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ANALYSIS RESULTS FOR DYNAMIC CONTACT PROBLEM WITH

FRICTION IN THERMO-VISCOELASTICITY

MUSTAPHA BOUALLALA AND EL HASSAN ESSOUFI

Abstra
t. We present a mathemati
al model whi
h des
ribes the dynami
 fri
-

tional 
onta
t between a thermo-vis
oelast
 body and a 
ondu
tive foundation. The


onta
t is modeled using the normal 
omplian
e 
ondition, the quasistati
 version

of Coulomb's law of fry fri
tion. We derive the weak formulation and we prove the

existen
e and uniqueness result. The proofs are based on the theory of �rst-order and

se
ond-order evolution inequalities and Bana
h �xed point theorem. We introdu
e a

new problem on perturbation of the 
onta
t boundary 
ondition and we establish its


ontinuous dependen
e result.

Ïðåäñòàâëåíî ìàòåìàòè÷íó ìîäåëü, ùî îïèñó¹ äèíàìi÷íèé êîíòàêò òåðòÿ

ìiæ òåðìîâ'ÿçêîïðóæíèì òiëîì i îñíîâîþ-ïðîâiäíèêîì. Êîíòàêò ìîäåëþ¹òüñÿ

ç âèêîðèñòàííÿì óìîâè íîðìàëüíî¨ åëàñòè÷íîñòi, êâàçiñòàòè÷íî¨ âåðñi¨ çàêîíó

�ðèêöiéíîãî òåðòÿ Êóëîíà. Ïðîïîíó¹òüñÿ îçíà÷åííÿ ñëàáêîãî ðîçâ'ÿçêó, äîâåäåíà

òåîðåìà iñíóâàííÿ òà ¹äèíîñòi. Äîâåäåííÿ áàçóþòüñÿ íà òåîði¨ åâîëþöiéíèõ

íåðiâíîñòåé ïåðøîãî òà äðóãîãî ïîðÿäêiâ i òåîðåìi Áàíàõà ïðî íåðóõîìó òî÷êó.

Ñòàâèòüñÿ íîâà çàäà÷à ïðî çáóðåííÿ êîíòàêòíî¨ ãðàíè÷íî¨ óìîâè; îòðèìàíà

òåîðåìà ïðî íåïåðåðâíó çàëåæíiñòü.

1. Introdu
tion

The 
onta
t of deformable elasti
 bodies, with or without fri
tion, is the relationship

between the normal for
es (
onta
t pressure) and the relative movement between the

body and the foundation. Conta
t problems are present in many industrial pro
esses

and daily life.

Dynami
 fri
tional 
onta
t problems between a vis
oelasti
 body and an obsta
le

with thermal e�e
t was made in [6, 3, 7℄ and more re
ently in [1, 21℄. The result in

[14, 15, 16, 17℄, we 
an �nd several 
lasses of dynami
 fri
tional 
onta
t problems by

hemivariational inequalities with or without thermal e�e
ts. For more information of the

quasistati
 and dynami
 problem without thermal e�e
ts refer to [18, 9, 10℄. A number

of papers investigating quasistati
 thermo-vis
oelasti
 
onta
t problems with fri
tion 
an

be found in [2, 13, 19℄.

Essou� et.al [12, 11℄ study two dynami
 fri
tional 
onta
t models between a piezoele
-

tri
 and ele
tro-vis
oelasti
 body and a rigid, non 
ondu
tive obsta
le, using Tres
a and

Coulomb model for the 
onta
t. The authors in [4℄ introdu
ed an evolution quasistati



onta
t problem of a vis
oelasti
 body with a foundation, they modeled the 
onta
t with

normal damped response and a lo
al fri
tion law. They established the existen
e of a

unique solution and the 
ontinuous dependen
e of the solution on the 
onta
t boundary


onditions.

In this paper, we study the pro
ess of dynami
al fri
tional 
onta
t between a thermo-

vis
oelasti
 body and a rigid foundation whi
h, is thermally 
ondu
ting. We assume

that the pro
ess is dynami
 and the 
onta
t is modeled with the normal 
omplian
e,
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the quasistati
 version of Coulomb's law of dry fri
tion, a regularizing 
ondition of ther-

mal 
onta
t. The weak variational formulation whi
h 
onsists of a system 
oupling a

variational inequality for displa
ement �eld and a paraboli
 variational equality for the

temperature. We establish the existen
e of unique solution using Bana
h �xed theorems

and we prove the dependen
e of the solution on the 
onta
t boundary 
onditions and its


onvergen
e result.

