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STRONG BANACH-SAKS OPERATORS

MOHAMED HAJJI

Abstrat. In this paper, we introdue a new lass of operators, alled strong

Banah-Saks operators, related to the Banah-Saks and L-weakly ompat opera-

tors. We �rst prove that every strong Banah-Saks operator from a Banah spae Z

into a Banah lattie F is Banah-Saks. Then we show that if F is order ontinuous,

the notions of strong Banah-Saks and Banah-Saks operators oinide. Finally, we

lose this paper by a new haraterization of order ontinuous Banah latties.

Ââîäèòüñÿ íîâèé êëàñ îïåðàòîðiâ, òàê çâàíi ñèëüíi îïåðàòîðè Áàíàõà-Ñàêñà,

ïîâ'ÿçàíi ç îïåðàòîðàìè Áàíàõà-Ñàêñà i L-ñëàáêî êîìïàêòíèìè îïåðàòîðàìè.

Äîâåäåíî, ùî êîæåí ñèëüíèé îïåðàòîð Áàíàõà-Ñàêñà ç áàíàõîâîãî ïðîñòîðó Z

ó áàíàõîâó ðåøiòêó F ¹ îïåðàòîðîì Áàíàõà-Ñàêñà. Äàëi, ÿêùî F ¹ ïîðÿäêîâî

íåïåðåðâíèì, òî âëàñòèâîñòi îïåðàòîðà Áàíàõà-Ñàêñà i ñèëüíîãî îïåðàòîðà Áàíàõà-

Ñàêñà ñïiâïàäàþòü. Íàðåøòi, â ñòàòòi äàíî íîâó õàðàêòåðèçàöiþ ïîðÿäêîâî

íåïåðåðâíèõ áàíàõîâèõ ðåøiòîê.

1. Introdution

In [3℄, S. Banah and S. Saks showed that for 1 < p < ∞, every bounded sequene in

Lp[0, 1] has a subsequene (yn) whose arithmeti means onverge in norm. That is

1

n

n
∑

k=1

yk
‖ . ‖p

−−−−→ x.

This prompted A. Brunel and L. Suheston [6℄ to qualify every Banah spae with

this property as a Banah-Saks spae. Every Banah-Saks spae is re�exive, see [11,

Proposition 2.3℄. The onverse statement is not true in general. That is, there are re-

�exive spaes without the Banah-Saks property [2℄. Inspired by the preeding papers,

B. Beauzamy introdued in [4℄ the notion of a Banah-Saks operator. We say that an

operator T : X −→ Y between two Banah spaes is a Banah-Saks operator if T maps

the losed unit ball BX of X onto a Banah-Saks subset of Y. A bounded subset A of X

is said to be Banah-Saks if eah sequene (xn) in A has a subsequene (yn) whose arith-
meti means onverge in norm. Observe that a ompat operator must be a Banah-Saks

operator. The two notions oinide when Y has the Shur property. Every Banah-Saks

operator is weakly ompat. If Y has the positive Shur property, then weakly ompat

and Banah-Saks operators oinide.

The lass of L-weakly ompat operators was introdued by Meyer-Nieberg[8℄. Reall

that a bounded subset A of a Banah lattie E is said to be L-weakly ompat, if

‖xn‖ −→ 0 for every disjoint sequene (xn)n in the solid hull of A. A linear operator

T from a Banah spae X into a Banah lattie F is said to be L-weakly ompat if so

is T (BX). Note that (by Proposition 3.6.5 in [9℄) every L-weakly ompat operator is

weakly ompat.

In this paper, we introdue a new lass of operators, alled strong Banah-Saks op-

erators, related to the Banah-Saks and L-weakly ompat operators. We �rst prove

that every strong Banah-Saks operator from a Banah spae Z into a Banah lattie
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F is Banah-Saks. We also show that if F is order ontinuous, the notion of strong

Banah-Saks and Banah-Saks operators oinide. Finally, we lose this paper by a new

haraterization of order ontinuous Banah latties.

Our terminology and notations are standard, and we refer to [1℄ and [9℄ for unexplained

de�nitions and properties about Banah latties and operators on them.

2. Strong Banah-Saks Operators

We start by the following de�nition.

De�nition 2.1. A linear operator T from a Banah spae X into a Banah lattie F is

said to be strong Banah-Saks if for every bounded sequene (xn)n in X, the sequene

of images (Txn)n has a subsequene whih is Ces�aro L-weakly ompat in F (i.e, there

exists a subsequene (Tyk)k suh that { 1
n

∑n
l=1 Tyl, n ∈ N} is an L-weakly ompat

subset of F ).

