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ANALYSIS RESULTS FOR DYNAMIC CONTACT PROBLEM WITH

FRICTION IN THERMO-VISCOELASTICITY

MUSTAPHA BOUALLALA AND EL HASSAN ESSOUFI

Abstrat. We present a mathematial model whih desribes the dynami fri-

tional ontat between a thermo-visoelast body and a ondutive foundation. The

ontat is modeled using the normal ompliane ondition, the quasistati version

of Coulomb's law of fry frition. We derive the weak formulation and we prove the

existene and uniqueness result. The proofs are based on the theory of �rst-order and

seond-order evolution inequalities and Banah �xed point theorem. We introdue a

new problem on perturbation of the ontat boundary ondition and we establish its

ontinuous dependene result.

Ïðåäñòàâëåíî ìàòåìàòè÷íó ìîäåëü, ùî îïèñó¹ äèíàìi÷íèé êîíòàêò òåðòÿ

ìiæ òåðìîâ'ÿçêîïðóæíèì òiëîì i îñíîâîþ-ïðîâiäíèêîì. Êîíòàêò ìîäåëþ¹òüñÿ

ç âèêîðèñòàííÿì óìîâè íîðìàëüíî¨ åëàñòè÷íîñòi, êâàçiñòàòè÷íî¨ âåðñi¨ çàêîíó

�ðèêöiéíîãî òåðòÿ Êóëîíà. Ïðîïîíó¹òüñÿ îçíà÷åííÿ ñëàáêîãî ðîçâ'ÿçêó, äîâåäåíà

òåîðåìà iñíóâàííÿ òà ¹äèíîñòi. Äîâåäåííÿ áàçóþòüñÿ íà òåîði¨ åâîëþöiéíèõ

íåðiâíîñòåé ïåðøîãî òà äðóãîãî ïîðÿäêiâ i òåîðåìi Áàíàõà ïðî íåðóõîìó òî÷êó.

Ñòàâèòüñÿ íîâà çàäà÷à ïðî çáóðåííÿ êîíòàêòíî¨ ãðàíè÷íî¨ óìîâè; îòðèìàíà

òåîðåìà ïðî íåïåðåðâíó çàëåæíiñòü.

1. Introdution

The ontat of deformable elasti bodies, with or without frition, is the relationship

between the normal fores (ontat pressure) and the relative movement between the

body and the foundation. Contat problems are present in many industrial proesses

and daily life.

Dynami fritional ontat problems between a visoelasti body and an obstale

with thermal e�et was made in [6, 3, 7℄ and more reently in [1, 21℄. The result in

[14, 15, 16, 17℄, we an �nd several lasses of dynami fritional ontat problems by

hemivariational inequalities with or without thermal e�ets. For more information of the

quasistati and dynami problem without thermal e�ets refer to [18, 9, 10℄. A number

of papers investigating quasistati thermo-visoelasti ontat problems with frition an

be found in [2, 13, 19℄.

Essou� et.al [12, 11℄ study two dynami fritional ontat models between a piezoele-

tri and eletro-visoelasti body and a rigid, non ondutive obstale, using Tresa and

Coulomb model for the ontat. The authors in [4℄ introdued an evolution quasistati

ontat problem of a visoelasti body with a foundation, they modeled the ontat with

normal damped response and a loal frition law. They established the existene of a

unique solution and the ontinuous dependene of the solution on the ontat boundary

onditions.

In this paper, we study the proess of dynamial fritional ontat between a thermo-

visoelasti body and a rigid foundation whih, is thermally onduting. We assume

that the proess is dynami and the ontat is modeled with the normal ompliane,
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the quasistati version of Coulomb's law of dry frition, a regularizing ondition of ther-

mal ontat. The weak variational formulation whih onsists of a system oupling a

variational inequality for displaement �eld and a paraboli variational equality for the

temperature. We establish the existene of unique solution using Banah �xed theorems

and we prove the dependene of the solution on the ontat boundary onditions and its

onvergene result.

The rest of the paper is strutured as follows. In setion 2, we desribe the dynami

model of the fritional thermo-visoelasti ontat problem. In setion 3, we list the

assumptions of the problem data, we derive its variational formulation. In setion 4,

we state and prove our existene and uniqueness result. In the last setion we study a

ontat problem for thermo-eletro-visoelasti with a small perturbation of the ontat

ondition and we prove a onvergene result.