The rest of the paper is stru
tured as follows. In se
tion 2, we des
ribe the dynami


model of the fri
tional thermo-vis
oelasti
 
onta
t problem. In se
tion 3, we list the

assumptions of the problem data, we derive its variational formulation. In se
tion 4,

we state and prove our existen
e and uniqueness result. In the last se
tion we study a


onta
t problem for thermo-ele
tro-vis
oelasti
 with a small perturbation of the 
onta
t


ondition and we prove a 
onvergen
e result.

2. Problem statement

We 
onsider a body made of thermo-vis
oelasti
 material whi
h o

upies in the ref-

eren
e 
on�guration the domain Ω ⊂ R
d, d = 1, 2, 3, whi
h will be supposed bounded

with a smooth boundary ∂Ω = Γ that is divided into three disjoint measurable parts

ΓN , ΓD and ΓC su
h that meas(ΓD) > 0. Let T > 0 and [0, T ] be the time interval of

and ρ : Ω 7→ R
+
mass density of the body. The body is 
lamped on ΓD × (0, T ) and

so the displa
ement �eld vanish there; a volume for
e of density f0 a
ts in Ω × (0, T )
and a volume thermal of density q0. Surfa
e tra
tion of density f1 a
t on ΓN × (0, T ).
In ΓC × (0, T ) the body 
an arrive in fri
tional 
onta
t with the so 
alled foundation

whi
h is thermally 
ondu
tive. The variation of temperature is assumed to be zero on

ΓD ∪ ΓN × (0, T ). We assume that the thermal potentials is maintained �x on θF . The

normalized gap between ΓC × (0, T ) and the rigid foundation is denoted by g.

The spa
e of se
ond order symmetri
 tensors in the spa
e R
d
is denoted by S

d
while ”.”

and ‖.‖ will represent the inner produ
t and the Eu
lidean norm on R
d
and S

d
, that is

∀u, v ∈ R
d, ∀σ, τ ∈ S

d

u.v = ui.vi, ‖v‖ = (v, v)
1

2
and σ.τ = σij .τij , ‖τ‖ = (τ, τ)

1

2 .

We use the notation uν and uτ for the normal and tangential displa
ement that is

uν = u.ν and uτ = u− uνν. We also denote by στ the normal and tangential stress give

by σν = σν.ν, στ = σν − σνν.

The 
lassi
al formulation of the thermo-vis
oelasti
 
onta
t problem is as follows:

• Problem (P ) : Find a displa
ement �eld u : Ω×]0, T [−→ R
d
and a temperature �eld

θ : Ω×]0, T [−→ R su
h that

σ(t) = Aε(u(t)) + Bε(u̇(t))− θ(t)M in Ω× (0, T ), (2.1)

q(t) = −K∇θ(t) in Ω× (0, T ), (2.2)

ρü(t) = Div σ(t) + f0(t) in Ω× (0, T ), (2.3)

θ̇(t) + divq(t)−Rε(u(t)) = q0(t) in Ω× (0, T ), (2.4)

u = 0 on ΓD × (0, T ), (2.5)

σ(t)ν = f1(t) on ΓN × (0, T ), (2.6)

θ = 0 on (ΓN ∪ ΓD)× (0, T ), (2.7)

u(0, x) = u0, u̇(0, x) = u̇0, θ(0, x) = θ0 in Ω, (2.8)

−σν(u(t)− g) = pν(uν(t)− g), on ΓC × (0, T ), (2.9)
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‖στ (t)‖ ≤ pτ (uν(t)− g),

u̇τ (t) 6= 0 ⇒ στ (t) = −pτ(uν(t)− g)
u̇τ (t)

‖u̇τ(t)‖
,







on ΓC × (0, T ) (2.10)

∂q(t)

∂ν
= kc(uν(t)− g)φL(θ(t)− θF ) on ΓC × (0, T ), (2.11)

where (2.1) and (2.2) are the thermo-vis
oelasti
 
onstitutive law of the material, σ =
(σij) : Ω× (0, T ) → S

d
the stress tensor, q = (qi) : Ω× (0, T ) → R

d
the heat �ux ve
tor,

ε(u) = (εij(u)) =
1
2 (ui.j +uj.i), A = (Aijkl), B = (Bijkl), M = (Mij) and K = (Kij) are

respe
tively the linearized strain tensor, elasti
 tensor, (fourth-order) vis
osity tensor,

thermal expansion tensor and thermal 
ondu
tivity tensor.

