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STRONG BANACH-SAKS OPERATORS

MOHAMED HAJJI

ABstracT. In this paper, we introduce a new class of operators, called strong
Banach-Saks operators, related to the Banach-Saks and L-weakly compact opera-
tors. We first prove that every strong Banach-Saks operator from a Banach space Z
into a Banach lattice F' is Banach-Saks. Then we show that if F' is order continuous,
the notions of strong Banach-Saks and Banach-Saks operators coincide. Finally, we
close this paper by a new characterization of order continuous Banach lattices.

BBogursca HOBHiT Kj1ac omeparopis, Tak 3BaHi cuibHi oneparopu bamaxa-Cakca,
moB’si3aui 3 omeparopamu Bamaxa-Cakca i L-crabkO0 KOMIAKTHEME OLDEPATOPAMH.
JloBesieHO, 1m0 KOKeH cuibHHE onmeparop Bamaxa-Cakca 3 6aHAXOBOIO IPOCTOPY Z
y GanaxoBy peuiirky F' € ouneparopom banaxa-Caxca. /ladi, sskimo F' € mopsiikoBo
HeIepepBHUM, TO BJIACTUBOCTI oneparopa banaxa-Cakca i cuapHOro oneparopa banaxa-
Caxkca cuiBmagators. Hapemri, B crarri gaHO HOBY XapaKTepU3ALiI0 OPSIKOBO
HelepepBHUX OAHAXOBUX PEIIiTOK.

1. INTRODUCTION

In 3], S. Banach and S. Saks showed that for 1 < p < oo, every bounded sequence in
L,[0,1] has a subsequence (y,,) whose arithmetic means converge in norm. That is
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This prompted A. Brunel and L. Sucheston [6] to qualify every Banach space with
this property as a Banach-Saks space. Every Banach-Saks space is reflexive, see [111
Proposition 2.3]. The converse statement is not true in general. That is, there are re-
flexive spaces without the Banach-Saks property [2]. Inspired by the preceding papers,
B. Beauzamy introduced in [4] the notion of a Banach-Saks operator. We say that an
operator T': X — Y between two Banach spaces is a Banach-Saks operator if T' maps
the closed unit ball Bx of X onto a Banach-Saks subset of Y. A bounded subset A of X
is said to be Banach-Saks if each sequence (z,) in A has a subsequence (y,,) whose arith-
metic means converge in norm. Observe that a compact operator must be a Banach-Saks
operator. The two notions coincide when Y has the Schur property. Every Banach-Saks
operator is weakly compact. If Y has the positive Schur property, then weakly compact
and Banach-Saks operators coincide.

The class of L-weakly compact operators was introduced by Meyer-Nieberg[8]. Recall
that a bounded subset A of a Banach lattice E is said to be L-weakly compact, if
lzn|| — O for every disjoint sequence (z,), in the solid hull of A. A linear operator
T from a Banach space X into a Banach lattice F' is said to be L-weakly compact if so
is T(Bx). Note that (by Proposition 3.6.5 in [9]) every L-weakly compact operator is
weakly compact.

In this paper, we introduce a new class of operators, called strong Banach-Saks op-
erators, related to the Banach-Saks and L-weakly compact operators. We first prove
that every strong Banach-Saks operator from a Banach space Z into a Banach lattice
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F is Banach-Saks. We also show that if F' is order continuous, the notion of strong
Banach-Saks and Banach-Saks operators coincide. Finally, we close this paper by a new
characterization of order continuous Banach lattices.

Our terminology and notations are standard, and we refer to [I] and [9] for unexplained
definitions and properties about Banach lattices and operators on them.

2. STRONG BANACH-SAKS OPERATORS
We start by the following definition.

Definition 2.1. A linear operator 7' from a Banach space X into a Banach lattice F is
said to be strong Banach-Saks if for every bounded sequence (), in X, the sequence
of images (Tx,)n has a subsequence which is Cesaro L-weakly compact in F' (i.e, there
exists a subsequence (T'yy)r such that {1 > Ty, n € N} is an L-weakly compact
subset of F').

To continue our discussion, we need the next Lemma.

Lemma 2.2. [5, Lemma 2.4| For every nonempty bounded subset A C E, the following
assertions are equivalent.

(1) A is L-weakly compact.

(2) fo(zn) — 0 for every sequence (x,,) of A and every disjoint sequence (fy) of Bgr.