To ontinue our disussion, we need the next Lemma.

Lemma 2.2. [5, Lemma 2.4℄ For every nonempty bounded subset A ⊂ E, the following

assertions are equivalent.

(1) A is L-weakly ompat.

(2) fn(xn) → 0 for every sequene (xn) of A and every disjoint sequene (fn) of BE′ .

Note that every L-weakly ompat operator T : X → F is strong Banah-Saks. In-

deed, let (xn)n be a bounded sequene of X. Sine T is L-weakly ompat, it follows

from Lemma 2.2 that fn(Txn) → 0 for every disjoint sequene (fn) of BF ′ . Thus,

1
n

∑n
k=1 fk(Txk) → 0. This shows that T is strong Banah-Saks. Every strong Banah-

Saks operator is a weakly ompat operator. The details follow.

Theorem 2.3. Every strong Banah-Saks operator T from a Banah spae Z into a

Banah lattie F is weakly ompat.

Proof. Let (xn) be a bounded sequene in Z. Sine T is strong Banah-Saks, it follows

that there exists a subsequene (yn)n of (xn)n suh that { 1
n

∑n
k=1 Tyk; n ∈ N} is

L-weakly ompat subset of F. On the other hand, note that the sequene (en)n is

not Banah-Saks, where (en) is the standard basis of l1. Now, an easy appliation of

Theorem 4.32 in [1℄ shows that { 1
n

∑n
k=1 ek; n ∈ N} is not relatively weakly ompat,

in partiular, { 1
n

∑n
k=1 ek; n ∈ N} is not L-weakly ompat (see Proposition 3.6.5 in

[9℄ ). Hene, by the Rosenthal's l1 Theorem, there exists a subsequene (zn) of (yn) suh
that (Tzn) is weak Cauhy. Aording to Theorem 9.3.1 in [7℄, there exists some z′′ ∈ F ′′

so that Tzn
σ(F ′′,F ′)
−−−−−−→ z′′. Now, sine { 1

n

∑n
k=1 Tzk; n ∈ N} is L-weakly ompat, it

follows from Proposition 3.6.5 in [9℄ that there is a subsequene (tn)n of (zn)n suh that

1
n

∑n
k=1 T tk

σ(F,F ′)
−−−−−→ z ∈ F. So z = z′′, and onsequently (T (tn))n onverges weakly to

z ∈ F. �

Reall that a Banah lattie E is said to be order ontinuous if limα ‖xα‖ = 0 for every
dereasing net (xα)α in E suh that ∧αxα = 0. Let E be a Banah lattie. An element

e ∈ E is alled weak unit if for h ∈ E, e ∧ h = 0 implies h = 0.

If E is an order ontinuous Banah lattie with weak unit, then there exists a proba-

bility spae (Ω,Σ, µ), an order ideal I of L1(Ω,Σ, µ), a lattie norm ‖ . ‖I on I, and an

order isometry j from E onto (I,‖ . ‖I ) suh that the anonial inlusion from I into

L1(Ω,Σ, µ) is ontinuous with ‖f‖1 ≤ ‖f‖I(see Theorem 1.b.14 in [14℄). This implies

that j is ontinuous as an operator from E into L1(Ω,Σ, µ). Note that a separable sub-

spae X of an order ontinuous Banah lattie E is inluded in some losed order ideal

Y of E with weak unit (see Proposition 1.a.9 in [14℄). Thus, FX ( FX the ideal generated
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by X ) has a weak unit. In terms of order ontinuous Banah latties, the onvergene

of a bounded sequene is haraterized as follows.

Lemma 2.4. Let E be a Banah lattie with order ontinuous norm, and (gn)n be a

bounded sequene in E( E[gn] representable as an order ideal in L1(Ω,Σ, µ) for some

probability measure µ ). Then:
(gn)n is onvergent in E if and only if (gn)n is L-weakly ompat and ‖ . ‖1−onvergent.

Proof. Sine [gn] is a separable subspae of E, it follows from Proposition 1.a.9 in [14℄

that E1 = E[gn] ( E[gn] the ideal generated by (gn)n ) is a Banah lattie with weak unit.

Thus, from Lemma 1.4.2 in [12℄ it easily follows that (gn)n is onvergent in E1 if and

only if (gn) is L-weakly ompat and ‖ . ‖1−onvergent, whih �nishes the proof. �

A Banah spae E has the weak Banah-Saks property (or it is weakly Banah-Saks)

if every weakly onvergent sequene (xn)n in E has a subsequene whih is Ces�aro on-

vergent.