Equation (2.3) is the equation of motion. Equation (2.4) is the Fourier law of heat


ondu
tion where the fun
tion R = (Rij) des
ribe the in�uen
e of the displa
ement

�eld. Here and below Div σ = σij.j and div q = (qi,i) denote the divergen
e operator

for tensor and ve
tor valued fun
tions. Conditions (2.5)-(2.7) are the displa
ement and

thermal boundary 
ondition. The initials 
onditions are represented in the equation

(2.8). Relation (2.9) represents the normal 
omplian
e 
onta
t 
ondition, where pν is a

pres
ribed fun
tion. When it is positive, uν − g represents the penetration of the surfa
e

as parities into those of the foundation. The Coulomb's law of fri
tion is 
onsidered

in relation (2.10) where pτ is a pres
ribed non-negative fun
tion, the so-
alled fri
tion

bound. Finally, the relation (2.11) represents a regularized thermal 
onta
t 
ondition

where

∂q

∂ν
is the normal derivative of q su
h that:

φL(s) =







−L if s < −L,

s if −L ≤ s ≤ L,

L if s > L,

{

kc(r) = 0 if r < 0,
kc(r) > 0 if r ≥ 0,

where L is a large positive 
onstant, see [8℄.

3. Variational formulation

In order to obtain the variational formulation of Problem (P ), let us denote by

H =
[

L2(Ω)
]d

=
{

u = (ui) : ui ∈ L2(Ω)
}

, H =
{

σ = (σij) : σij = σji ∈ L2(Ω)
}

,

H1 = {u = (ui) : ε(u) ∈ H} =
[

H1(Ω)
]d

, H1 = {σ ∈ H : Div σ ∈ H} .

These are real Hilbert spa
es endowed with the inner produ
ts

(u, v)H =

∫

Ω

uividx, ∀u, v ∈ H, (σ, τ)H =

∫

Ω

σijτijdx, ∀σ, τ ∈ H,

(u, v)H1
= (u, v)H + (ε(u), ε(v))H, (σ, τ)H1

= (σ, τ)H + (Div σ,Div τ)H ,

and the asso
iated norms, ‖.‖H , ‖.‖H1
, ‖.‖H, and ‖.‖H1

.

Let X be a Bana
h spa
e. For every 1 ≤ p ≤ ∞, we will use the spa
es Lp(0, T ;X),
C(0, T ;X) and W k,p(0, T ;X) with their standard norm.

Moreover, keeping in mind (2.5) and (2.7), we introdu
e the following spa
e

V = {v ∈ H1(Ω) : v = 0 on ΓD} , Vad = {v ∈ V : uν ≤ g on ΓC} ,

Q = {η ∈ H1(Ω) : η = 0 on ΓD ∪ ΓN} .

endowed with the inner produ
ts and norms given by

(u, v)V = (ε(u), ε(v))H, ‖v‖V = (v, v)
1

2

V ,

(θ, η)Q = (∇θ,∇η)H , ‖η‖Q = (η, η)
1

2

Q.
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Sin
e meas(ΓD) > 0, the following Korn's inequality holds

‖ε(v)‖H ≥ CK‖v‖H1
, ∀v ∈ V, (3.12)

where CK > 0 is a 
onstant whi
h depends only on Ω and ΓD.

The following Frieri
hs-Poin
ar�e inequality holds on Q at the bottom

‖∇η‖H ≥ CF ‖η‖Q, ∀η ∈ Q. (3.13)

Using Sobolev tra
e theorem, we have 
onstants CS1
and CS2

depends only on Ω, ΓD

and ΓC su
h that

‖v‖[L2(ΓC)]d ≤ CS1
‖v‖V , ∀v ∈ V and ‖η‖[L2(ΓC)] ≤ CS2

‖η‖Q, ∀η ∈ Q. (3.14)

Next, we de�ne the elements f(t) ∈ V and q(t) ∈ Q respe
tively by

(f(t), v)V :=

∫

Ω

f0(t).vdx +

∫

ΓN

f1(t).vda, ∀v ∈ V. (3.15)

(qth(t), η)Q :=

∫

Ω

q0(t)ηdx, ∀η ∈ Q. (3.16)

We 
onsider j : V × V → R, χ : V ×Q×Q → R as follows:

j(u(t), v) :=

∫

ΓC

pν(uν(t)− g)vνda+

∫

ΓC

pτ (uτ (t)− g)‖vτ‖da, (3.17)

χ(u(t), θ(t), η) :=

∫

ΓC

kc(uν(t)− g)φL(θ(t)− θF )ηda, (3.18)

and the following operators

a : V × V → R, a(u, v) := (Aε(u), ε(v))H,

b : V × V → R, b(u, v) := (Bε(u), ε(v))H,

d : Q×Q → R, d(θ, η) := (K∇θ,∇η)H ,

m : Q× V → R, m(θ, v) := (Mθ, ε(v))H,

e : V ×Q → R, e(u, η) := (Rε(v), η)L2(Ω).