2. Problem statement

We onsider a body made of thermo-visoelasti material whih oupies in the ref-

erene on�guration the domain Ω ⊂ R
d, d = 1, 2, 3, whih will be supposed bounded

with a smooth boundary ∂Ω = Γ that is divided into three disjoint measurable parts

ΓN , ΓD and ΓC suh that meas(ΓD) > 0. Let T > 0 and [0, T ] be the time interval of

and ρ : Ω 7→ R
+
mass density of the body. The body is lamped on ΓD × (0, T ) and

so the displaement �eld vanish there; a volume fore of density f0 ats in Ω × (0, T )
and a volume thermal of density q0. Surfae tration of density f1 at on ΓN × (0, T ).
In ΓC × (0, T ) the body an arrive in fritional ontat with the so alled foundation

whih is thermally ondutive. The variation of temperature is assumed to be zero on

ΓD ∪ ΓN × (0, T ). We assume that the thermal potentials is maintained �x on θF . The

normalized gap between ΓC × (0, T ) and the rigid foundation is denoted by g.

The spae of seond order symmetri tensors in the spae R
d
is denoted by S

d
while ”.”

and ‖.‖ will represent the inner produt and the Eulidean norm on R
d
and S

d
, that is

∀u, v ∈ R
d, ∀σ, τ ∈ S

d

u.v = ui.vi, ‖v‖ = (v, v)
1

2
and σ.τ = σij .τij , ‖τ‖ = (τ, τ)

1

2 .

We use the notation uν and uτ for the normal and tangential displaement that is

uν = u.ν and uτ = u− uνν. We also denote by στ the normal and tangential stress give

by σν = σν.ν, στ = σν − σνν.

The lassial formulation of the thermo-visoelasti ontat problem is as follows:

• Problem (P ) : Find a displaement �eld u : Ω×]0, T [−→ R
d
and a temperature �eld

θ : Ω×]0, T [−→ R suh that

σ(t) = Aε(u(t)) + Bε(u̇(t))− θ(t)M in Ω× (0, T ), (2.1)

q(t) = −K∇θ(t) in Ω× (0, T ), (2.2)

ρü(t) = Div σ(t) + f0(t) in Ω× (0, T ), (2.3)

θ̇(t) + divq(t)−Rε(u(t)) = q0(t) in Ω× (0, T ), (2.4)

u = 0 on ΓD × (0, T ), (2.5)

σ(t)ν = f1(t) on ΓN × (0, T ), (2.6)

θ = 0 on (ΓN ∪ ΓD)× (0, T ), (2.7)

u(0, x) = u0, u̇(0, x) = u̇0, θ(0, x) = θ0 in Ω, (2.8)

−σν(u(t)− g) = pν(uν(t)− g), on ΓC × (0, T ), (2.9)
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‖στ (t)‖ ≤ pτ (uν(t)− g),

u̇τ (t) 6= 0 ⇒ στ (t) = −pτ(uν(t)− g)
u̇τ (t)

‖u̇τ(t)‖
,







on ΓC × (0, T ) (2.10)

∂q(t)

∂ν
= kc(uν(t)− g)φL(θ(t)− θF ) on ΓC × (0, T ), (2.11)

where (2.1) and (2.2) are the thermo-visoelasti onstitutive law of the material, σ =
(σij) : Ω× (0, T ) → S

d
the stress tensor, q = (qi) : Ω× (0, T ) → R

d
the heat �ux vetor,

ε(u) = (εij(u)) =
1
2 (ui.j +uj.i), A = (Aijkl), B = (Bijkl), M = (Mij) and K = (Kij) are

respetively the linearized strain tensor, elasti tensor, (fourth-order) visosity tensor,

thermal expansion tensor and thermal ondutivity tensor.