Theorem 2.5. (Szlenk [16℄) Let (Ω,Σ, µ) be a probability spae. Then L1(Ω,Σ, µ) is

weakly Banah-Saks.

Our next goal is to establish that a strong Banah-Saks operator is a Banah-Saks

operator. To do this, we need the following Lemma. That is the general version of

Theorem 5.66 in [1℄.

Lemma 2.6. Let A be an L-weakly ompat subset of E. If EA is the ideal generated by

A, then EA is a Banah lattie with order ontinuous norm.

Proof. Let EA be the ideal generated by A in E. By Theorems 4.13 and 4.11 in [1℄, it

su�es to show that every order bounded disjoint sequene in EA is norm onvergent to

zero. Let (yn)n be a disjoint sequene with 0 ≤ yn ≤ y for all n and some y ∈ EA. Then

there exist x1, ..., xn0
∈ A+ and λ > 0 suh that

y ≤ λ

n0
∑

i=1

xi.

From the Riesz deomposition property(see Theorem 1.13 in [1℄), there exist yn1 , ..., y
n
n0

in E+ with

yn = yn1 + ...+ ynn0
, and yni ≤ λxi

for all n ∈ N and i ∈ {1, ..., n0}. Clearly, for eah i the sequene (yni )n is disjoint and

inluded in SolA. The L-weak ompatness of A guarantees that yn → 0 in norm. So EA

is order ontinuous. �

Let X be a Banah spae. A sequene (xn) in X is said to be Ces�aro onvergent if

its Ces�aro means onverge in norm. An operator T from a Banah spae X to a Banah

spae Y is alled a Banah-Saks operator if for any norm bounded sequene (xn) in X,

(Txn)n has a Ces�aro onvergent subsequene.

Theorem 2.7. Every strong Banah-Saks operator T from a Banah spae Z into a

Banah lattie F is Banah-Saks.

Proof. Let (xn)n be a bounded sequene in Z. Sine T is strong Banah-Saks, it follows

that there exists a subsequene (yn)n of (xn)n suh that { 1
n

∑n
k=1 Tyk; n ∈ N} is L-

weakly ompat subset in F. Let A = { 1
n

∑n
k=1 Tyk; n ∈ N}. Then from Lemma 2.6

we see that FA(FA is the ideal generated by A)is order ontinuous.
Now, sine X := [Tyn] is a separable subspae of FA, it follows from Proposition 1.a.9

in [14℄ that FX is an order ideal with a weak order unit and so an be represented as
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a dense order ideal of L1(Ω,Σ, µ) for some probability measure µ, suh that the formal

inlusion

j : FX →֒ L1(Ω,Σ, µ)

is ontinuous ([14℄, Theorem 1.b.14). By Theorem 2.3 the sequene (yn) has a subse-

quene (zn) suh that (Tzn) onverges weakly to some z ∈ FX . Thus, j(Tzn) onverges
weakly in L1(Ω,Σ, µ). The fat that L1(Ω,Σ, µ) is weakly Banah-Saks(by Theorem 2.5),

and hene without loss of generality we an assume that there is some f ∈ L1(Ω,Σ, µ)
suh that:

‖j(
1

n

n
∑

k=1

Tzk)− f‖1 −→ 0.

Sine { 1
n

∑n
k=1 Tzk; n ∈ N} is L-weakly ompat subset in FX , it follows from Lemma

2.4 that

1
n

∑n
k=1 Tzk onverges in F. �

It is interesting to know that the onverse of the preeding theorem is in general false,

as shown in the following.

Example 2.8. Consider the linear operator T : l1 → l∞ de�ned by

T (x1, x2, ...) = (
∞
∑

i=1

xi,

∞
∑

i=1

xi, ...) =
∞
∑

i=1

xi(1, 1, ...).

Evidently, T is Banah-Saks (it has rank one). Let (en) be the sequene of standard unit

vetors in l1. Then (en) is a disjoint sequene in the solid hull of { 1
n

∑n
k=1 Tek, n ∈ N}

and ‖en‖∞ = 1. Consequently the operator T fails to be strong Banah-Saks.

However, it holds for order ontinuous Banah latties, as follows from the next theo-

rem:

Theorem 2.9. A bounded linear operator from a Banah spae Z into an order ontin-

uous Banah lattie F is Banah-Saks if and only if it is strong Banah-Saks.