Now, in order to study the problem (2.1)-(2.11), we need the following hypotheses on

the data

(H1) The operators a, b, d, m and e satisfy the usual property of symmetry

Aijkl = Ajikl = Alkij ∈ L∞(Ω), Bijkl = Bjikl = Blkij ∈ L∞(Ω),

Kij = Kji ∈ L∞(Ω), Mij = Mji ∈ L∞(Ω), Rij = Rji ∈ L∞(Ω).

(H2) There exist positive 
onstants ma, mb and md su
h that

a(v, v) ≥ ma‖v‖
2
V , b(v, v) ≥ mb‖v‖

2
V , d(η, η) ≥ md‖η‖

2
Q.

(H3) The operators a, b, d, m and e satisfy the usual property of boundedness

|a(u, v)| ≤ Ma‖u‖V ‖u‖V , |b(u, v)| ≤ Mb‖u‖V ‖v‖V ,

|d(θ, η)| ≤ Md‖θ‖Q‖η‖Q, |m(θ, v)| ≤ Mm‖θ‖Q‖v‖V , |e(u, η)| ≤ Me‖u‖V ‖η‖Q,

(H4) i) The for
es, the tra
tion and the thermal �ux satisfy

f0 ∈ W 1,1(0, T ;L2(Ω)d), f1 ∈ W 1,1(0, T ;L2(ΓN )d) and q0 ∈ L2(0, T ;L2(Ω)).

ii) The gap fun
tion and the thermal potential satisfy

g ≥ 0, g ∈ L∞(ΓC), and θF ∈ L2(0, T ;L2(ΓC)).

iii) The mass density ρ satis�es ρ ∈ L∞(Ω), and there exists ρ∗ > 0 su
h that

ρ(x) ≥ ρ∗ a.e. x ∈ R.

iv) The fun
tional j is proper, 
onvex and lower semi-
ontinuous on V .
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(H5) The 
oe�
ient of heat ex
hange kc : ΓC × R → R
+
satisfy

i) There exists Mkc
> 0 su
h that |kc(x, u)| < Mkc

for all u ∈ R, x ∈ ΓC

x 7→ kc(x, u) is measurable on ΓC for all x ∈ R, kc(x, u) = 0 for all x ∈ ΓC

and u ≤ 0.
ii) There exists Lkc

> 0 su
h that |kc(x, u1)− kc(x, u2)| ≤ Lkc
|u1 − u2|, for all

u1, u2 ∈ R.

(H6) The normal 
omplian
e fun
tion pν and the fri
tion bound pτ satisfy the following

hypothesis for r = ν, τ

i) pr : ΓC × R → R+,

ii) x → pr(x, u) is measurable on ΓC , for all u ∈ R,

iii) x → pr(x, u) = 0 for u ≤ 0, a.e. x ∈ ΓC ,

iv) There exists Lr > 0 su
h that |pr(., u)−pr(., v)| ≤ Lr|u−v|, for all u, v ∈ R+.

(H7) i) The initial data u0 and u̇0 of Problem (P ) satisfy

u0 ∈ Vad, u̇0 ∈ D(∂j),

where ∂j denotes the subdi�erential of j and D(∂j) represents its domain.

ii) There exists h ∈ L2(Ω)d su
h that

b (u̇0, v − u̇0) + a (u0, v − u̇0) + j (u0, v)− j (u0, u̇0) ≥ (h, v − u̇0) , ∀v ∈ V.

A

ording to this notation and by using a standard pro
edure based on Green's for-

mula, we 
an state the variational formulation of (2.1)-(2.11), in terms of displa
ement

�eld and temperature.

