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STRONG BANACH-SAKS OPERATORS

MOHAMED HAJJI

Abstra
t. In this paper, we introdu
e a new 
lass of operators, 
alled strong

Bana
h-Saks operators, related to the Bana
h-Saks and L-weakly 
ompa
t opera-

tors. We �rst prove that every strong Bana
h-Saks operator from a Bana
h spa
e Z

into a Bana
h latti
e F is Bana
h-Saks. Then we show that if F is order 
ontinuous,

the notions of strong Bana
h-Saks and Bana
h-Saks operators 
oin
ide. Finally, we


lose this paper by a new 
hara
terization of order 
ontinuous Bana
h latti
es.

Ââîäèòüñÿ íîâèé êëàñ îïåðàòîðiâ, òàê çâàíi ñèëüíi îïåðàòîðè Áàíàõà-Ñàêñà,

ïîâ'ÿçàíi ç îïåðàòîðàìè Áàíàõà-Ñàêñà i L-ñëàáêî êîìïàêòíèìè îïåðàòîðàìè.

Äîâåäåíî, ùî êîæåí ñèëüíèé îïåðàòîð Áàíàõà-Ñàêñà ç áàíàõîâîãî ïðîñòîðó Z

ó áàíàõîâó ðåøiòêó F ¹ îïåðàòîðîì Áàíàõà-Ñàêñà. Äàëi, ÿêùî F ¹ ïîðÿäêîâî

íåïåðåðâíèì, òî âëàñòèâîñòi îïåðàòîðà Áàíàõà-Ñàêñà i ñèëüíîãî îïåðàòîðà Áàíàõà-

Ñàêñà ñïiâïàäàþòü. Íàðåøòi, â ñòàòòi äàíî íîâó õàðàêòåðèçàöiþ ïîðÿäêîâî

íåïåðåðâíèõ áàíàõîâèõ ðåøiòîê.

1. Introdu
tion

In [3℄, S. Bana
h and S. Saks showed that for 1 < p < ∞, every bounded sequen
e in

Lp[0, 1] has a subsequen
e (yn) whose arithmeti
 means 
onverge in norm. That is

1

n

n
∑

k=1

yk
‖ . ‖p

−−−−→ x.

This prompted A. Brunel and L. Su
heston [6℄ to qualify every Bana
h spa
e with

this property as a Bana
h-Saks spa
e. Every Bana
h-Saks spa
e is re�exive, see [11,

Proposition 2.3℄. The 
onverse statement is not true in general. That is, there are re-

�exive spa
es without the Bana
h-Saks property [2℄. Inspired by the pre
eding papers,

B. Beauzamy introdu
ed in [4℄ the notion of a Bana
h-Saks operator. We say that an

operator T : X −→ Y between two Bana
h spa
es is a Bana
h-Saks operator if T maps

the 
losed unit ball BX of X onto a Bana
h-Saks subset of Y. A bounded subset A of X

is said to be Bana
h-Saks if ea
h sequen
e (xn) in A has a subsequen
e (yn) whose arith-
meti
 means 
onverge in norm. Observe that a 
ompa
t operator must be a Bana
h-Saks

operator. The two notions 
oin
ide when Y has the S
hur property. Every Bana
h-Saks

operator is weakly 
ompa
t. If Y has the positive S
hur property, then weakly 
ompa
t

and Bana
h-Saks operators 
oin
ide.

The 
lass of L-weakly 
ompa
t operators was introdu
ed by Meyer-Nieberg[8℄. Re
all

that a bounded subset A of a Bana
h latti
e E is said to be L-weakly 
ompa
t, if

‖xn‖ −→ 0 for every disjoint sequen
e (xn)n in the solid hull of A. A linear operator

T from a Bana
h spa
e X into a Bana
h latti
e F is said to be L-weakly 
ompa
t if so

is T (BX). Note that (by Proposition 3.6.5 in [9℄) every L-weakly 
ompa
t operator is

weakly 
ompa
t.