Note that every L-weakly compact operator T' : X — F' is strong Banach-Saks. In-
deed, let (x,), be a bounded sequence of X. Since T is L-weakly compact, it follows
from Lemma that f,(Tx,) — 0 for every disjoint sequence (f,) of Bps. Thus,
%22:1 fx(Txg) — 0. This shows that T is strong Banach-Saks. Every strong Banach-
Saks operator is a weakly compact operator. The details follow.

Theorem 2.3. Every strong Banach-Saks operator T from a Banach space Z into a
Banach lattice F' is weakly compact.

Proof. Let (x,) be a bounded sequence in Z. Since T is strong Banach-Saks, it follows
that there exists a subsequence (yn)n Of (zy)n such that {13}  Tyy; n € N} is
L-weakly compact subset of F. On the other hand, note that the sequence (ey), is
not Banach-Saks, where (e,) is the standard basis of I;. Now, an easy application of
Theorem 4.32 in [I] shows that {1 >}  ex; n € N} is not relatively weakly compact,
in particular, {2 >}, ex; n € N} is not L-weakly compact (see Proposition 3.6.5 in
[9] ). Hence, by the Rosenthal’s [; Theorem, there exists a subsequence (z,) of () such

that (T'z,) is weak Cauchy. According to Theorem 9.3.1 in [7], there exists some z” € F"

FII,FI . . .
so that Tz, u 2. Now, since {% Sor_iTzi; n € N} is L-weakly compact, it

follows from Proposition 3.6.5 in [9] that there is a subsequence (¢,,), of (z,), such that

LS Tty B, e F Soz = 2", and consequently (T'(t,)), converges weakly to
ze L. O

Recall that a Banach lattice E is said to be order continuous if lim,, ||| = 0 for every
decreasing net (x4 )q in E such that A,z, = 0. Let E be a Banach lattice. An element
e € F is called weak unit if for h € E, e A h = 0 implies h = 0.

If F is an order continuous Banach lattice with weak unit, then there exists a proba-
bility space (£, %, i), an order ideal I of Ly (2, X, i), a lattice norm || . ||; on I, and an
order isometry j from E onto (I,|| . ||; ) such that the canonical inclusion from I into
L1(9,%, ) is continuous with |[f|[x < ||f||z(see Theorem 1.b.14 in [I4]). This implies
that j is continuous as an operator from E into Li(Q, X, u). Note that a separable sub-
space X of an order continuous Banach lattice F is included in some closed order ideal
Y of E with weak unit (see Proposition 1.a.9 in [I4]). Thus, Fx ( Fx the ideal generated
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by X ) has a weak unit. In terms of order continuous Banach lattices, the convergence
of a bounded sequence is characterized as follows.

Lemma 2.4. Let E be a Banach lattice with order continuous norm, and (gn)n be a
bounded sequence in E( % representable as an order ideal in L1(Q, X, u) for some
probability measure p ). Then:

(gn)n is convergent in E if and only if (gn)n is L-weakly compact and || . ||1— convergent.

Proof. Since [gy] is a separable subspace of E, it follows from Proposition 1.a.9 in [14]
that By = Ejg,1 ( Elg,) the ideal generated by (gn)n ) is a Banach lattice with weak unit.
Thus, from Lemma 1.4.2 in [12] it easily follows that (g, ), is convergent in Ej if and
only if (g,) is L-weakly compact and || . ||s —convergent, which finishes the proof. O

A Banach space F has the weak Banach-Saks property (or it is weakly Banach-Saks)
if every weakly convergent sequence (), in E has a subsequence which is Cesaro con-
vergent.

Theorem 2.5. (Szlenk [16]) Let (2, %, 1) be a probability space. Then Li(Q,%, ) is
weakly Banach-Saks.

Our next goal is to establish that a strong Banach-Saks operator is a Banach-Saks
operator. To do this, we need the following Lemma. That is the general version of
Theorem 5.66 in [I].

Lemma 2.6. Let A be an L-weakly compact subset of E. If E4 is the ideal generated by
A, then E4 is a Banach lattice with order continuous norm.