Problem (PV ): Find a displa
ement �eld u : Ω×]0, T [−→ R
d
and a temperature

θ : Ω×]0, T [−→ R a.e. t ∈]0, T [, v ∈ V and η ∈ Q su
h that

(ü(t), v − u̇(t)) + a(u(t), v − u̇(t)) + b(u̇(t), v − u̇(t))−m(θ(t), v − u̇(t)) (3.19)

+j(u(t), v)− j(u(t), u̇(t)) ≥ (f(t), v − u̇(t))V ,

(θ̇(t), η) + d(θ(t), η) − e(u(t), η) + χ(u(t), θ(t), η) = (qth(t), η)Q, (3.20)

u(0) = u0, u̇(0) = u̇0, θ(0) = θ0. (3.21)

4. An existen
e and uniqueness result

In this se
tion, we present and we prove an existen
e and uniqueness result.

Theorem 4.1. Assume that the assumptions (H1)-(H7) hold. Then, there exists a unique

solution (u, θ) to problem (3.19)-(3.21) that satis�es

u ∈ W 1,∞(0, T ;V ) ∩W 2,∞(0, T ;H), (4.22)

θ ∈ L2(0, T ;Q) ∩ C([0, T ];L2(Ω)). (4.23)

The proof of this theorem is 
arried out in several steps and it is based on argument of

se
ond-order non linear evolution variational inequality and Bana
h �xed point theorem.

Let α ∈ L2(0, T ;V ) and β ∈ L2(0, T ;L2(Ω)) given by

(α(t), v − u̇α(t)) = m(θβ(t), v − u̇α(t)), (4.24)

(β(t), η) = −e(uα(t), η) + χ(uα(t), θβ(t), η). (4.25)

In the �rst, we 
onsider the following variational problem of displa
ement �eld

Problem (PVdf ): Find a displa
ement �eld uα : Ω×]0, T [−→ R
d
a.e. t ∈]0, T [ su
h that

(üα(t), v − u̇α(t)) + a(uα(t), v − u̇α(t)) + b(u̇α(t), v − u̇α(t)), (4.26)

−(α(t), v − u̇α(t)) + j(uα(t), v)− j(uα(t), u̇α(t)) ≥ (f(t), v − u̇α(t))V , ∀v ∈ V,

uα(0) = u0, u̇α(0) = u̇0. (4.27)

We have the following existen
e and uniqueness result.
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Lemma 4.2. For all v ∈ Vad and for a.e t ∈]0, T [, the problem (4.26)-(4.27) has a unique

solution uα satis�es the regularity (4.22).

Proof. By Riesz's representation theorem, we de�ne the operator

(fα(t), v)V = (f(t), v)V − (α(t), v)V . (4.28)

Then (4.26)-(4.27) 
an be written

(üα(t), v − u̇α(t)) + b(u̇α(t), v − u̇α(t)) + a(uα(t), v − u̇α(t)) (4.29)

+j(uα(t), v)− j(uα(t), u̇α(t)) ≥ (f(t), v − u̇α(t))V .

By assumptions (H1) and (H2) the operator a is 
ontinuous symmetri
 bilinear and


oer
ive.

Next, we de�ne the set-valued operator B : V 7→ V by B = b+ ∂j.

From (H2), b is maximal monotone and by (H4)(iv), we observe that ∂j is maximal

monotone. Consequently, [5, P. 39℄ the operator B is maximal monotone.

Moreover, by (H7), the initial data u0 and u̇0 satisfy the 
ondition {au0 + bu̇0}∩L2(Ω)d 6=
∅.
Keeping in mind the regularity f ∈ W 1,1(0, T ;H) and α ∈ L2(0, T ;V ), we dedu
e from

(4.28) that fα ∈ W 1,1(0, T ;H).
Finally, using the Theorem presented in [5, P. 268℄, we obtain result. �

In the se
ond step, we 
onsider the following variational problem of the temperature.

Problem (PVth): Find a temperature θβ : Ω×]0, T [−→ R a.e. t ∈]0, T [ and η ∈ Q su
h

that

(θ̇β(t), η) + d(θβ(t), η) + (β(t), η) = (qth(t), η)Q, (4.30)

θβ(0) = θ0. (4.31)

The result of this problem presented in the following lemma.

Lemma 4.3. There exists a unique solution for the problem (4.30)-(4.31) whi
h satis�es

(4.23).

Proof. Using Riesz's representation theorem, there exists an operator qβ de�ned by

(qβ(t), η)Q = (qth(t), η)Q − (β(t), η)Q. (4.32)

Then, the problem (4.30)-(4.31) 
an be written as follows

(θ̇β(t), η) + d(θβ(t), η) = (qβ(t), η), (4.33)

θβ(0) = θ0. (4.34)

From (H1)-(H2) the operator d is a hemi
ontinuous and monotone.