Equation (2.3) is the equation of motion. Equation (2.4) is the Fourier law of heat

ondution where the funtion R = (Rij) desribe the in�uene of the displaement

�eld. Here and below Div σ = σij.j and div q = (qi,i) denote the divergene operator

for tensor and vetor valued funtions. Conditions (2.5)-(2.7) are the displaement and

thermal boundary ondition. The initials onditions are represented in the equation

(2.8). Relation (2.9) represents the normal ompliane ontat ondition, where pν is a

presribed funtion. When it is positive, uν − g represents the penetration of the surfae

as parities into those of the foundation. The Coulomb's law of frition is onsidered

in relation (2.10) where pτ is a presribed non-negative funtion, the so-alled frition

bound. Finally, the relation (2.11) represents a regularized thermal ontat ondition

where

∂q

∂ν
is the normal derivative of q suh that:

φL(s) =







−L if s < −L,

s if −L ≤ s ≤ L,

L if s > L,

{

kc(r) = 0 if r < 0,
kc(r) > 0 if r ≥ 0,

where L is a large positive onstant, see [8℄.

3. Variational formulation

In order to obtain the variational formulation of Problem (P ), let us denote by

H =
[

L2(Ω)
]d

=
{

u = (ui) : ui ∈ L2(Ω)
}

, H =
{

σ = (σij) : σij = σji ∈ L2(Ω)
}

,

H1 = {u = (ui) : ε(u) ∈ H} =
[

H1(Ω)
]d

, H1 = {σ ∈ H : Div σ ∈ H} .

These are real Hilbert spaes endowed with the inner produts

(u, v)H =

∫

Ω

uividx, ∀u, v ∈ H, (σ, τ)H =

∫

Ω

σijτijdx, ∀σ, τ ∈ H,

(u, v)H1
= (u, v)H + (ε(u), ε(v))H, (σ, τ)H1

= (σ, τ)H + (Div σ,Div τ)H ,

and the assoiated norms, ‖.‖H , ‖.‖H1
, ‖.‖H, and ‖.‖H1

.

Let X be a Banah spae. For every 1 ≤ p ≤ ∞, we will use the spaes Lp(0, T ;X),
C(0, T ;X) and W k,p(0, T ;X) with their standard norm.

Moreover, keeping in mind (2.5) and (2.7), we introdue the following spae

V = {v ∈ H1(Ω) : v = 0 on ΓD} , Vad = {v ∈ V : uν ≤ g on ΓC} ,

Q = {η ∈ H1(Ω) : η = 0 on ΓD ∪ ΓN} .

endowed with the inner produts and norms given by

(u, v)V = (ε(u), ε(v))H, ‖v‖V = (v, v)
1

2

V ,

(θ, η)Q = (∇θ,∇η)H , ‖η‖Q = (η, η)
1

2

Q.
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Sine meas(ΓD) > 0, the following Korn's inequality holds

‖ε(v)‖H ≥ CK‖v‖H1
, ∀v ∈ V, (3.12)

where CK > 0 is a onstant whih depends only on Ω and ΓD.

The following Frierihs-Poinar�e inequality holds on Q at the bottom

‖∇η‖H ≥ CF ‖η‖Q, ∀η ∈ Q. (3.13)

Using Sobolev trae theorem, we have onstants CS1
and CS2

depends only on Ω, ΓD

and ΓC suh that

‖v‖[L2(ΓC)]d ≤ CS1
‖v‖V , ∀v ∈ V and ‖η‖[L2(ΓC)] ≤ CS2

‖η‖Q, ∀η ∈ Q. (3.14)

Next, we de�ne the elements f(t) ∈ V and q(t) ∈ Q respetively by

(f(t), v)V :=

∫

Ω

f0(t).vdx +

∫

ΓN

f1(t).vda, ∀v ∈ V. (3.15)

(qth(t), η)Q :=

∫

Ω

q0(t)ηdx, ∀η ∈ Q. (3.16)

We onsider j : V × V → R, χ : V ×Q×Q → R as follows:

j(u(t), v) :=

∫

ΓC

pν(uν(t)− g)vνda+

∫

ΓC

pτ (uτ (t)− g)‖vτ‖da, (3.17)

χ(u(t), θ(t), η) :=

∫

ΓC

kc(uν(t)− g)φL(θ(t)− θF )ηda, (3.18)

and the following operators

a : V × V → R, a(u, v) := (Aε(u), ε(v))H,

b : V × V → R, b(u, v) := (Bε(u), ε(v))H,

d : Q×Q → R, d(θ, η) := (K∇θ,∇η)H ,

m : Q× V → R, m(θ, v) := (Mθ, ε(v))H,

e : V ×Q → R, e(u, η) := (Rε(v), η)L2(Ω).

