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LACUNARY DIFFERENCE SEQUENCES OF COMPLEX UNCERTAIN
VARIABLES

PRANAB JYOTI DOWARI AND BINOD CHANDRA TRIPATHY

ABsTRACT. Using the concept of difference operator on sequence spaces and uncer-
tainty theory, some new class of lacunary convergent difference sequences of complex
uncertain variables have been introduced for the lacunary convergence. Some topo-
logical properties of the defined sequence spaces along with the inclusion relations
have been investigated.

Kopucryooduch noHSTTSM PI3HUIEBOIO OIEPATOPA Ha, IPOCTOPI MOCJigoBHOCTEH
i Teopi€r0 HEBU3HAYEHOCTI, MH JOCIIJXKYEMO KJIaC JIAKyHApHO 30iKHHUX DI3HHIEBHX
[IOCJIIOBHOCTEH KOMILJIEKCHUX HEBU3HAYEHUX 3MiHHUX. PO3ryIsiiatorbest TOIOJIOrigHi
BJIACTUBOCTI BBEJEHHUX IIPOCTOPIB IIOCJIiJOBHOCTEH, & TAKOXK IXHI BKJIAJEHHS.

1. INTRODUCTION

The concept of uncertainty theory was introduced by Liu [9] in the year 2007. Now-

a~days uncertainty theory has become a thrust area of research in various branches of
mathematics such as uncertain programming, uncertain risk analysis, uncertain logic,etc..
In our daily life there exists uncertainty such as randomness and fuzziness. Probability
theory is used to model frequencies of random events whereas uncertainty theory is
used to model belief degree of an event to be true. The uncertainty theory is based on
uncertain measure which satisfies normality, duality, subadditivity and product axioms.
Complex uncertain variables are measurable functions from uncertainty spaces to the set
of complex numbers. Convergence of sequences always plays a crucial role in different
theory of mathematics. Chen et al. [19] first introduced the convergence concepts of
complex uncertain variables. Further study on complex uncertain variables are done by
Tripathy and Nath [6], Tripathy and Dowari [7], Kisi [15,16], Dowari and Tripathy [17],
You [10] and many others.
The initial works on lacunary sequences was done by Freedman et al. [2]. Their studies
of the |o1]| of strongly Cesaro summable sequences with general lacunary 6 resulted in
introducing a larger class of sequences Ny called lacunary sequences. Later their works
have been further extended by many researchers. The main concern of this current study
is to extend the classes with the uncertain sequences in the uncertainty space and the
lacunary convergence concepts of complex uncertain sequences with respect to difference
sequence spaces.

2. PRELIMINARIES

Let w be the set of all sequences of real or complex numbers and /., c and ¢y be,
respectively, the Banach spaces of bounded, convergent and null sequences « = (xy) with
the usual norm ||z|| = sup,, |z

By a lacunary sequence 6 = (k,.); where kg = 0, we shall mean an increasing sequence
of non-negative integers with k, — k,._1 — oo, as r — oco. The intervals determined by 6
will be denoted by I, = (k,_1,k,] and ¢, = kkf hy =ky —kp_1 forr=1,2,3, ...
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Freedman et al. [2] studied the space of lacunary strongly convergent sequences Ny
and was defined as follows:

. 1
Ny ={x = (z) : Tlin;oh—r Z |z, — L| =0, for some L}.
kel,
The notion of difference sequence was introduced by Kizmaz [12]. Then Esi, Tripathy
and Sarma [1] introduced the generalized difference sequence spaces as follows:
Let m,n > 0 be fixed integers,

Z(An)={zr=(x) ew: Az = (Al xy) € Z},

for Z = lo,c and co; where A"z = (A" lap — AP tagy,,) and AY 2y = 2 for all
k € N. This generalized difference notion has the following binomial representation:

n v n
Al xp = ;)( 1) (v)xlﬁmv forall ke N.

For m = 1 and n = 1, these spaces represent the spaces £ (A),c(A) and co(A) in-
troduced and studied by Kizmaz [I2]. For m = 1 , these spaces represent the spaces
loo(A™), c(A™) and co(A™) introduced and studied by Et and Colak [14]. For n = 1,
these spaces represent the spaces loo(Ap), c(Ap) and co(4,,) introduced and studied
by Tripathy and Esi [3].