By (4.32) and the regularity of qth, we obtain that qβ ∈ L2(0, T ;Q).
It follows now from Theorem presented [20, P. 48℄ that there exists a unique fun
tion θβ
whi
h satis�es (4.23). �

In the last step, for all t ∈ [0, T ] we de�ne the operator

Λ(α, β)(t) := (Λ1(α, β)(t),Λ2(α, β)(t)) ∈ V ×Q, (4.35)

given by

(Λ1(α, β)(t), v) := m(θβ , v), (4.36)

(Λ2(α, β)(t), η) := −e(uα(t), η) + χ(uα(t), θβ(t), η), (4.37)

and we have the following result

Lemma 4.4. For (α, β) ∈ L2(0, T ;V )×L2(0, T ;Q) the operator Λ is 
ontinuous. More-

over, there exists a unique (α∗, β∗) ∈ L2(0, T ;V ×Q) su
h that Λ(α∗, β∗) = (α∗, β∗).
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Proof. Let (α, β) ∈ L2(0, T ;V ×Q) and let t1, t2 ∈ [0, T ].
From (4.36) and assumption (H3), it follows that

‖Λ1(α, β)(t1)− Λ1(α, β)(t2)‖V×Q ≤ Mm ‖θβ(t1)− θβ(t2)‖Q . (4.38)

Taking into a

ount the regularity of θβ, we found that Λ1(α, β) ∈ C([0, T ];V ).
The relation (4.37) 
ombined with (H3), (H5) and (3.14), there exists a positive 
onstant

c depending on Me, Mm, L, Mkc, CS1
and CS2

su
h that

‖Λ2(α, β)(t1)− Λ2(α, β)(t2)‖V ×Q (4.39)

≤ c
(

‖uα(t1)− uα(t2)‖V + ‖θβ(t1)− θβ(t2)‖Q

)

.

Then, Λ2(α, β) ∈ C([0, T ], Q). Consequently, we dedu
e that Λ is 
ontinuous.

Let (α1, β1), (α2, β2) ∈ L2(0, T ;V × Q) and t ∈ [0, T ]. Similar to (4.38) and (4.39), we

have that

‖Λ(α1, β1)(t) − Λ(α2, β2)(t)‖
2
V ×Q (4.40)

≤ c
(

‖uα1
(t)− uα2

(t)‖2V + ‖θβ1
(t)− θβ2

(t)‖2
Q

)

.

Also from uαi
(t) =

∫ t

0 u̇αi
(s)ds+ u0 for i = 1, 2, we found

‖uα1
(t)− uα2

(t)‖2V ≤ c

∫ t

0

‖u̇α1
(s)− uα2

(s)‖2V ds. (4.41)

Using inequality (4.26), we �nd

(üα1
(t)− üα2

(t), u̇α1
(t)− u̇α2

(t)) + b (u̇α1
(t)− u̇α2

(t), u̇α1
(t)− u̇α2

(t)) (4.42)

a (uα1
(t)− uα2

(t), u̇α1
(t)− u̇α2

(t)) + (α1(t)− α2(t), u̇α1
(t)− u̇α2

(t))

j (uα1
(t), u̇α1

(t))− j (uα1
(t), u̇α2

(t))− j (uα2
(t), u̇α1

(t)) + j (uα2
(t), u̇α2

(t)) ≤ 0.

Moreover, from (3.14), (3.17) and (H5), we have

|j (uα1
(t), u̇α1

(t)) − j (uα1
(t), u̇α2

(t))− j (uα2
(t), u̇α1

(t)) + j (uα2
(t), u̇α2

(t))| (4.43)

≤ C2
S1
(Lν + Lτ ) ‖uα1

(t)− uα2
(t)‖V ‖u̇α1

(t)− u̇α2
(t)‖V .

We integrate the relation (4.42) to 0 at t and use (4.43), (H2) and the initial 
ondition

u̇α1
(0) = u̇α2

(0) = u̇0 to obtain

mb

∫ t

0

‖u̇α1
(s)− u̇α2

(s)‖2V ds+
1

2
‖u̇α1

(t)− u̇α2
(t)‖2V (4.44)

≤ −

∫ t

0

(α1(s)− α2(s), u̇α1
(t)− u̇α2

(t)) ds

+(Ma + C2
S1
(Lν + Lτ ))

∫ t

0

‖uα1
(s)− uα2

(s)‖V . ‖u̇α1
(s)− u̇α2

(s)‖V ds.