Proof. From Theorem 2.7, it is enough to show that every Banah-Saks operator from Z

into F is strong Banah-Saks. To this end, let (xn) be a bounded sequene in Z. Sine

T is Banah-Saks, it follows that there is a subsequene (zn) of (xn) suh that for every

subsequene (yn) of (zn), we have that T (yn) is Ces�aro onvergent to some y ∈ F, that

is:

‖
1

n

n
∑

k=1

Tyk − y‖ → 0. (2.1)

Let (wk)k be a disjoint sequene in the solid hull of { 1
n

∑n
k=1 Tyk; n ∈ N}. Without loss

of generality we an assume that |wn| ≤ | 1
n

∑n
k=1 Tyk| holds for all n ∈ N. Then

|wn| ≤ |
1

n

n
∑

k=1

Tyk − y|+ |y|.

From the Riesz deomposition property (see [1, Theorem 1.13℄), it follows that for eah

n there exist w1
n, w

2
n ∈ F+ suh that |wn| = w1

n + w2
n with:

w1
n ≤ |

1

n

n
∑

k=1

Tyk − y| and w2
n ≤ |y|.

By 2.1 the sequene (w1
n)n onverges to 0 in F. On the other hand, sine (w2

n)n is order

bounded and disjoint (0 ≤ w2
n ≤ |wn|), it follows from Theorem 4.14 in [1℄ that (w2

n)n
onverges to 0 in F. Thus limn ‖wn‖ = 0, and so T is strong Banah-Saks. �
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Reall that a subset A of a Banah spae X is alled Banah-Saks if every sequene in

A has a Ces�aro onvergent subsequene. A Banah spae X is said to have the Banah-

Saks property when its unit ball is a Banah-Saks set.

Corollary 2.10. For a Banah lattie E the following statements are equivalent.

(1) E has the Banah-Saks property.

(2) The identity operator I : E → E is strong Banah-Saks.

Proof. First, assume that E has the Banah-Saks property. From Corollary of Theorem 1

in [10℄ we know that E is re�exive, in partiular it is order ontinuous (see Theorem 4.70

in [1℄). Sine the identity operator I : E → E is Banah-Saks, it follows from Theorem

2.9 that I : E → E is strong Banah-Saks.

For the onverse assume that I : E → E is strong Banah-Saks, it follows from

Theorem 2.7 that E is Banah-Saks. �

A Banah lattie E has the positive Shur property if weakly null sequenes with

positive terms are norm null.

Corollary 2.11. For a bounded linear operator T from a Banah spae Z into a Banah

lattie F with positive Shur property the following statements are equivalent.

(1) T is L-weakly ompat.

(2) T is strong Banah-Saks.

(3) T is Banah-Saks.

(4) T is weakly ompat.

Proof. (1) =⇒ (2). Let (xn)n be a bounded sequene of Z. By Theorem 5.61 in [1℄

the sequene T (xn) has a weakly onvergent subsequene in F (whih we shall denote

by T (xn) again). Therefore, the sequene ( 1
n

∑n
k=1 Txk)n also has a weakly onvergent

subsequene in F. Next, let (wn) be a disjoint sequene in the solid hull of ( 1
n

∑n
k=1 Txk)n,

then (|wn|) is also in the solid hull of ( 1
n

∑n
k=1 Txk)n. Now an easy appliation of Theorem

4.34 shows that (|wn|) onverges weakly to zero. Sine F has the positive Shur property,

it follows that lim
n

‖|wn|‖ = lim
n

‖wn‖ = 0. Consequently, ( 1
n

∑n
k=1 Txk)n is L-weakly

ompat subset of F, and so T is strong Banah-Saks.

(2) =⇒ (3). It is a diret appliation of Theorem 2.7.

(3) =⇒ (4). It follows from Proposition 2.3 in [11℄.

(4) =⇒ (1). Sine F has the positive Shur property and T (BZ) is relatively weakly

ompat subset of F, it follows from Theorem 4.34 in [1℄ that T is L-weakly ompat. �

The domination property for strong Banah-Saks operators is the following.

Theorem 2.12. Let E and F be Banah latties. If 0 ≤ S ≤ T : E −→ F with T is

strong Banah-Saks, then S is also strong Banah-Saks.

Proof. Suppose that T is strong Banah-Saks and let (xn) be a sequene in E. Then

there exists a subsequene {yn} of {xn} suh that { 1
n

∑n
k=1 T |yk|; n ∈ N} is L-weakly

ompat subset. Sine

|
1

n

n
∑

k=1

Syk| ≤
1

n

n
∑

k=1

T |yk|,

it follows that { 1
n

∑n
k=1 Syk; n ∈ N} is L-weakly ompat. �

In what follows:

L(X,F ) will denote the spae of all operators from X into F,

SBS(X,F ) will denote the spae of all strong Banah-Saks operators from X into F.
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Theorem 2.13. The set of all strong Banah-Saks operators from a Banah spae X to

a Banah lattie F is a losed vetor subspae of L(X,F ).