The sequence spaces Z(Am) for Z = l, c and ¢y are Banach spaces, by the norm

p
lelag, = 3 fos] + sup| A,
i=1

where p =mn for m > 1,n > 1.

Now, we discuss briefly about the uncertainty theory which is introduced in [9].
Let £ be a o—algebra on a nonempty set I'. A set function M is called an uncertain
measure if it satisfies the following axioms:
Axiom 1 (Normality Axiom). M{T'} = 1;
Axiom 2 (Duality Axiom). M{A} + M{A°} =1 for any A € L;
Axiom 3 (Subadditivity Axiom). For every countable sequence of {\;} € £, we have

o0 oo
M TN p <> M

Jj=1 Jj=1
The triplet (T, £, M) is called an uncertainty space, and each element A in £ is called an
event. In order to obtain an uncertain measure of compound event, a product uncertain
measure is defined by Liu [9] as follows:
Axiom 4 (Product Axiom). Let (T, Ly, My) be uncertainty space for k = 1,2,3, ...
The product uncertain measure M is an measure satisfying

M {HAk} =\ Mi{Ar}
k=1 k=1
where Ag are arbitrarily chosen events from Ly for & = 1,2, ..., respectively.

A complex uncertain variable is a measurable function £ from an uncertainty space
(T, L, M) to the set of complex numbers, i.e., for any Borel set B of complex numbers,
the set

{§eBy={yel: &) e B}
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is an event. When the range is the set of real numbers, we call it as an uncertain
variable, introduced and investigated by Liu[9]. As a complex function on uncertainty
space, complex uncertain variable is mainly used to model a complex uncertain quantity.
The expected value operator of an uncertain variable was defined by Liu[9] as

+oo

0
B = [ Mie>r)dr— / M€ < r}dr

0

provided that at least one of the two integrals is finite.
The complex uncertainty distribution ®(z) of a complex uncertain variable & is a function
from C to [0, 1] defined by

®(c) = M{Re(§) < Re(c), Im(£) < I'm(c)}

for any complex number c.

An uncertain variable is said to be positive, when it maps from R, [J{0}(non-negative
real numbers) to [0, 1]. Considering the important role of sequence convergence in mathe-
matics, some concepts of convergence for complex uncertain sequences were introduced in
Chen, Ning, Wang [19]. Complex uncertain sequences are sequence of complex uncertain
variables indexed by integers.

The complex uncertain sequence {&,} is said to be convergent almost surely(a.s.) to
L if there exists an event A with M{A} = 1 such that

Jim [6n(7) = L()[I = 0,

for every v € A. In that case we write &, — L, a.s..

The complex uncertain sequence {,} is said to be convergent in measure to L if for
a given € > 0,

Tim M{|n(y) ~ L()]| > €} =0

The complex uncertain sequence {&,} is said to be convergent in mean to L if
Tim_ E[€() — Z(:)[] = 0.

Let @, @y, Py, P3, ... be the complex uncertainty distributions of complex uncertain
variables &, &1, &9, 3., respectively. We say the complex uncertain sequence {&,} con-
verges in distribution to L if

lim ®,(c) = ®(c)

n—r00

for all ¢ € C, at which ®(¢) is continuous.

The complex uncertain sequence {&,} is said to be convergent uniformly almost
surely(u.a.s.) to L if there exists a sequence of events {E.}, M{E}} — 0 such that
{&.} converges uniformly to L in I' — Ej, for any fixed k € N.