In this paper, we introdu
e a new 
lass of operators, 
alled strong Bana
h-Saks op-

erators, related to the Bana
h-Saks and L-weakly 
ompa
t operators. We �rst prove

that every strong Bana
h-Saks operator from a Bana
h spa
e Z into a Bana
h latti
e
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F is Bana
h-Saks. We also show that if F is order 
ontinuous, the notion of strong

Bana
h-Saks and Bana
h-Saks operators 
oin
ide. Finally, we 
lose this paper by a new


hara
terization of order 
ontinuous Bana
h latti
es.

Our terminology and notations are standard, and we refer to [1℄ and [9℄ for unexplained

de�nitions and properties about Bana
h latti
es and operators on them.

2. Strong Bana
h-Saks Operators

We start by the following de�nition.

De�nition 2.1. A linear operator T from a Bana
h spa
e X into a Bana
h latti
e F is

said to be strong Bana
h-Saks if for every bounded sequen
e (xn)n in X, the sequen
e

of images (Txn)n has a subsequen
e whi
h is Ces�aro L-weakly 
ompa
t in F (i.e, there

exists a subsequen
e (Tyk)k su
h that { 1
n

∑n
l=1 Tyl, n ∈ N} is an L-weakly 
ompa
t

subset of F ).

To 
ontinue our dis
ussion, we need the next Lemma.

Lemma 2.2. [5, Lemma 2.4℄ For every nonempty bounded subset A ⊂ E, the following

assertions are equivalent.

(1) A is L-weakly 
ompa
t.

(2) fn(xn) → 0 for every sequen
e (xn) of A and every disjoint sequen
e (fn) of BE′ .

Note that every L-weakly 
ompa
t operator T : X → F is strong Bana
h-Saks. In-

deed, let (xn)n be a bounded sequen
e of X. Sin
e T is L-weakly 
ompa
t, it follows

from Lemma 2.2 that fn(Txn) → 0 for every disjoint sequen
e (fn) of BF ′ . Thus,

1
n

∑n
k=1 fk(Txk) → 0. This shows that T is strong Bana
h-Saks. Every strong Bana
h-

Saks operator is a weakly 
ompa
t operator. The details follow.

Theorem 2.3. Every strong Bana
h-Saks operator T from a Bana
h spa
e Z into a

Bana
h latti
e F is weakly 
ompa
t.

Proof. Let (xn) be a bounded sequen
e in Z. Sin
e T is strong Bana
h-Saks, it follows

that there exists a subsequen
e (yn)n of (xn)n su
h that { 1
n

∑n
k=1 Tyk; n ∈ N} is

L-weakly 
ompa
t subset of F. On the other hand, note that the sequen
e (en)n is

not Bana
h-Saks, where (en) is the standard basis of l1. Now, an easy appli
ation of

Theorem 4.32 in [1℄ shows that { 1
n

∑n
k=1 ek; n ∈ N} is not relatively weakly 
ompa
t,

in parti
ular, { 1
n

∑n
k=1 ek; n ∈ N} is not L-weakly 
ompa
t (see Proposition 3.6.5 in

[9℄ ). Hen
e, by the Rosenthal's l1 Theorem, there exists a subsequen
e (zn) of (yn) su
h
that (Tzn) is weak Cau
hy. A

ording to Theorem 9.3.1 in [7℄, there exists some z′′ ∈ F ′′

so that Tzn
σ(F ′′,F ′)
−−−−−−→ z′′. Now, sin
e { 1

n

∑n
k=1 Tzk; n ∈ N} is L-weakly 
ompa
t, it

follows from Proposition 3.6.5 in [9℄ that there is a subsequen
e (tn)n of (zn)n su
h that

1
n

∑n
k=1 T tk

σ(F,F ′)
−−−−−→ z ∈ F. So z = z′′, and 
onsequently (T (tn))n 
onverges weakly to

z ∈ F. �

Re
all that a Bana
h latti
e E is said to be order 
ontinuous if limα ‖xα‖ = 0 for every
de
reasing net (xα)α in E su
h that ∧αxα = 0. Let E be a Bana
h latti
e. An element

e ∈ E is 
alled weak unit if for h ∈ E, e ∧ h = 0 implies h = 0.