Then, using the inequality xy ≤ κx2 +
1

4κ
y2, (κ > 0) and Gornwall inequality, we get

that

‖uα1
(t)− uα2

(t)‖2V ≤ c

∫ t

0

‖α1(s)− α2(s)‖
2
V ds. (4.45)

In order words from (4.26), it follows that

(

θ̇β1
(t)− θ̇β2

(t), θβ1
(t)− θβ2

(t)
)

+ d (θβ1
(t)− θβ2

(t), θβ1
(t)− θβ2

(t)) (4.46)

+(β1(t)− β2(t), θβ1
(t)− θβ2

(t)) = 0.
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Similar to (4.45), we have

‖θβ1
(t)− θβ2

(t)‖2
Q
≤ c

∫ t

0

‖β1(s)− β2(s)‖
2
Q ds. (4.47)

Now, we 
ombine (4.40), (4.45) and (4.47), we obtain

‖Λ(α1, β1)(t)− Λ(α2, β2)(t)‖
2
V ×Q ≤ c

∫ t

0

‖(α1, β1)(s)− (α2, β2)(s)‖
2
V ×Q ds. (4.48)

Reiterating this inequality n times result in

‖Λn(α1, β1)− Λn(α2, β2)‖
2
L2(0,T ;V×Q) (4.49)

≤
(CT )n

n!
‖(α1, β1)− (α2, β2)‖

2
L2(0,T ;V ×Q) .

Whi
h implies that for n su�
iently large, Λn
is a 
ontra
tion operator in the Bana
h

spa
e L2(0, T ;V ×Q).
Therefore, Λ has a unique �xed point. �

Now we have everything that is required to prove Theorem (4.1)

Proof of Theorem (4.1).

Existen
e: Let (α∗, β∗) ∈ L2
(

0, T ;V × L2(Ω)
)

be the �xed point of the operator Γ
and denote u∗

α∗ , θ∗β∗ be the solution of (4.26)-(4.27) and (4.30)-(4.31) respe
tively, for

(α, β) = (α∗, β∗), the de�nition of Λ we �nd that the pair

(

u∗
α∗ , θ∗β∗

)

is a solution of

Problem (PV ).
Uniqueness: The uniqueness of the solution is a 
onsequen
e of the �xed point of

operator Λ given by (4.35). �

5. Continuous dependen
e of problem disturbed

In this se
tion we 
onsider pδν and pδτ for any δ > 0 the perturbation of pν and pτ
whi
h satis�es (H6) and we study the dependen
e of the solution to (3.19)-(3.21).

We de�ne the fun
tional jδ from j by repla
ing pν and pτ with pδν and pδτ . We introdu
e

the following variational problem

Problem (PV δ): For δ > 0 �nd a displa
ement �eld uδ : Ω×]0, T [−→ R
d
and a temper-

ature θδ : Ω×]0, T [−→ R a.e. t ∈]0, T [, v ∈ V and η ∈ Q su
h that

(

üδ(t), v − u̇δ(t)
)

+ a
(

uδ(t), v − u̇δ(t)
)

+ b
(

u̇δ(t), v − u̇δ(t)
)

(5.50)

−m
(

θδ(t), v − u̇δ(t)
)

+ jδ
(

uδ(t), v)− jδ(uδ(t), u̇δ(t)
)

≥
(

f(t), v − u̇δ(t)
)

V
,

(

θ̇δ(t), η
)

+ d
(

θδ(t), η
)

− e
(

uδ(t), η
)

+ χ
(

uδ(t), θδ(t), η
)

= (qth(t), η)Q , (5.51)

uδ(0) = u0, u̇
δ(0) = u̇0, θ

δ(0) = θ0. (5.52)

This problem has a unique solution, and the proof is similar to that used in Se
tion 4.

We present now, the assumptions of the 
onta
t fun
tion pδν and pδτ










There exists ωτ ∈ R and ϕτ : R+ → R+ su
h that:

(i)
∣

∣pδτ (x, r) − pτ (x, r)
∣

∣ ≤ ϕτ (δ)(|r| + ωτ ), ∀r ∈ R
N , a.e. x ∈ ΓC ,

(ii) lim
δ→0

ϕτ (δ) = 0,
(5.53)

and











There exists ων ∈ R and ϕν : R+ → R+ su
h that:

(i)
∣

∣pδν(x, r) − pν(x, r)
∣

∣ ≤ ϕν(δ)(|r| + ων), ∀r ∈ R
N , a.e. x ∈ ΓC ,

(ii) lim
δ→0

ϕν(δ) = 0.
(5.54)

Next, we present the following 
onvergen
e result
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Theorem 5.1. The solution (uδ, θδ) of (5.50)-(5.52) 
onverge uniformly to a solution

of (3.19)-(3.21) i.e.,

uδ −→ u, u̇δ −→ u̇, and θδ −→ θ as δ −→ 0.