3. DEFINITIONS AND RESULTS

In this section we define some new classes of sequences of uncertain variables using
the concept of difference operator on sequences.

o[V (AR) = {€ = (&(7)) : there exists L(7) such that L f: [|A™ & (y) — L(y)|| = 0, as
n— oo}. -

Let 6 = (k,) be a lacunary sequence and (£;) be a sequence of uncertain variables in
the space (T, £, M).
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We define the following classes of sequences:

1
N, Ao = {€= (60 : Tim e Z lame@l =0},

N o = {6 = (@) lim o= 3 1856() - L) =0

kel

for some L(v) € (T, E,M)},

N Sl = {6 = (@) ssups 3 ARG < oc .

kelr

[14Cs |V, 53] = {€ = (&) + Tim. hT kz; |85 & n(7) = L(3)| =0, uniformly in n |
€

A sequence space F is said to be solid (or normal) if (axxy) € E, whenever (z3,) € E, for
all sequences (ay) of scalars such that |ag| < 1 for all k € N. The sequence space is said
to be symmetric if (z3) € E = (2,()) € A, where 7 is a permutation of N. The sequence
space F is said to be monotone if F contains the canonical pre-images of all its step spaces.

Lemma 3.1. If a sequence space is solid then it is monotone.
With the new concepts defined above we now consider the following results.

Theorem 3.1. The classes of complex uncertain sequences [Ny, A" ]o, [NY, A1 and
[NV, Ao are linear spaces.

Proof. We establish the result for the class of complex uncertain sequence [NY, A" ]o.
The other cases will follow similarly. Let (&), (k) € [N, A%]o . Then we have,

Tlggo— S lAns@I=0
kel
and TILI&— Z (|7 m ()| = 0.
kel,

Now for «, 8 € C,

}5&— > 185 &) + Bl = im = 7 oA &() + BALm))]

kel, " kel,
< |a hm — Z (IAT &6 (y) + 18] hm — Z AT ()] — 0, as r — .
" kel, " kel,

Hence (aéi(v) + Bnk(7)) € [NY, A™]o. Therefore [Ny, A% ]o is a linear space. O

Theorem 3.2. The classes of complex uncertain sequences [Ny, Ao, [NY, A1 and
[NY, Ao are normed linear spaces, normed by

1€ ar, —ZII& ||+Sup—ZIIA"§k gl

kEIT

where p =mn form > 1,n > 1.

Proof. For § = 0, we have [|0||an = 0.

Conversely let [|£(y)[|an = 0.
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Then [lE()]lay, = Z_p)l (t16011 +SIT1ph% k; [ARE (V)] =0

= &(7) =0, for i = 1,2, ...,mn and | A% ()| =0 for k € I, r = 1,2, ..

Consider k = 1, ie.,, ARG = 0 = [ANTG() — AL (VI = 0 =
Em+1(y) =0, since &(v) =0, for i =1,2,...,mn

Proceeding inductively we can have & (y) = 0, for all k € I,..

1€V +n(V)llar, —ZII& +mi(y ||+Suph Yo IAnEG) +me)l

kel,

<Z||a ||+sup—z|w5k ||+Z||m ||+sup—2||Amnk )|

" kel, " kel
= €Wl an, + [ntN)llan-
Now, for any A\ € C,

Al ag, —ZII)\& ||+Sup— DR TSR eYACON

kEIT
|>\|||§( Nan,
This completes the proof. O
Theorem 3.3. Form > 1 andn >1 [NJ, A", C [N, A%, for z=0,1,0c0.

In general, [NJ, Al ], C [NY, A", forz=0,1,00 and i = 0,1,...,n—1. The inclusions
are strict.

Proof. Let {&:} € [NY, A .
Then we have,

Tlggo— S lAn )l = (3.1)

kel,
Now,

T Z A7 Ek (Y

T Z AR k() = A e (V)]

" kel, " kel
< ( Yo lap el - — Z 1AM Erra(y )II)
" kel " kel
Taking limit as r — oo we have
" kel

which implies {&} € [NJ, A% ]o.
The other cases will follow similarly.
Proceeding inductively we have, [NJ, Al |, C [NY,A"].00and i =0,1,...,n—1. O
The above inclusion is strict. Consider the following example for this.
Example 3.1. We consider the lacunary sequence 0 = (2") and the sequence of uncertain
variables to be (§) = (kn—1). Then AT, (&) =0, Al xp = > (—1)Y (" 1)xk+mv, for allk €
v=0
N. Therefore (&) € [NY, Ao but (&) & [N, A 1o.