Now, in order to study the problem (2.1)-(2.11), we need the following hypotheses on

the data

(H1) The operators a, b, d, m and e satisfy the usual property of symmetry

Aijkl = Ajikl = Alkij ∈ L∞(Ω), Bijkl = Bjikl = Blkij ∈ L∞(Ω),

Kij = Kji ∈ L∞(Ω), Mij = Mji ∈ L∞(Ω), Rij = Rji ∈ L∞(Ω).

(H2) There exist positive onstants ma, mb and md suh that

a(v, v) ≥ ma‖v‖
2
V , b(v, v) ≥ mb‖v‖

2
V , d(η, η) ≥ md‖η‖

2
Q.

(H3) The operators a, b, d, m and e satisfy the usual property of boundedness

|a(u, v)| ≤ Ma‖u‖V ‖u‖V , |b(u, v)| ≤ Mb‖u‖V ‖v‖V ,

|d(θ, η)| ≤ Md‖θ‖Q‖η‖Q, |m(θ, v)| ≤ Mm‖θ‖Q‖v‖V , |e(u, η)| ≤ Me‖u‖V ‖η‖Q,

(H4) i) The fores, the tration and the thermal �ux satisfy

f0 ∈ W 1,1(0, T ;L2(Ω)d), f1 ∈ W 1,1(0, T ;L2(ΓN )d) and q0 ∈ L2(0, T ;L2(Ω)).

ii) The gap funtion and the thermal potential satisfy

g ≥ 0, g ∈ L∞(ΓC), and θF ∈ L2(0, T ;L2(ΓC)).

iii) The mass density ρ satis�es ρ ∈ L∞(Ω), and there exists ρ∗ > 0 suh that

ρ(x) ≥ ρ∗ a.e. x ∈ R.

iv) The funtional j is proper, onvex and lower semi-ontinuous on V .
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(H5) The oe�ient of heat exhange kc : ΓC × R → R
+
satisfy

i) There exists Mkc
> 0 suh that |kc(x, u)| < Mkc

for all u ∈ R, x ∈ ΓC

x 7→ kc(x, u) is measurable on ΓC for all x ∈ R, kc(x, u) = 0 for all x ∈ ΓC

and u ≤ 0.
ii) There exists Lkc

> 0 suh that |kc(x, u1)− kc(x, u2)| ≤ Lkc
|u1 − u2|, for all

u1, u2 ∈ R.

(H6) The normal ompliane funtion pν and the frition bound pτ satisfy the following

hypothesis for r = ν, τ

i) pr : ΓC × R → R+,

ii) x → pr(x, u) is measurable on ΓC , for all u ∈ R,

iii) x → pr(x, u) = 0 for u ≤ 0, a.e. x ∈ ΓC ,

iv) There exists Lr > 0 suh that |pr(., u)−pr(., v)| ≤ Lr|u−v|, for all u, v ∈ R+.

(H7) i) The initial data u0 and u̇0 of Problem (P ) satisfy

u0 ∈ Vad, u̇0 ∈ D(∂j),

where ∂j denotes the subdi�erential of j and D(∂j) represents its domain.

ii) There exists h ∈ L2(Ω)d suh that

b (u̇0, v − u̇0) + a (u0, v − u̇0) + j (u0, v)− j (u0, u̇0) ≥ (h, v − u̇0) , ∀v ∈ V.

Aording to this notation and by using a standard proedure based on Green's for-

mula, we an state the variational formulation of (2.1)-(2.11), in terms of displaement

�eld and temperature.

Problem (PV ): Find a displaement �eld u : Ω×]0, T [−→ R
d
and a temperature

θ : Ω×]0, T [−→ R a.e. t ∈]0, T [, v ∈ V and η ∈ Q suh that

(ü(t), v − u̇(t)) + a(u(t), v − u̇(t)) + b(u̇(t), v − u̇(t))−m(θ(t), v − u̇(t)) (3.19)

+j(u(t), v)− j(u(t), u̇(t)) ≥ (f(t), v − u̇(t))V ,

(θ̇(t), η) + d(θ(t), η) − e(u(t), η) + χ(u(t), θ(t), η) = (qth(t), η)Q, (3.20)

u(0) = u0, u̇(0) = u̇0, θ(0) = θ0. (3.21)

4. An existene and uniqueness result

In this setion, we present and we prove an existene and uniqueness result.

