a temper-
ature 0° : Ox]0, T[— R a.e. t €]0,T[, v € V and 1 € Q such that
(@(t),v —u°(t)) +a (uo(t),v —a°(t)) + b (W (t), v — a°(t)) (5.50)
—m (0°(t), v — @ (1)) + 50 (u’(t),v) = jO(u’ (1), %°(t)) = (f(t),0 —a(t)),,
(65(t).m) + (1) m) — e (u(),m) + x (u5(£),0°(1), ) = (an (D)) > (5.51)
u®(0) = ug, u°(0) = 1, 6°(0) = by. (5.52)
This problem has a unique solution, and the proof is similar to that used in Section 4.
We present now, the assumptions of the contact function p’ and p°
There exists w, € R and ¢, : Ry — R such that:
(@) [ (x, ) = pr(2,7)| < @ (O)(|r| +w:), VreRN,ae z€lc, (5.53)
(#9) lim p,(5) = 0,
6—0
and
There exists w, € R and ¢, : Ry — R such that:
(@) |pS (2, 7) — pu(@, )| < @u(6)(Ir] +wy), Vr e RN ae xelg, (5.54)
(i) im ,(8) = 0.
—

Next, we present the following convergence result
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Theorem 5.1. The solution (u’,6°) of (B50)-([E52) converge uniformly to a solution
of BI9)-BZD) i-e.,
W —u, o —a, and © — 0 as § — 0.
Proof. Replacing v by 4° in ([3I9) and by % in (5.50), we have
(ii(t) — 60 (t), u(t) —a(t)) + a (u(t) — w(t),u(t) — 4°(t)) (5.55)
+b (a(t) — ad(t),a(t) — uo(t)) —m (6(t) — 6°(t))
3 (u(t), i) — g (u(t), @’ (1) +5° (u(t), @’ (1)) — 3° (w’(t),a(t)) < 0.
Using (H2) and (H3) we found the inequality
Ld
2dt
< (a4 20 (0~ 0 () — o0l + 106 — ) + 1Ry
The assumption (5.53)-(E.54) and (317) allows us to obtain

/F (po(un(t) = g) = P (ud(t) — 9)) (4(t) — 1 () da (5.57)

my |[i(t) — i (@)|]5 + 5 [|at) — @ (1)]];, (5.56)

|R;jo| =

+ /F (P (s (1) = 9) = PY(up(8) = 9)) (Il (D] = [l (2)]]) da
c(pu(8) + 07 (0)) [|a°(t) — a(t)]],, -
Combining (556), (B57) and using Gronwall inequality, it follows that
[u(t) — u? @[5, + |Jal) — @ @[5, (5.58)
c t s) — 6°(s)||” ds .
<e( [ 06 -y ds + (0u0) +or 00 )
Now, we replace n by 6 — 6° in (320) and in (5.51), we have the following relation
(9(t) — (1), 0(t) — 95@)) +d (0(t) — 0°(1),0(t) — 0°(t)) (5.59)
—e (u(t) —u®(t),0(t) — 0° () + x (u(t),0(1), 0(t) — 6°())

—x (u®(1),6° (1), 6(t) — 6°(1)) = 0.
Using the property of operator d and e, we deduce that

IN

2 1d 2

mq6(t) —05(t)HQ+§E [6(t) =6 (W)l < (5.60)

Me [[u(t) = u* (@), [|0() = °(t)]| , + Rl -
From (H4) and (8I4), we have the following estimate of R,

IRyl < My, .L.CE, |0(t) — 0° ()], - (5.61)
Similar to (5.59), we conclude that

t
o) —° )], < c/o l[u(s) —u’ ()], ds. (5.62)

Moreover, from (559) and (5:62) combined with Gronwall inequality we find

lu(t) —ud O, + [Jat) — s 05 + [|66) — (1), < e (0) +0-(8) . (5.63)

Hence, since § — 0, we obtain the result of Theorem (G.1I). O
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