Theorem 3.4. The spaces of uncertain sequences [NGU,A:}I]Z, Z = 0,1,00 are not
monotone.
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To show the spaces are not monotone we consider the following example.

Example 3.2. We prove for [N(sj, A o. Form =n =2, consider the lacunary sequence
0 = (2") and the uncertainty space (I', L, M) to be {y1,72, ...} with the power set and for
any event A € L,

1
MiA =Y o
YEA
Define the uncertain variables by
&k(75) = { 0, otherwise.

Then {&} € [INY, A" ]o. Consider the sequence {ny.} in its pre-image space defined by

N G if K=i*eN;
m(75) = { 0, otherwise.

Then {nx} ¢ [NJ, A" )o. Hence the space is not monotone. The spaces are not solid
follows by Lemma 3.1.

Theorem 3.5. The spaces of uncertain sequences [N(sj, A"z, Z =0,1,00 are not sym-
metric.

For this we consider the following example.

Example 3.3. We show this for [NGU, Ao, similar examples can be constructed for the
other two spaces. For m = n = 2, consider the lacunary sequence 8 = (2"). Consider
the uncertainty space (I', L, M) to be {v1,72,7s, ...} with the power set and for any event
A € L such that

k . k
SUp s— if sup 5= < 0.5;
SN N ;
k . k
M{A} =< 1— sup 5, if sup 55 < 0.5
v EAC vy EAC
0.5, otherwise.

Define uncertain variables by
&r(75) = { 0, otherwise.

Then it can be verified that the sequence {{;} fork € I andr = 1,2,3, ... is in [NJ, A% ]o.
Consider the sequence {n;} which is a rearrangement of the sequence {} defined by
ni(’}/) = {51,54,59,62,510, } ¢ [NGU,A"m]O Thus [N9U7Anm]0 are not symmetric m gen-
eral.

Next we prove some inclusion results, for our convenience we shall denote [N, A" |4
for Z=0,1,00 by [N{,AL].

Theorem 3.6. |01|Y(A?) C [NY, A] if and only if lim infg, > 1.

Proof. Let liminfg, > 1, then there exists 6 > 0 such that, 1 + 6§ < ¢, for all » > 1.
Then for & = {&(7)} € |o1|Y (AL,) we have,

k Kr—1
1 - n 1 n
m= o S IAREM - 1 D ARG
T i=1 T i=1

k, ko Ky ko
_ (ki > ||Amm>||> -5 (,f -2 ||Amm>||>
T . T T— i=1
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. [
Since h, = k, — k,_1, we have ke < 140 4 L <
J h 5 h
T T

=

ki kr
Now, - 21 [ A &()] and 7= 21 | A% € ()] both converges to 0, that is, {&(7)} €

3
[NY, An]. Therefore, |o1|V(AL) C [NY, A%
Conversely suppose that liminfg, = 1. Since 6 is lacunary, we can obtain a subse-
K

k., o — ,
quence {k;,} of 0 satisfying, ;——~ <1+ % and "> j, where r; > ;1 +2. Let ¢(7)
- 1
and n(v) be two distinct uncertain variables. Define & = {£,(v)} by

ne _J ¢ ifiel,, for some j €N;
Ansi(y) = { 1, otherwise.
Then for any uncertain variable p(y),
1 . ,
=DA% = <O =116t — M7 =12, .
TiI,
J

and

LS NARG) — ) = )~ pD| for
LS

It follows that {&;(v)} ¢ [NY, A ]. Consider ¢ is sufficiently large then there exists an
unique j for which k., 1 <t <k, , 1 and write
t
1 kp. .+ hy 1
S anam)) < el < 2y
P IAREOI < T < S
}

Now, if t — oo, it follows that 5 — oo. Hence {&(v)} € |o1]Y
strongly summable.

Theorem 3.7. [N}, A"] C |o1|Y(A") if and only if lim supg, < oo.