Proof. Clearly, the olletion SBS(X,F ) of all strong Banah-Saks operators from X to

F is a vetor subspae of L(X,F ).

Now, let (Tn)n be a sequene of strong Banah-Saks operators suh that ‖Tn−T ‖ → 0
in L(X,F ). Let ǫ > 0, there exists N0 ∈ N suh that n ≥ N0, implies ‖Tn − T ‖ < ǫ

2 . Let

(xn) be a bounded sequene in X, by passing to a subsequene, we an assume without

loss of generality that { 1
n

∑n
k=1 TN0

xk; n ∈ N} is L-weakly ompat. The inequality

|T (
1

n

n
∑

k=1

xk)| ≤ |(T − TN0
)(
1

n

n
∑

k=1

xk)|+ |TN0
(
1

n

n
∑

k=1

xk)|,

guarantees that { 1
n

∑n
k=1 Txk; n ∈ N} is L-weakly ompat. �

Proposition 2.14. Let E =
∏n

i=1 Ei be the diret sum of Banah latties, and let

Aij : Ej −→ Ei be a strong Banah-Saks operator for all 1 ≤ i, j ≤ n. Then the matrix

operator T : E −→ E de�ned by

T =











A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

.

.

.

.

.

.

.

.

.

.

.

.

An,1 An,2 · · · An,n











is strong Banah-Saks.

Proof. Let {Xk = (x1
k, x

2
k, ..., x

n
k ), k ∈ N} be a norm bounded sequene in E. Then (xi

k)k
is bounded in Ei for eah 1 ≤ i ≤ n. Sine Aij is strong Banah-Saks, then, by passing to

a subsequene, we an suppose that {
∑n

j=1
1
k

∑k
l=1 A1jx

j
l , n ∈ N} is L-weakly ompat

subset of Ei for all 1 ≤ i ≤ n. Then

1

k

k
∑

l=1

TXl =













∑n
j=1

1
k

∑k
l=1 A1jx

j
l

∑n
j=1

1
k

∑k
l=1 A2jx

j
l

.

.

.

∑n
j=1

1
k

∑k
l=1 Anjx

j
l













is L-weakly ompat subset of E. �

3. Order ontinuous Banah latties

The next Theorem gives a haraterization of Banah latties with order ontinuous

norms.

Theorem 3.1. For a Banah lattie E the following statements are equivalent.

(1) E is order ontinuous.

(2) E is Dedekind σ−omplete and xn ↓ 0 implies

1
n

∑n
l=1 xl → 0.

(3) For every x ∈ E+, the order interval [−x, x] is Banah-Saks.

Proof. (1) =⇒ (2) If xn ↓ 0, then ‖xn‖ −→ 0. Thus, 1
n

∑n
l=1 xl → 0.

(2) =⇒ (1) Let xn ↓ 0, then 1
n

∑n
l=1 xl → 0. In partiular, from Lemma 2.6 it follows that

EA is order ontinuous, where A = { 1
n

∑n
l=1 xl, n ∈ N}. Sine xn ∈ EA for all n ∈ N,

then from Theorem 4.9 in [1℄ it should be lear that ‖xn‖ −→ 0.
(1) =⇒ (3) Let (xn)n be a sequene in E satisfying 0 ≤ xn ≤ x for all n and some

x ∈ E+. Sine E is order ontinuous, it follows from Theorem 4.9 in [1℄ that [0, x]

is weakly ompat. By passing to a subsequene, we an assume that xn
σ(E,E′)
−−−−−→ y
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for some y ∈ E. Then xn
σ(L1(µ),L∞(µ))
−−−−−−−−−−→ y for some probability measure µ. Thus, by

Theorem 2.5 there exist a subsequene (yn) of (xn) suh that

1
n

∑n
k=1 yk

‖.‖1

−−→ y. On the

other hand, sine E is order ontinuous and 0 ≤ 1
n

∑n
k=1 yk ≤ x for all n, we see that

A = { 1
n

∑n
l=1 yl, n ∈ N} is L-weakly ompat subset of E ( see Theorem 4.14 in [1℄).

Aording to Lemma 2.4, we have

1
n

∑n
k=1 yk onverges to y in E.

(3) =⇒ (1) The impliation follows from Proposition 2.3 in [11℄.

�
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