Proof. Repla
ing v by u̇δ
in (3.19) and by u̇ in (5.50), we have

(

ü(t)− üδ(t), u̇(t)− u̇δ(t)
)

+ a
(

u(t)− uδ(t), u̇(t)− u̇δ(t)
)

(5.55)

+b
(

u̇(t)− u̇δ(t), u̇(t)− u̇δ(t)
)

−m
(

θ(t)− θδ(t)
)

j (u(t), u̇(t)) − j
(

u(t), u̇δ(t)
)

+ jδ
(

uδ(t), u̇δ(t)
)

− jδ
(

uδ(t), u̇(t)
)

≤ 0.

Using (H2) and (H3) we found the inequality

mb

∥

∥u̇(t)− u̇δ(t)
∥

∥

2

V
+

1

2

d

dt

∥

∥u̇(t)− u̇δ(t)
∥

∥

2

V
(5.56)

≤ (Ma +Mm)
∥

∥u̇(t)− u̇δ(t)
∥

∥

V

(

∥

∥u(t)− uδ(t)
∥

∥

V
+
∥

∥θ(t)− θδ(t)
∥

∥

Q

)

+
∣

∣Rj,jδ

∣

∣ .

The assumption (5.53)-(5.54) and (3.17) allows us to obtain

∣

∣Rj,jδ

∣

∣ =

∣

∣

∣

∣

∫

ΓC

(

pν(uν(t)− g)− pδν(u
δ
ν(t)− g)

) (

u̇δ
ν(t)− u̇ν(t)

)

da (5.57)

+

∫

ΓC

(

pν(uν(t)− g)− pδν(u
δ
ν(t)− g)

) (

‖u̇δ
ν(t)‖ − ‖u̇ν(t)‖

)

da

∣

∣

∣

∣

≤ c (ϕν(δ) + ϕτ (δ))
∥

∥u̇δ(t)− u̇(t)
∥

∥

V
.

Combining (5.56), (5.57) and using Gronwall inequality, it follows that

∥

∥u(t)− uδ(t)
∥

∥

2

V
+
∥

∥u̇(t)− u̇δ(t)
∥

∥

2

V
(5.58)

≤ c

(
∫ t

0

∥

∥θ(s) − θδ(s)
∥

∥

2

Q
ds+ (ϕν(δ) + ϕτ (δ))

)

.

Now, we repla
e η by θ − θδ in (3.20) and in (5.51), we have the following relation

(

θ̇(t)− θ̇δ(t), θ(t)− θδ(t)
)

+ d
(

θ(t)− θδ(t), θ(t)− θδ(t)
)

(5.59)

−e
(

u(t)− uδ(t), θ(t)− θδ(t)
)

+ χ
(

u(t), θ(t), θ(t) − θδ(t)
)

−χ
(

uδ(t), θδ(t), θ(t) − θδ(t)
)

= 0.

Using the property of operator d and e, we dedu
e that

md

∥

∥θ(t) − θδ(t)
∥

∥

2

Q
+

1

2

d

dt

∥

∥θ(t) − θδ(t)
∥

∥

2

Q
≤ (5.60)

Me

∥

∥u(t)− uδ(t)
∥

∥

V

∥

∥θ(t)− θδ(t)
∥

∥

Q
+ |Rχ| .

From (H4) and (3.14), we have the following estimate of Rχ

|Rχ| ≤ Mkc
.L.C2

S2

∥

∥θ(t) − θδ(t)
∥

∥

2

Q
. (5.61)

Similar to (5.59), we 
on
lude that

∥

∥θ(t) − θδ(t)
∥

∥

2

Q
≤ c

∫ t

0

∥

∥u(s)− uδ(s)
∥

∥

2

V
ds. (5.62)

Moreover, from (5.59) and (5.62) 
ombined with Gronwall inequality we �nd

∥

∥u(t)− uδ(t)
∥

∥

2

V
+
∥

∥u̇(t)− u̇δ(t)
∥

∥

2

V
+
∥

∥θ(t) − θδ(t)
∥

∥

2

Q
≤ c (ϕν(δ) + ϕτ (δ)) . (5.63)

Hen
e, sin
e δ −→ 0, we obtain the result of Theorem (5.1). �
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