—~

A Thus {&()} is
|

Proof. Let limsup ¢, < oo, there exists H > 0 such that ¢, < H for all » > 1. Con-

sidering & = {&(7)} € [N{,A%] and € > 0 we can find R > 0 and K > 0 such that

sup 7; < &, 7, < K for all i = 1,2, ... Then if ¢ is any integer with k,_1 <t < k,., where
i>R
r > R, and that ¢ is any integer with k,._; <t < k,., then we can write

1< 1 <
o I8nEM < 7= Y IAn&M)]
i=1 =1

= (Znuzamn+...+Z||Am<w>||>
r—1 I I,

A

1 ko — Ky kr —kr—1
= kr_1T1+ P T2+ ... + oy Tr
kRJ,_ —kR kr _k’r—l
S e L N R L
krfl ftt krfl
k k. —k
< (sup Ti)—R + (supm) n
i>1  kr—1 >R kr_1
k
=K yeH
kr—l

t

Since k,—1 — 00 as t — oo, it follows that + 3 [[AR& ()] — 0. ie., & = {&(9)} €
i=1

o1 |7 (A7)
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Suppose limsupg, = oco. In order to prove the result we need to find a sequence & =

{&(v)} of uncertain variables such that & € [NY,A%] and € ¢ |o1|Y (A7) . We select
a subsequence k,; of lacunary 6 such that g., > j. Let ((v) and 7(y) be two distinct
uncertain variables and then define £ = {&;(v)} by

Gi(y) = ¢, if k., <i <2k, 1, for some j € N;

V)= 1, otherwise.
Then
k1 1

< -
_ij71 j_l

Ty, =

Ty ZIIA”& =M =11¢0) = n()ll- 7

T I r;
and 7 = 0 r ;. Henee, gl 35 A7) =0. Thus {()} € [V, 7).

Now for the sequence {¢;} above and for an uncertain variable p,

2/67‘].—1 27{%].
—ZIIA —p( = ki ST =pI+ D () = e
’“J i=1 i =k, 1 =2k, 1
> 60) = )5+ o) = o)l et

J

> 16 — P2 4 ) — o)l (1 - f) S o) = o)

and
e k In(2) — o)1
n r;—1 nmy) —p\y
R Z 85,600 = P01 2 2 ln() = o)l = FE P
Consequently for any uncertain variable p, we have
Ko,
1 A n(7) — ply
im 3 2%.6() - s = 1K) - o) # w
Jj—oo T i
= Jim 7 Z 1AREM) — o)l
Hence {&i(7)} ¢ |o1]” (A7) O

The following result is the consequence of the above two theorems.

Theorem 3.8. [NJ, A" ] = |o1|V(A%) if and only if 1 < liminfg, < co.

Theorem 3.9. |AC|Y(A") C [NY,A™].
Proof. Let {51( )} € JAC|Y(A™) and & > 0,there exists N > 0 and L(v) such that

W ZHA Sitn(Y)—L(y)||<e for n>N, r=123,..
icl,.
Since 6 is lacunary we can choose R > 0 such that » > R implies h, > N and conse-
quently 7, < €. Thus {&(y)} € Ng. Thus to obtain a sequence in Ny but not in |AC|

define & = {&(7)} by

&(y) = 1, if for somer, k._1<i<k._1++Vh;
)= 0, otherwise.
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Therefore, ¢ contains arbitrarily long strings of 0’s and 1’s, from which it follows that &
is not strongly almost convergent.
But, 7, = - ; &l = 7= [VR,] = \/% which converges to 0 as r — oo.

O

4. GENERALIZED DIFFERENCE LACUNARY CONVERGENCE OF COMPLEX UNCERTAIN
SEQUENCES WITH RESPECT TO MEAN, MEASURE,ALMOST SURELY

In this section we define the lacunary convergence concepts of difference uncertain
sequences and derive the relations between them.

Definition 4.1. The complex uncertain sequence {{x} is said to be lacunary strongly
convergent almost surely to L with respect to difference sequence if for every € > 0 there
exists an event A with M{A} =1 such that

lim - Y [ AREG) - L) =0,

e it
for every v € A.

Definition 4.2. The complex uncertain sequence {{x} is said to be lacunary strongly
convergent in measure to L with respect to difference sequence if

lim M Hy er: = Y A& — L) > H —0,

e " kel,
for every € > 0.
Definition 4.3. The complex uncertain sequence {&} is said to be lacunary strongly

convergent in mean to L with respect to difference sequence if

lim F

T—00

L3 langt) - Lo =0,

" kel,

for every € > 0.