Theorem 4.1. Assume that the assumptions (H1)-(H7) hold. Then, there exists a unique

solution (u, θ) to problem (3.19)-(3.21) that satis�es

u ∈ W 1,∞(0, T ;V ) ∩W 2,∞(0, T ;H), (4.22)

θ ∈ L2(0, T ;Q) ∩ C([0, T ];L2(Ω)). (4.23)

The proof of this theorem is arried out in several steps and it is based on argument of

seond-order non linear evolution variational inequality and Banah �xed point theorem.

Let α ∈ L2(0, T ;V ) and β ∈ L2(0, T ;L2(Ω)) given by

(α(t), v − u̇α(t)) = m(θβ(t), v − u̇α(t)), (4.24)

(β(t), η) = −e(uα(t), η) + χ(uα(t), θβ(t), η). (4.25)

In the �rst, we onsider the following variational problem of displaement �eld

Problem (PVdf ): Find a displaement �eld uα : Ω×]0, T [−→ R
d
a.e. t ∈]0, T [ suh that

(üα(t), v − u̇α(t)) + a(uα(t), v − u̇α(t)) + b(u̇α(t), v − u̇α(t)), (4.26)

−(α(t), v − u̇α(t)) + j(uα(t), v)− j(uα(t), u̇α(t)) ≥ (f(t), v − u̇α(t))V , ∀v ∈ V,

uα(0) = u0, u̇α(0) = u̇0. (4.27)

We have the following existene and uniqueness result.
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Lemma 4.2. For all v ∈ Vad and for a.e t ∈]0, T [, the problem (4.26)-(4.27) has a unique

solution uα satis�es the regularity (4.22).

Proof. By Riesz's representation theorem, we de�ne the operator

(fα(t), v)V = (f(t), v)V − (α(t), v)V . (4.28)

Then (4.26)-(4.27) an be written

(üα(t), v − u̇α(t)) + b(u̇α(t), v − u̇α(t)) + a(uα(t), v − u̇α(t)) (4.29)

+j(uα(t), v)− j(uα(t), u̇α(t)) ≥ (f(t), v − u̇α(t))V .

By assumptions (H1) and (H2) the operator a is ontinuous symmetri bilinear and

oerive.

Next, we de�ne the set-valued operator B : V 7→ V by B = b+ ∂j.

From (H2), b is maximal monotone and by (H4)(iv), we observe that ∂j is maximal

monotone. Consequently, [5, P. 39℄ the operator B is maximal monotone.

Moreover, by (H7), the initial data u0 and u̇0 satisfy the ondition {au0 + bu̇0}∩L2(Ω)d 6=
∅.
Keeping in mind the regularity f ∈ W 1,1(0, T ;H) and α ∈ L2(0, T ;V ), we dedue from

(4.28) that fα ∈ W 1,1(0, T ;H).
Finally, using the Theorem presented in [5, P. 268℄, we obtain result. �

In the seond step, we onsider the following variational problem of the temperature.

Problem (PVth): Find a temperature θβ : Ω×]0, T [−→ R a.e. t ∈]0, T [ and η ∈ Q suh

that

(θ̇β(t), η) + d(θβ(t), η) + (β(t), η) = (qth(t), η)Q, (4.30)

θβ(0) = θ0. (4.31)

The result of this problem presented in the following lemma.

Lemma 4.3. There exists a unique solution for the problem (4.30)-(4.31) whih satis�es

(4.23).

Proof. Using Riesz's representation theorem, there exists an operator qβ de�ned by

(qβ(t), η)Q = (qth(t), η)Q − (β(t), η)Q. (4.32)

Then, the problem (4.30)-(4.31) an be written as follows

(θ̇β(t), η) + d(θβ(t), η) = (qβ(t), η), (4.33)

θβ(0) = θ0. (4.34)

From (H1)-(H2) the operator d is a hemiontinuous and monotone.