Proof. Let E4 be the ideal generated by A in E. By Theorems 4.13 and 4.11 in [I], it
suffices to show that every order bounded disjoint sequence in F 4 is norm convergent to
zero. Let (y,)n be a disjoint sequence with 0 < y,, <y for all n and some y € E4. Then
there exist x1, ..., 2,, € A+ and A > 0 such that

no
i=1

From the Riesz decomposition property(see Theorem 1.13 in [IJ), there exist y7, ...,y
in £y with

Yn = Y1 + . +yn,, and g < Az
for all n € N and ¢ € {1,...,n¢}. Clearly, for each i the sequence (y}'), is disjoint and
included in SolA. The L-weak compactness of A guarantees that 3, — 0 in norm. So E4
is order continuous. O

Let X be a Banach space. A sequence (z,) in X is said to be Cesaro convergent if
its Cesaro means converge in norm. An operator 7" from a Banach space X to a Banach
space Y is called a Banach-Saks operator if for any norm bounded sequence (z,) in X,
(T'zy)n has a Cesaro convergent subsequence.

Theorem 2.7. Every strong Banach-Saks operator T from a Banach space Z into a
Banach lattice F' is Banach-Saks.

Proof. Let (z,,), be a bounded sequence in Z. Since T is strong Banach-Saks, it follows
that there exists a subsequence (yy,), of (zn)n such that {13} | Tyy; n € N} is L-
weakly compact subset in F. Let A = {13} | Tyy; n € N}. Then from Lemma 2.6]
we see that 4 (Fy is the ideal generated by A)is order continuous.

Now, since X := [T'y,] is a separable subspace of Fj, it follows from Proposition 1.a.9
in [I4] that Fx is an order ideal with a weak order unit and so can be represented as
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a dense order ideal of L1(£2, X, 1) for some probability measure pu, such that the formal
inclusion
j : F_X — Ll(Qa Evlu)

is continuous ([I4], Theorem 1.b.14). By Theorem the sequence (y,) has a subse-
quence (z,) such that (7z,) converges weakly to some z € Fx. Thus, j(Tz,) converges
weakly in L1(Q, %, p). The fact that L1 (€, X, u) is weakly Banach-Saks(by Theorem 2.35]),
and hence without loss of generality we can assume that there is some f € Lq(, 3, 1)
such that:

1
it YoTs0) = flh —>o

Since {37 | Tzx; n € N} is L-weakly compact subset in F, it follows from Lemma
24 that L > | Tz, converges in F. O

It is interesting to know that the converse of the preceding theorem is in general false,
as shown in the following.

Example 2.8. Consider the linear operator T': [ — [ defined by

T(l‘l,xz, ) = (Z{Ei,ZJJi, ) = le(l, 1, )
i=1 i=1 i=1

Evidently, T is Banach-Saks (it has rank one). Let (e,) be the sequence of standard unit
vectors in l;. Then (e,) is a disjoint sequence in the solid hull of {1 )" Te;, n € N}
and ||, || = 1. Consequently the operator T fails to be strong Banach-Saks.

However, it holds for order continuous Banach lattices, as follows from the next theo-
rem:

Theorem 2.9. A bounded linear operator from a Banach space Z into an order contin-
wous Banach lattice F' is Banach-Saks if and only if it is strong Banach-Saks.

Proof. From Theorem 7 it is enough to show that every Banach-Saks operator from Z
into F is strong Banach-Saks. To this end, let (z,) be a bounded sequence in Z. Since
T is Banach-Saks, it follows that there is a subsequence (z,,) of (z,,) such that for every
subsequence (y,,) of (z,), we have that T'(y,) is Cesaro convergent to some y € F, that
is:

1 n
— Ty —y| — 0. 2.1
I 2T = 2.1)

Let (wi)r be a disjoint sequence in the solid hull of {1 ™)' | Ty; n € N}. Without loss
of generality we can assume that [w,| < |2 >7}' | Ty,| holds for all n € N. Then

1 n
< =S Ty — .
le_ln; yr — y| + |yl

From the Riesz decomposition property (see [I, Theorem 1.13]), it follows that for each
n there exist w), w? € F such that |w,| = w} + w2 with:

1 n
wh <=3 Tye—yl and wd <yl
k=1

By .11 the sequence (w).),, converges to 0 in F. On the other hand, since (w2),, is order
bounded and disjoint (0 < w? < |w,|), it follows from Theorem 4.14 in [T] that (w?2),,

converges to 0 in F. Thus lim, ||w,| = 0, and so T is strong Banach-Saks. O
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Recall that a subset A of a Banach space X is called Banach-Saks if every sequence in
A has a Cesaro convergent subsequence. A Banach space X is said to have the Banach-
Saks property when its unit ball is a Banach-Saks set.