Definition 4.4. Let ®q, @5, P3, ... be the complex uncertainty distributions of complex
uncertain variables &1, ¢&s,&s, ..., respectively. We say the complex uncertain sequence
{&} lacunary strong convergent in distribution to L with respect to difference sequence
if for every ¢ > 0,

1

lim — " A2 ®x(c) — ®(c)| =0

r—oo h, ol
for all complex ¢ at which ®(¢) is continuous.

Definition 4.5. The complex uncertain sequence {&,} is said to be convergent uniformly
almost surely to L if there exists an sequence of events { Ft}, M{E;} — 0 such that {¢,}
converges uniformly to L in I' — Fy, for any fixed k € N.

The relations among the convergence concepts of complex uncertain sequences are
discussed below.

Theorem 4.1. If the complex uncertain sequence {&} lacunary strongly convergent in
mean to L with respect to difference sequence, then {&} lacunary strongly converges in
measure to L.
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Proof. 1t follows from the Markov’s inequality that for any given € > 0, we have

Jim M Hw €T o 3 1856() ~ L > H

" kel,

E

2 1A%8() — L)l
kel

< lim —0

r—00 e

as k € I.. Thus {&} lacunary strongly converges in measure to L with respect to
difference sequence and the theorem is thus proved. 0

But the converse of the above theorem is not true in general. i.e. lacunary strong
convergence in measure with respect to difference sequence does not imply lacunary
strong convergence in mean with respect to difference sequence always. This can be
illustrated from the example below.

Consider the uncertainty space (T', £, M) to be {y1,72,...} with power set and

sup 1, if sup1 < 0.5;
Yi€EA YiEA
M{A} =< 1— sup %, if sup % < 0.5;
vi€EAC Vi €AC
0.5, otherwise.

and the complex uncertain variables be defined by
g, ifi=1
§i(v;) = { 0, otherwise,

fori € I, and L = 0. For € > 0, we have

Jim M ({7 €T 3 AN — L) > })

" kel

= lim M ({7 €T 3 Iansm] > })

" kel,
= lim M({v})

T—00

1
= lim - =0 (as i€l,.)
r—oo

The sequence {&;} lacunary strongly converges in measure to L. However for each i € I,.,

we have the uncertainty distribution of uncertain variable ||&; — L|| = ||&]| is
0, if =<0
Pi(z) =4 1-1 if 0<a <y
1, otherwise.

+oo 0
= M{¢ > a}dx —/ M{¢ < a}dx
0 —00

:/ 1—(1—l)d3:
0 (3
1

That is, the {&; ()} does not converge in mean to L(~y) with respect to difference sequence.

B | S 18n60) - Lo

" kel,
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Lemma 4.1. Let the complex uncertain sequence {&,} has real part {¢,} and imaginary
part {n,}, respectively, for n = 1,2,.... If uncertain sequences {(,} and {n,} converge
in measure to L1 and Lo respectively, then the complex uncertain sequence {&,} converge
in measure to L = Ly + iLo.

Theorem 4.2. Let the complex uncertain sequence {Ex} has real part {(r} and imaginary
{nk}, respectively, for k € I.. If uncertain sequences {Cx} and {ni} lacunary strongly
convergent in measure to L1 and Lo respectively with respect to difference operators on
sequence, then complex uncertain sequence {&;} lacunary strongly uniformly convergent
with respect to the difference operator in distribution to L = Ly + iLs.