If E is an order 
ontinuous Bana
h latti
e with weak unit, then there exists a proba-

bility spa
e (Ω,Σ, µ), an order ideal I of L1(Ω,Σ, µ), a latti
e norm ‖ . ‖I on I, and an

order isometry j from E onto (I,‖ . ‖I ) su
h that the 
anoni
al in
lusion from I into

L1(Ω,Σ, µ) is 
ontinuous with ‖f‖1 ≤ ‖f‖I(see Theorem 1.b.14 in [14℄). This implies

that j is 
ontinuous as an operator from E into L1(Ω,Σ, µ). Note that a separable sub-

spa
e X of an order 
ontinuous Bana
h latti
e E is in
luded in some 
losed order ideal

Y of E with weak unit (see Proposition 1.a.9 in [14℄). Thus, FX ( FX the ideal generated
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by X ) has a weak unit. In terms of order 
ontinuous Bana
h latti
es, the 
onvergen
e

of a bounded sequen
e is 
hara
terized as follows.

Lemma 2.4. Let E be a Bana
h latti
e with order 
ontinuous norm, and (gn)n be a

bounded sequen
e in E( E[gn] representable as an order ideal in L1(Ω,Σ, µ) for some

probability measure µ ). Then:
(gn)n is 
onvergent in E if and only if (gn)n is L-weakly 
ompa
t and ‖ . ‖1−
onvergent.

Proof. Sin
e [gn] is a separable subspa
e of E, it follows from Proposition 1.a.9 in [14℄

that E1 = E[gn] ( E[gn] the ideal generated by (gn)n ) is a Bana
h latti
e with weak unit.

Thus, from Lemma 1.4.2 in [12℄ it easily follows that (gn)n is 
onvergent in E1 if and

only if (gn) is L-weakly 
ompa
t and ‖ . ‖1−
onvergent, whi
h �nishes the proof. �

A Bana
h spa
e E has the weak Bana
h-Saks property (or it is weakly Bana
h-Saks)

if every weakly 
onvergent sequen
e (xn)n in E has a subsequen
e whi
h is Ces�aro 
on-

vergent.

Theorem 2.5. (Szlenk [16℄) Let (Ω,Σ, µ) be a probability spa
e. Then L1(Ω,Σ, µ) is

weakly Bana
h-Saks.

Our next goal is to establish that a strong Bana
h-Saks operator is a Bana
h-Saks

operator. To do this, we need the following Lemma. That is the general version of

Theorem 5.66 in [1℄.

Lemma 2.6. Let A be an L-weakly 
ompa
t subset of E. If EA is the ideal generated by

A, then EA is a Bana
h latti
e with order 
ontinuous norm.

Proof. Let EA be the ideal generated by A in E. By Theorems 4.13 and 4.11 in [1℄, it

su�
es to show that every order bounded disjoint sequen
e in EA is norm 
onvergent to

zero. Let (yn)n be a disjoint sequen
e with 0 ≤ yn ≤ y for all n and some y ∈ EA. Then

there exist x1, ..., xn0
∈ A+ and λ > 0 su
h that

y ≤ λ

n0
∑

i=1

xi.

From the Riesz de
omposition property(see Theorem 1.13 in [1℄), there exist yn1 , ..., y
n
n0

in E+ with

yn = yn1 + ...+ ynn0
, and yni ≤ λxi

for all n ∈ N and i ∈ {1, ..., n0}. Clearly, for ea
h i the sequen
e (yni )n is disjoint and

in
luded in SolA. The L-weak 
ompa
tness of A guarantees that yn → 0 in norm. So EA

is order 
ontinuous. �

Let X be a Bana
h spa
e. A sequen
e (xn) in X is said to be Ces�aro 
onvergent if

its Ces�aro means 
onverge in norm. An operator T from a Bana
h spa
e X to a Bana
h

spa
e Y is 
alled a Bana
h-Saks operator if for any norm bounded sequen
e (xn) in X,

(Txn)n has a Ces�aro 
onvergent subsequen
e.

Theorem 2.7. Every strong Bana
h-Saks operator T from a Bana
h spa
e Z into a

Bana
h latti
e F is Bana
h-Saks.