By (4.32) and the regularity of qth, we obtain that qβ ∈ L2(0, T ;Q).
It follows now from Theorem presented [20, P. 48℄ that there exists a unique funtion θβ
whih satis�es (4.23). �

In the last step, for all t ∈ [0, T ] we de�ne the operator

Λ(α, β)(t) := (Λ1(α, β)(t),Λ2(α, β)(t)) ∈ V ×Q, (4.35)

given by

(Λ1(α, β)(t), v) := m(θβ , v), (4.36)

(Λ2(α, β)(t), η) := −e(uα(t), η) + χ(uα(t), θβ(t), η), (4.37)

and we have the following result

Lemma 4.4. For (α, β) ∈ L2(0, T ;V )×L2(0, T ;Q) the operator Λ is ontinuous. More-

over, there exists a unique (α∗, β∗) ∈ L2(0, T ;V ×Q) suh that Λ(α∗, β∗) = (α∗, β∗).
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Proof. Let (α, β) ∈ L2(0, T ;V ×Q) and let t1, t2 ∈ [0, T ].
From (4.36) and assumption (H3), it follows that

‖Λ1(α, β)(t1)− Λ1(α, β)(t2)‖V×Q ≤ Mm ‖θβ(t1)− θβ(t2)‖Q . (4.38)

Taking into aount the regularity of θβ, we found that Λ1(α, β) ∈ C([0, T ];V ).
The relation (4.37) ombined with (H3), (H5) and (3.14), there exists a positive onstant

c depending on Me, Mm, L, Mkc, CS1
and CS2

suh that

‖Λ2(α, β)(t1)− Λ2(α, β)(t2)‖V ×Q (4.39)

≤ c
(

‖uα(t1)− uα(t2)‖V + ‖θβ(t1)− θβ(t2)‖Q

)

.

Then, Λ2(α, β) ∈ C([0, T ], Q). Consequently, we dedue that Λ is ontinuous.

Let (α1, β1), (α2, β2) ∈ L2(0, T ;V × Q) and t ∈ [0, T ]. Similar to (4.38) and (4.39), we

have that

‖Λ(α1, β1)(t) − Λ(α2, β2)(t)‖
2
V ×Q (4.40)

≤ c
(

‖uα1
(t)− uα2

(t)‖2V + ‖θβ1
(t)− θβ2

(t)‖2
Q

)

.

Also from uαi
(t) =

∫ t

0 u̇αi
(s)ds+ u0 for i = 1, 2, we found

‖uα1
(t)− uα2

(t)‖2V ≤ c

∫ t

0

‖u̇α1
(s)− uα2

(s)‖2V ds. (4.41)

Using inequality (4.26), we �nd

(üα1
(t)− üα2

(t), u̇α1
(t)− u̇α2

(t)) + b (u̇α1
(t)− u̇α2

(t), u̇α1
(t)− u̇α2

(t)) (4.42)

a (uα1
(t)− uα2

(t), u̇α1
(t)− u̇α2

(t)) + (α1(t)− α2(t), u̇α1
(t)− u̇α2

(t))

j (uα1
(t), u̇α1

(t))− j (uα1
(t), u̇α2

(t))− j (uα2
(t), u̇α1

(t)) + j (uα2
(t), u̇α2

(t)) ≤ 0.

Moreover, from (3.14), (3.17) and (H5), we have

|j (uα1
(t), u̇α1

(t)) − j (uα1
(t), u̇α2

(t))− j (uα2
(t), u̇α1

(t)) + j (uα2
(t), u̇α2

(t))| (4.43)

≤ C2
S1
(Lν + Lτ ) ‖uα1

(t)− uα2
(t)‖V ‖u̇α1

(t)− u̇α2
(t)‖V .

We integrate the relation (4.42) to 0 at t and use (4.43), (H2) and the initial ondition

u̇α1
(0) = u̇α2

(0) = u̇0 to obtain

mb

∫ t

0

‖u̇α1
(s)− u̇α2

(s)‖2V ds+
1

2
‖u̇α1

(t)− u̇α2
(t)‖2V (4.44)

≤ −

∫ t

0

(α1(s)− α2(s), u̇α1
(t)− u̇α2

(t)) ds

+(Ma + C2
S1
(Lν + Lτ ))

∫ t

0

‖uα1
(s)− uα2

(s)‖V . ‖u̇α1
(s)− u̇α2

(s)‖V ds.