Proof. Let ¢ = a + ib be a point at which the complex uncertainty distribution & is
continuous. For any a > a, 8 > b, we have,

{G<a,m <0} ={CG <a,m <b,L1 <a,bo <B}U{G <a,n <b,L1 >a, Ly >}
U{Gk < a,m < 0,11 < a, L > BYU{G < a,mp < b, L1 > a, Ly < B}
CH{b1 <o, be < BYU{[|ALG() —E1i(VI > a—a} U{[A%m(Y) — L2(9)]] > 8 — b}
It follows from the subadditivity axiom that
Pp(c) = Pp(a+ib) < @(a+if) + M{y e ': |[ALG("Y) — Li(V)| = a —a}
+ M{y el [[A%nk(y) — L2(v)| = B — b}

Since {(x} and {nx} lacunary strongly convergent in measure to Ly and Lo respectively.
So for € > 0 and k € I, we have,

Tim M {7 e = S IARGH) - L) > (0 —a) > } ~0,

" kel,

lim M {”y eTs o S IALm() — L) 2 (8- 0) > } ~0.

T—>00
" kel

Thus we have, limsup ®(c) < ®(a + i8) for any o > a, 8 > b. Letting o + i — a + ib,
r—00
we get,

lim sup @ (c) < P(c).

T—00

On the other hand, for any x < a,y < b we have,
{Li <z, Ly <y} ={CG < a,n <b, L1 <x, Ly <y} U{G < a,mp <b, L <x,L2 <y}
UGk > a,mi < b, Ly <, Ly <y} U{G >a,m, > b, L1 <x,Ly <y}
C{G < a,m <OPU{|ALCG — L1l =2 a = a} U{|AT e — La|| = b -y}
which implies
Oz +iy) < Ppla+ib) + M{y € I+ |A5G(Y) = Li(y)ll = a — x}
+ M{y el |ALm(7) = La(0)] = b=y}

Since

lim M {7 e = S (IAnGH) - i) 2 a-2) > } =0,

T—00 r ke]
r

lim M {”y ers o Y (185m() - L)l = b-y) > } -0,

T— 00
" kel
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we obtain
O(x +iy) < lim inf Pg(a+ ib)
T— 00

for any =z < a,y < b. Taking x + iy — a + ib, we get
®(c) < liminf @ (c).
T—00

It follows from (4.1) and (4.2) that ®x(c) — ®(c¢) as r — oo and k € .. That is
the complex uncertain sequence {{x} is lacunary strongly convergent in distribution to
L =1L+ iLls. O

Converse of the above theorem is not necessarily true. i.e. Lacunary strongly conver-
gent in distribution with respect to difference sequence does not imply lacunary strongly
convergence in measure with respect to that difference sequence. Following example
illustrates this.

Consider the uncertainty space (I', £, M) to be {y1,72} with M{y} = M{y} = 1.
We define a complex uncertain variable as

L, ify=m;
o= { 1, iy =1
We also define {¢} = —¢, for k € I,.. Then {&} and & have the same distribution and
thus {&x} converges in distribution to £. However, for any given £ > 0, we have

Tim M Hv er: = Y [An& () — )l > H

" kel

= lim M HW el: hik; | A5,285 ()] > EH #0

Therefore, the sequence {;} does not lacunary strongly converge in measure to  with
respect to difference sequence.

Theorem 4.3. Let &,&2,&3, ... be complex uncertain variables. Then {&} is lacunary
strongly convergent almost surely to L with respect to difference sequence if and only if
for any € > 0, we have,

Mm( N U{wer:hiz||A:;sk<w>—L<w>||>s} 0

rely, kel, " kel

Proof. By the definition of lacunary strongly convergent almost surely we have that there
exists an event A with M(A) =1, such that

for every v € A.
Then for any € > 0, there exists m such that 7~ > [|A%&(v)—L(7)| < &, where k > m,

r

kel,
for any v € A, which is equivalent to

1 n
MU N {7 €T o= > A& = L0 > E} =1
rel,, kel " kel,
But using the duality axiom it follows that
= 0.

MmN U {wer:hiz||Amfk<w>—L<v>||>a}

rel., kel, " kel
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Hence the result is proved. 0

Theorem 4.4. Let &1,&,E3,... be complex uncertain variables. If {&} is lacunary
strongly convergent uniformly almost surely to L with respect to difference sequence, then
{&} is lacunary strongly convergent in measure to L with respect to that difference se-
quence.