Proof. Let (xn)n be a bounded sequen
e in Z. Sin
e T is strong Bana
h-Saks, it follows

that there exists a subsequen
e (yn)n of (xn)n su
h that { 1
n

∑n
k=1 Tyk; n ∈ N} is L-

weakly 
ompa
t subset in F. Let A = { 1
n

∑n
k=1 Tyk; n ∈ N}. Then from Lemma 2.6

we see that FA(FA is the ideal generated by A)is order 
ontinuous.
Now, sin
e X := [Tyn] is a separable subspa
e of FA, it follows from Proposition 1.a.9

in [14℄ that FX is an order ideal with a weak order unit and so 
an be represented as
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a dense order ideal of L1(Ω,Σ, µ) for some probability measure µ, su
h that the formal

in
lusion

j : FX →֒ L1(Ω,Σ, µ)

is 
ontinuous ([14℄, Theorem 1.b.14). By Theorem 2.3 the sequen
e (yn) has a subse-

quen
e (zn) su
h that (Tzn) 
onverges weakly to some z ∈ FX . Thus, j(Tzn) 
onverges
weakly in L1(Ω,Σ, µ). The fa
t that L1(Ω,Σ, µ) is weakly Bana
h-Saks(by Theorem 2.5),

and hen
e without loss of generality we 
an assume that there is some f ∈ L1(Ω,Σ, µ)
su
h that:

‖j(
1

n

n
∑

k=1

Tzk)− f‖1 −→ 0.

Sin
e { 1
n

∑n
k=1 Tzk; n ∈ N} is L-weakly 
ompa
t subset in FX , it follows from Lemma

2.4 that

1
n

∑n
k=1 Tzk 
onverges in F. �

It is interesting to know that the 
onverse of the pre
eding theorem is in general false,

as shown in the following.

Example 2.8. Consider the linear operator T : l1 → l∞ de�ned by

T (x1, x2, ...) = (
∞
∑

i=1

xi,

∞
∑

i=1

xi, ...) =
∞
∑

i=1

xi(1, 1, ...).

Evidently, T is Bana
h-Saks (it has rank one). Let (en) be the sequen
e of standard unit

ve
tors in l1. Then (en) is a disjoint sequen
e in the solid hull of { 1
n

∑n
k=1 Tek, n ∈ N}

and ‖en‖∞ = 1. Consequently the operator T fails to be strong Bana
h-Saks.

However, it holds for order 
ontinuous Bana
h latti
es, as follows from the next theo-

rem:

Theorem 2.9. A bounded linear operator from a Bana
h spa
e Z into an order 
ontin-

uous Bana
h latti
e F is Bana
h-Saks if and only if it is strong Bana
h-Saks.

Proof. From Theorem 2.7, it is enough to show that every Bana
h-Saks operator from Z

into F is strong Bana
h-Saks. To this end, let (xn) be a bounded sequen
e in Z. Sin
e

T is Bana
h-Saks, it follows that there is a subsequen
e (zn) of (xn) su
h that for every

subsequen
e (yn) of (zn), we have that T (yn) is Ces�aro 
onvergent to some y ∈ F, that

is:

‖
1

n

n
∑

k=1

Tyk − y‖ → 0. (2.1)

Let (wk)k be a disjoint sequen
e in the solid hull of { 1
n

∑n
k=1 Tyk; n ∈ N}. Without loss

of generality we 
an assume that |wn| ≤ | 1
n

∑n
k=1 Tyk| holds for all n ∈ N. Then

|wn| ≤ |
1

n

n
∑

k=1

Tyk − y|+ |y|.

From the Riesz de
omposition property (see [1, Theorem 1.13℄), it follows that for ea
h

n there exist w1
n, w

2
n ∈ F+ su
h that |wn| = w1

n + w2
n with:

w1
n ≤ |

1

n

n
∑

k=1

Tyk − y| and w2
n ≤ |y|.

By 2.1 the sequen
e (w1
n)n 
onverges to 0 in F. On the other hand, sin
e (w2

n)n is order

bounded and disjoint (0 ≤ w2
n ≤ |wn|), it follows from Theorem 4.14 in [1℄ that (w2

n)n

onverges to 0 in F. Thus limn ‖wn‖ = 0, and so T is strong Bana
h-Saks. �
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Re
all that a subset A of a Bana
h spa
e X is 
alled Bana
h-Saks if every sequen
e in

A has a Ces�aro 
onvergent subsequen
e. A Bana
h spa
e X is said to have the Bana
h-

Saks property when its unit ball is a Bana
h-Saks set.