Then, using the inequality xy ≤ κx2 +
1

4κ
y2, (κ > 0) and Gornwall inequality, we get

that

‖uα1
(t)− uα2

(t)‖2V ≤ c

∫ t

0

‖α1(s)− α2(s)‖
2
V ds. (4.45)

In order words from (4.26), it follows that

(

θ̇β1
(t)− θ̇β2

(t), θβ1
(t)− θβ2

(t)
)

+ d (θβ1
(t)− θβ2

(t), θβ1
(t)− θβ2

(t)) (4.46)

+(β1(t)− β2(t), θβ1
(t)− θβ2

(t)) = 0.
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Similar to (4.45), we have

‖θβ1
(t)− θβ2

(t)‖2
Q
≤ c

∫ t

0

‖β1(s)− β2(s)‖
2
Q ds. (4.47)

Now, we ombine (4.40), (4.45) and (4.47), we obtain

‖Λ(α1, β1)(t)− Λ(α2, β2)(t)‖
2
V ×Q ≤ c

∫ t

0

‖(α1, β1)(s)− (α2, β2)(s)‖
2
V ×Q ds. (4.48)

Reiterating this inequality n times result in

‖Λn(α1, β1)− Λn(α2, β2)‖
2
L2(0,T ;V×Q) (4.49)

≤
(CT )n

n!
‖(α1, β1)− (α2, β2)‖

2
L2(0,T ;V ×Q) .

Whih implies that for n su�iently large, Λn
is a ontration operator in the Banah

spae L2(0, T ;V ×Q).
Therefore, Λ has a unique �xed point. �

Now we have everything that is required to prove Theorem (4.1)

Proof of Theorem (4.1).

Existene: Let (α∗, β∗) ∈ L2
(

0, T ;V × L2(Ω)
)

be the �xed point of the operator Γ
and denote u∗

α∗ , θ∗β∗ be the solution of (4.26)-(4.27) and (4.30)-(4.31) respetively, for

(α, β) = (α∗, β∗), the de�nition of Λ we �nd that the pair

(

u∗
α∗ , θ∗β∗

)

is a solution of

Problem (PV ).
Uniqueness: The uniqueness of the solution is a onsequene of the �xed point of

operator Λ given by (4.35). �

5. Continuous dependene of problem disturbed

In this setion we onsider pδν and pδτ for any δ > 0 the perturbation of pν and pτ
whih satis�es (H6) and we study the dependene of the solution to (3.19)-(3.21).

We de�ne the funtional jδ from j by replaing pν and pτ with pδν and pδτ . We introdue

the following variational problem

Problem (PV δ): For δ > 0 �nd a displaement �eld uδ : Ω×]0, T [−→ R
d
and a temper-

ature θδ : Ω×]0, T [−→ R a.e. t ∈]0, T [, v ∈ V and η ∈ Q suh that

(

üδ(t), v − u̇δ(t)
)

+ a
(

uδ(t), v − u̇δ(t)
)

+ b
(

u̇δ(t), v − u̇δ(t)
)

(5.50)

−m
(

θδ(t), v − u̇δ(t)
)

+ jδ
(

uδ(t), v)− jδ(uδ(t), u̇δ(t)
)

≥
(

f(t), v − u̇δ(t)
)

V
,

(

θ̇δ(t), η
)

+ d
(

θδ(t), η
)

− e
(

uδ(t), η
)

+ χ
(

uδ(t), θδ(t), η
)

= (qth(t), η)Q , (5.51)

uδ(0) = u0, u̇
δ(0) = u̇0, θ

δ(0) = θ0. (5.52)

This problem has a unique solution, and the proof is similar to that used in Setion 4.

We present now, the assumptions of the ontat funtion pδν and pδτ










There exists ωτ ∈ R and ϕτ : R+ → R+ suh that:

(i)
∣

∣pδτ (x, r) − pτ (x, r)
∣

∣ ≤ ϕτ (δ)(|r| + ωτ ), ∀r ∈ R
N , a.e. x ∈ ΓC ,

(ii) lim
δ→0

ϕτ (δ) = 0,
(5.53)

and











There exists ων ∈ R and ϕν : R+ → R+ suh that:

(i)
∣

∣pδν(x, r) − pν(x, r)
∣

∣ ≤ ϕν(δ)(|r| + ων), ∀r ∈ R
N , a.e. x ∈ ΓC ,

(ii) lim
δ→0

ϕν(δ) = 0.
(5.54)

Next, we present the following onvergene result
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Theorem 5.1. The solution (uδ, θδ) of (5.50)-(5.52) onverge uniformly to a solution

of (3.19)-(3.21) i.e.,

uδ −→ u, u̇δ −→ u̇, and θδ −→ θ as δ −→ 0.