Corollary 2.10. For a Banach lattice E the following statements are equivalent.
(1) E has the Banach-Saks property.
(2) The identity operator I : E — E is strong Banach-Saks.

Proof. First, assume that E has the Banach-Saks property. From Corollary of Theorem 1
in [1I0] we know that E is reflexive, in particular it is order continuous (see Theorem 4.70
in [I]). Since the identity operator I : E — E is Banach-Saks, it follows from Theorem
29l that I : E — E is strong Banach-Saks.

For the converse assume that I : F — FE is strong Banach-Saks, it follows from
Theorem 27 that F is Banach-Saks. O

A Banach lattice E has the positive Schur property if weakly null sequences with
positive terms are norm null.

Corollary 2.11. For a bounded linear operator T from a Banach space Z into a Banach
lattice I with positive Schur property the following statements are equivalent.

(1) T is L-weakly compact.

(2) T is strong Banach-Saks.

(3) T is Banach-Saks.

(4) T is weakly compact.

Proof. (1) = (2). Let (z,)n be a bounded sequence of Z. By Theorem 5.61 in [1]
the sequence T'(z,,) has a weakly convergent subsequence in F' (which we shall denote
by T(x,) again). Therefore, the sequence (2 37" | Txx), also has a weakly convergent
subsequence in F. Next, let (w;,) be a disjoint sequence in the solid hull of (2 37" | Tay)n,
then (Jwy,|) is also in the solid hull of (£ Y7 T'zy),,. Now an easy application of Theorem
4.34 shows that (|w,|) converges weakly to zero. Since F' has the positive Schur property,
it follows that 117Iln|||wn||| = 117Iln||wn|| = 0. Consequently, (£ > | Txy), is L-weakly

compact subset of F, and so T is strong Banach-Saks.

(2) = (3). It is a direct application of Theorem 2.7

(3) = (4). It follows from Proposition 2.3 in [I1].

(4) = (1). Since F has the positive Schur property and T(Byz) is relatively weakly
compact subset of F, it follows from Theorem 4.34 in [I] that T" is L-weakly compact. O

The domination property for strong Banach-Saks operators is the following.

Theorem 2.12. Let E and F be Banach lattices. If 0 < S < T : E — F with T is
strong Banach-Saks, then S is also strong Banach-Saks.

Proof. Suppose that T is strong Banach-Saks and let (z,,) be a sequence in E. Then
there exists a subsequence {y,} of {z,} such that {13}, Tlyx|; n € N} is L-weakly

compact subset. Since
1 n 1 n
NSyl < =S Tyl
|n; Yk < n}; 74

it follows that {2 > | Syx; n € N} is L-weakly compact. O

In what follows:
L(X, F) will denote the space of all operators from X into F,
SBS(X, F) will denote the space of all strong Banach-Saks operators from X into F.
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Theorem 2.13. The set of all strong Banach-Saks operators from a Banach space X to
a Banach lattice F is a closed vector subspace of L(X, F).

Proof. Clearly, the collection SBS(X, F) of all strong Banach-Saks operators from X to
F is a vector subspace of L(X, F).

Now, let (T},),, be a sequence of strong Banach-Saks operators such that || 7,,—T|| — 0
in L(X, F). Let € > 0, there exists Ny € N such that n > Ny, implies ||T,, —T'|| < 5. Let
(2,,) be a bounded sequence in X, by passing to a subsequence, we can assume without
loss of generality that {37 | Tw,z,; n € N} is L-weakly compact. The inequality

Zxk|<|T Tny)( Z:L‘kIHTNo Zﬂﬁk)L
k:l

"=
guarantees that {2 37 | Tzy; n € N} is L-weakly compact. O
Proposition 2.14. Let E = [[;_, E; be the direct sum of Banach lattices, and let

Aij : E; — E; be a strong Banach-Saks operator for all 1 < i,j < n. Then the matriz
operator T : E — E defined by

Al,l A1,2 to Al,n
A2,1 A2,2 to AQ,n
An,l An,? T An,n

is strong Banach-Saks.