Corollary 2.10. For a Bana
h latti
e E the following statements are equivalent.

(1) E has the Bana
h-Saks property.

(2) The identity operator I : E → E is strong Bana
h-Saks.

Proof. First, assume that E has the Bana
h-Saks property. From Corollary of Theorem 1

in [10℄ we know that E is re�exive, in parti
ular it is order 
ontinuous (see Theorem 4.70

in [1℄). Sin
e the identity operator I : E → E is Bana
h-Saks, it follows from Theorem

2.9 that I : E → E is strong Bana
h-Saks.

For the 
onverse assume that I : E → E is strong Bana
h-Saks, it follows from

Theorem 2.7 that E is Bana
h-Saks. �

A Bana
h latti
e E has the positive S
hur property if weakly null sequen
es with

positive terms are norm null.

Corollary 2.11. For a bounded linear operator T from a Bana
h spa
e Z into a Bana
h

latti
e F with positive S
hur property the following statements are equivalent.

(1) T is L-weakly 
ompa
t.

(2) T is strong Bana
h-Saks.

(3) T is Bana
h-Saks.

(4) T is weakly 
ompa
t.

Proof. (1) =⇒ (2). Let (xn)n be a bounded sequen
e of Z. By Theorem 5.61 in [1℄

the sequen
e T (xn) has a weakly 
onvergent subsequen
e in F (whi
h we shall denote

by T (xn) again). Therefore, the sequen
e ( 1
n

∑n
k=1 Txk)n also has a weakly 
onvergent

subsequen
e in F. Next, let (wn) be a disjoint sequen
e in the solid hull of ( 1
n

∑n
k=1 Txk)n,

then (|wn|) is also in the solid hull of ( 1
n

∑n
k=1 Txk)n. Now an easy appli
ation of Theorem

4.34 shows that (|wn|) 
onverges weakly to zero. Sin
e F has the positive S
hur property,

it follows that lim
n

‖|wn|‖ = lim
n

‖wn‖ = 0. Consequently, ( 1
n

∑n
k=1 Txk)n is L-weakly


ompa
t subset of F, and so T is strong Bana
h-Saks.

(2) =⇒ (3). It is a dire
t appli
ation of Theorem 2.7.

(3) =⇒ (4). It follows from Proposition 2.3 in [11℄.

(4) =⇒ (1). Sin
e F has the positive S
hur property and T (BZ) is relatively weakly


ompa
t subset of F, it follows from Theorem 4.34 in [1℄ that T is L-weakly 
ompa
t. �

The domination property for strong Bana
h-Saks operators is the following.

Theorem 2.12. Let E and F be Bana
h latti
es. If 0 ≤ S ≤ T : E −→ F with T is

strong Bana
h-Saks, then S is also strong Bana
h-Saks.

Proof. Suppose that T is strong Bana
h-Saks and let (xn) be a sequen
e in E. Then

there exists a subsequen
e {yn} of {xn} su
h that { 1
n

∑n
k=1 T |yk|; n ∈ N} is L-weakly


ompa
t subset. Sin
e

|
1

n

n
∑

k=1

Syk| ≤
1

n

n
∑

k=1

T |yk|,

it follows that { 1
n

∑n
k=1 Syk; n ∈ N} is L-weakly 
ompa
t. �

In what follows:

L(X,F ) will denote the spa
e of all operators from X into F,

SBS(X,F ) will denote the spa
e of all strong Bana
h-Saks operators from X into F.
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Theorem 2.13. The set of all strong Bana
h-Saks operators from a Bana
h spa
e X to

a Bana
h latti
e F is a 
losed ve
tor subspa
e of L(X,F ).

Proof. Clearly, the 
olle
tion SBS(X,F ) of all strong Bana
h-Saks operators from X to

F is a ve
tor subspa
e of L(X,F ).