Proof. Replaing v by u̇δ
in (3.19) and by u̇ in (5.50), we have

(

ü(t)− üδ(t), u̇(t)− u̇δ(t)
)

+ a
(

u(t)− uδ(t), u̇(t)− u̇δ(t)
)

(5.55)

+b
(

u̇(t)− u̇δ(t), u̇(t)− u̇δ(t)
)

−m
(

θ(t)− θδ(t)
)

j (u(t), u̇(t)) − j
(

u(t), u̇δ(t)
)

+ jδ
(

uδ(t), u̇δ(t)
)

− jδ
(

uδ(t), u̇(t)
)

≤ 0.

Using (H2) and (H3) we found the inequality

mb

∥

∥u̇(t)− u̇δ(t)
∥

∥

2

V
+

1

2

d

dt

∥

∥u̇(t)− u̇δ(t)
∥

∥

2

V
(5.56)

≤ (Ma +Mm)
∥

∥u̇(t)− u̇δ(t)
∥

∥

V

(

∥

∥u(t)− uδ(t)
∥

∥

V
+
∥

∥θ(t)− θδ(t)
∥

∥

Q

)

+
∣

∣Rj,jδ

∣

∣ .

The assumption (5.53)-(5.54) and (3.17) allows us to obtain

∣

∣Rj,jδ

∣

∣ =

∣

∣

∣

∣

∫

ΓC

(

pν(uν(t)− g)− pδν(u
δ
ν(t)− g)

) (

u̇δ
ν(t)− u̇ν(t)

)

da (5.57)

+

∫

ΓC

(

pν(uν(t)− g)− pδν(u
δ
ν(t)− g)

) (

‖u̇δ
ν(t)‖ − ‖u̇ν(t)‖

)

da

∣

∣

∣

∣

≤ c (ϕν(δ) + ϕτ (δ))
∥

∥u̇δ(t)− u̇(t)
∥

∥

V
.

Combining (5.56), (5.57) and using Gronwall inequality, it follows that

∥

∥u(t)− uδ(t)
∥

∥

2

V
+
∥

∥u̇(t)− u̇δ(t)
∥

∥

2

V
(5.58)

≤ c

(
∫ t

0

∥

∥θ(s) − θδ(s)
∥

∥

2

Q
ds+ (ϕν(δ) + ϕτ (δ))

)

.

Now, we replae η by θ − θδ in (3.20) and in (5.51), we have the following relation

(

θ̇(t)− θ̇δ(t), θ(t)− θδ(t)
)

+ d
(

θ(t)− θδ(t), θ(t)− θδ(t)
)

(5.59)

−e
(

u(t)− uδ(t), θ(t)− θδ(t)
)

+ χ
(

u(t), θ(t), θ(t) − θδ(t)
)

−χ
(

uδ(t), θδ(t), θ(t) − θδ(t)
)

= 0.

Using the property of operator d and e, we dedue that

md

∥

∥θ(t) − θδ(t)
∥

∥

2

Q
+

1

2

d

dt

∥

∥θ(t) − θδ(t)
∥

∥

2

Q
≤ (5.60)

Me

∥

∥u(t)− uδ(t)
∥

∥

V

∥

∥θ(t)− θδ(t)
∥

∥

Q
+ |Rχ| .

From (H4) and (3.14), we have the following estimate of Rχ

|Rχ| ≤ Mkc
.L.C2

S2

∥

∥θ(t) − θδ(t)
∥

∥

2

Q
. (5.61)

Similar to (5.59), we onlude that

∥

∥θ(t) − θδ(t)
∥

∥

2

Q
≤ c

∫ t

0

∥

∥u(s)− uδ(s)
∥

∥

2

V
ds. (5.62)

Moreover, from (5.59) and (5.62) ombined with Gronwall inequality we �nd

∥

∥u(t)− uδ(t)
∥

∥

2

V
+
∥

∥u̇(t)− u̇δ(t)
∥

∥

2

V
+
∥

∥θ(t) − θδ(t)
∥

∥

2

Q
≤ c (ϕν(δ) + ϕτ (δ)) . (5.63)

Hene, sine δ −→ 0, we obtain the result of Theorem (5.1). �
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