Proof. Let {Xy = (z},2%,...,2}),k € N} be a norm bounded sequence in E. Then (z} )
is bounded in E; for each 1 < ¢ < n. Since A;; is strong Banach-Saks, then, by passing to
a subsequence, we can suppose that {d°7"_; ¢ S Ayal,  n e N} is L-weakly compact
subset of E; for all 1 <i < n. Then

Z] 1 kZl 1A13$l

k
1 Z] 1% Ez 1A2J$l
52 TXi= ,
1=1
n k: j
Zj:l % Zl:l A"]xg
is L-weakly compact subset of F. g

3. ORDER CONTINUOUS BANACH LATTICES

The next Theorem gives a characterization of Banach lattices with order continuous
norms.

Theorem 3.1. For a Banach lattice E the following statements are equivalent.
(1) E is order continuous.

(2) E is Dedekind o—complete and x,, | 0 implies % Sz — 0.

(3) For every x € Ey, the order interval [—x, x] is Banach-Saks.

Proof. (1) => (2) If 2, | 0, then |[2,|| — 0. Thus, £ >, 2; — 0.

(2) => (1) Let @, | 0, then £ 3" | 2y — 0. In particular, from Lemmal[2Z8lit follows that
E4 is order continuous, where A = {2 37" 2, n € N}. Since z,, € E, for all n € N,
then from Theorem 4.9 in [I] it should be clear that ||z,| — 0.

(1) = (3) Let (z,,)n be a sequence in E satisfying 0 < x,, < « for all n and some

x € Ei. Since E is order continuous, it follows from Theorem 4.9 in [I] that [0, x]

. . o(B,E")
is weakly compact. By passing to a subsequence, we can assume that x, —— y
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for some y € E. Then z, M y for some probability measure p. Thus, by

Theorem 23] there exist a subsequence (yn) of (z,,) such that L 371" vy Mellz, y. On the

other hand, since F is order continuous and 0 < %22:1 yr < x for all n, we see that
A={L13" y, neN}isL-weakly compact subset of E ( see Theorem 4.14 in [I]).
According to Lemma 2.4] we have % > h_y Yk converges to y in E.

(3) = (1) The implication follows from Proposition 2.3 in [I1].

0
REFERENCES
[1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, springer, Dordrecht, (2006).
[2] A. Baernstein II, On reflezivity and summability, Studia Math, 42 (1972) 91-94.
[3] S. Banach and S. Saks, Sur la convergence forte dans les champs Ly. Studia Math. 2 (1930), 51-57.
[4] B. Beauzamy, Propriété de Banach-Saks, ibid. 66 (1980), 227-235.
[5] K. Bouras, D. Lhaimer and M. Moussa, On the class of almost L-weakly and almost M-weakly

compact operators. Positivity 22, 1433-1443 (2018).
[6] A. Brunel and L. Sucheston, On J-convezity and some ergodic super-properties of Banach spaces,
Proc. Amer. Math. Soc . 204 (1975), 79-90.
[7] R. Larsen, Functional analysis: An introduction, M. Dekker (1973).
[8] P. Meyer-Nieberg, Uber Klassen Schwach Kompakter Operatoren in Banachverbanden. Math. Z.
138, 145-159 (1974)
[9] P. Meyer-Nieberg, Banach lattices, Springer-Verlag, Berlin, Heidelberg, New York, (1991).
[10] T. Nishiura, D. Waterman, Reflezivity and summability, Studia Math. 23 (1963), 53-57.
[11] J. Lopez-Abad, C. Ruiz and P. Tradacete, The convex hull of a Banach-Saks set, J. Funct. Anal.
(2013), 266(4), 2251-2280.
[12] P. Tradacete, Factorization and domination properties of operators on Banach Latices, Phd thesis,
Universidad Complutense de Madrid (2010).
[13] L. Weis, Banach lattices with the subsequence splitting property, Proc. Am. Math. Soc. 105, 87-96,
(1989).
[14] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II. Function Spaces, Springer-Verlag,
(1979).
[15] M. Fabian, P. Habala, P. Hajek, V. Montesinos, and V. Zizler, Banach space theory: basis for linear
and nonlinear analysis, Springer-Verlag, New York, 2011.
[16] W. Szlenk, Sur les suites faiblement convergentes dans l’espace , Studia Math. 25 (1965), 337-341.

MounaMED Hayii: medhajji.issatkasserine@gmail.com
Department of Mathematics and Computer Science, Issat Kasserine, BP 471, Kasserine, 1200, Tunisia

Received 15/04/2020; Revised 22/08/2020


mailto:medhajji.issatkasserine@gmail.com

	1. Introduction
	2. Strong Banach-Saks Operators
	3.  Order continuous Banach lattices
	References