Now, let (Tn)n be a sequen
e of strong Bana
h-Saks operators su
h that ‖Tn−T ‖ → 0
in L(X,F ). Let ǫ > 0, there exists N0 ∈ N su
h that n ≥ N0, implies ‖Tn − T ‖ < ǫ

2 . Let

(xn) be a bounded sequen
e in X, by passing to a subsequen
e, we 
an assume without

loss of generality that { 1
n

∑n
k=1 TN0

xk; n ∈ N} is L-weakly 
ompa
t. The inequality

|T (
1

n

n
∑

k=1

xk)| ≤ |(T − TN0
)(
1

n

n
∑

k=1

xk)|+ |TN0
(
1

n

n
∑

k=1

xk)|,

guarantees that { 1
n

∑n
k=1 Txk; n ∈ N} is L-weakly 
ompa
t. �

Proposition 2.14. Let E =
∏n

i=1 Ei be the dire
t sum of Bana
h latti
es, and let

Aij : Ej −→ Ei be a strong Bana
h-Saks operator for all 1 ≤ i, j ≤ n. Then the matrix

operator T : E −→ E de�ned by

T =











A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

.

.

.

.

.

.

.

.

.

.

.

.

An,1 An,2 · · · An,n











is strong Bana
h-Saks.

Proof. Let {Xk = (x1
k, x

2
k, ..., x

n
k ), k ∈ N} be a norm bounded sequen
e in E. Then (xi

k)k
is bounded in Ei for ea
h 1 ≤ i ≤ n. Sin
e Aij is strong Bana
h-Saks, then, by passing to

a subsequen
e, we 
an suppose that {
∑n

j=1
1
k

∑k
l=1 A1jx

j
l , n ∈ N} is L-weakly 
ompa
t

subset of Ei for all 1 ≤ i ≤ n. Then

1

k

k
∑

l=1

TXl =













∑n
j=1

1
k

∑k
l=1 A1jx

j
l

∑n
j=1

1
k

∑k
l=1 A2jx

j
l

.

.

.

∑n
j=1

1
k

∑k
l=1 Anjx

j
l













is L-weakly 
ompa
t subset of E. �

3. Order 
ontinuous Bana
h latti
es

The next Theorem gives a 
hara
terization of Bana
h latti
es with order 
ontinuous

norms.

Theorem 3.1. For a Bana
h latti
e E the following statements are equivalent.

(1) E is order 
ontinuous.

(2) E is Dedekind σ−
omplete and xn ↓ 0 implies

1
n

∑n
l=1 xl → 0.

(3) For every x ∈ E+, the order interval [−x, x] is Bana
h-Saks.

Proof. (1) =⇒ (2) If xn ↓ 0, then ‖xn‖ −→ 0. Thus, 1
n

∑n
l=1 xl → 0.

(2) =⇒ (1) Let xn ↓ 0, then 1
n

∑n
l=1 xl → 0. In parti
ular, from Lemma 2.6 it follows that

EA is order 
ontinuous, where A = { 1
n

∑n
l=1 xl, n ∈ N}. Sin
e xn ∈ EA for all n ∈ N,

then from Theorem 4.9 in [1℄ it should be 
lear that ‖xn‖ −→ 0.
(1) =⇒ (3) Let (xn)n be a sequen
e in E satisfying 0 ≤ xn ≤ x for all n and some

x ∈ E+. Sin
e E is order 
ontinuous, it follows from Theorem 4.9 in [1℄ that [0, x]

is weakly 
ompa
t. By passing to a subsequen
e, we 
an assume that xn
σ(E,E′)
−−−−−→ y



STRONG BANACH-SAKS OPERATORS 347

for some y ∈ E. Then xn
σ(L1(µ),L∞(µ))
−−−−−−−−−−→ y for some probability measure µ. Thus, by

Theorem 2.5 there exist a subsequen
e (yn) of (xn) su
h that

1
n

∑n
k=1 yk

‖.‖1

−−→ y. On the

other hand, sin
e E is order 
ontinuous and 0 ≤ 1
n

∑n
k=1 yk ≤ x for all n, we see that

A = { 1
n

∑n
l=1 yl, n ∈ N} is L-weakly 
ompa
t subset of E ( see Theorem 4.14 in [1℄).

A

ording to Lemma 2.4, we have

1
n

∑n
k=1 yk 
onverges to y in E.

(3) =⇒ (1) The impli
ation follows from Proposition 2.3 in [11℄.

�
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