Proof. If {£} is lacunary strongly convergent uniformly almost surely to L with respect
to difference sequence then

tm M Svers o Y an& ) - Lol > = | =0

r—00 -
kel kel

from the above theorem.
But

M(Jyer: o S lIangt) - L) > e

" kel,

<M U ver: o Y Ianam - Lol >

kel, " kel,

Therefore, {;} is lacunary strongly convergent in measure to L with respect to difference
operator on sequence. O

REFERENCES

[1] A. Esi, B. C. Tripathy and B. Sarma, On some new type generalized difference sequence spaces,
Mathematica Slovaca, 57(2007), no. 5, 475-482.
[2] A. R. Freedman, J. J. Sember and M. Raphael, Some Cesaro-type summability spaces, Proc London
Math Soc., 837(1978), no. 3, 508-520.
[3] B. C. Tripathy and S. Mahanta, On a class of sequences related to the (P space defined by Orlicz
functions, Soochow journal of Mathematics, 29(2003), no. 4, 379-391.
[4] B. C. Tripathy and S. Mahanta, On a class of generalized lacunary difference sequence spaces defined
by Orlicz functions, Acta Mathematicae Applicatea Sinica, English Series,20(2004),231-238.
[5] B. C. Tripathy and A. Esi, A new type of difference sequence spaces, Internat. J. Sci.Tech.,1(2006),
11-14.
[6] B. C. Tripathy and P. Nath, Statistical Convergence of Complex Uncertain Sequences, New Math.
Nat. Comput., 13(2017), no. 4, 359-374.
[7] B. C. Tripathy and P. J. Dowari, Nérlund and Riesz mean of sequence of complex uncertain variables,
Filomat, 32(2018), no. 8, 2875-2881.
[8] B. Liu, Some Research Problems in Uncertainty Theory, Journal of Uncertain Systems, 3(2009),
no. 1, 3-10.
[9] B. Liu, Uncertainity Theory, 5th Ed., Springer-Verlag, Berlin, (2016).
[10] C. You, On the Convergence of Uncertain Sequences, Mathematical and Computer Modelling,
49(2009), no. (3-4), 482-487.
[11] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80(1948),167-190.
[12] H. Kizmaz, On certain sequence spaces, Canadian Math. Bull. 24(1981 ), 169-176.
[13] J. P. King, Almost summable sequences, Proc. Amer. Math. Soc., 16(1966), 1219-1225.
[14] M. Et and R. Colak, On some generalized difference sequence spaces, Soochow J. Math., 21(1995),
no. 4, 377-386.
[15] O. Kisi, Lacunary I,-Statistical Convergence of Complex Uncertain Sequence, Sigma Journal of
Engineering and Natural Sciences, 37(2019), no. 2, 507-520.
[16] O. Kisi,, S\ (I)- Convergence of Complex Uncertain Sequence, Matematychni Studii, 51(2019), no.
2, 183-194.
[17] P.J. Dowari and B. C. Tripathy, Lacunary convergence of sequences of complex uncertain variables,
Bol. Soc. Paran. Mat.,(Accepted for publication).
[18] P. K. Kamthan and M. Gupta, Sequence spaces and Series, Lecture Notes in Pure and Applied
Mathematics, 65. Marcel Dekker, Inc., New York, (1981).



340 PRANAB JYOTI DOWARI AND BINOD CHANDRA TRIPATHY

[19] X. Chen, Y. Ning and X. Wang, Convergence of complex uncertain sequences, J. Intell. Fuzzy Syst.,
30(2016), no. 6, 33573366 .

PraNaB JyoT! DowaRI: pranabdowari@gmail.com
Department of Mathematics, Tripura University, Suryamaninagar, Agartala-799022, Tripura India

Binop CHANDRA TRIPATHY: [tripathybc@yahoo.com; tripathybc@rediffmail.com
Department of Mathematics, Tripura University, Suryamaninagar, Agartala-799022, Tripura India

Received 17/02/1919; Revised 07/11/2020


mailto:pranabdowari@gmail.com
mailto:tripathybc@yahoo.com; tripathybc@rediffmail.com

	1. Introduction 
	2. Preliminaries
	3. Definitions and Results
	4. Generalized Difference Lacunary Convergence of Complex Uncertain Sequences with respect to Mean, Measure,Almost Surely
	References

