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REPRESENTATIONS OF THE INFINITE-DIMENSIONAL AFFINE

GROUP

YURI KONDRATIEV

Abstrat. We introdue an in�nite-dimensional a�ne group and onstrut its ir-

reduible unitary representation. Our approah follows the one used by Vershik,

Gelfand and Graev for the di�eomorphism group, but with modi�ations made ne-

essary by the fat that the group does not at on the phase spae. However it is

possible to de�ne its ation on some lasses of funtions.

Ââîäèòüñÿ íåñêií÷åííîâèìiðíà à��iííà ãðóïà i áóäó¹òüñÿ ¨¨ íåçâiäíå óíiòàðíå

ïðåäñòàâëåííÿ. Íàø ïiäõiä íàñëiäó¹ ìåòîä Âåðøèêà-�åëü�àíäà-�ðà¹âà äëÿ ãðóïè

äè�åîìîð�içìiâ, ç íåîáõiäíèìè ìîäè�iêàöiÿìè, ïîâ'ÿçàíèìè ç òèì, ùî ãðóïà íå

äi¹ íà �àçîâîìó ïðîñòîði, àëå ìîæíà âèçíà÷èòè ¨¨ äiþ íà äåÿêèõ êëàñàõ �óíêöié.

1. Introdution

Given a vetor spae V the a�ne group an be desribed onretely as the semidiret

produt of V by GL(V ), the general linear group of V :

Aff(V ) = V ⋊GL(V ).

The ation of GL(V ) on V is the natural one (linear transformations are automorphisms),

so this de�nes a semidiret produt.

A�ne groups play important role in the geometry and its appliations, see, e.g., [4, 12℄.

Several reent papers [1, 3, 5, 6, 8, 15℄ are devoted to representations of the real, omplex

and p-adi a�ne groups and their generalizations, as well as diverse appliations, from

wavelets and Toeplitz operators to non-Abelian pseudo-di�erential operators and p-adi

quantum groups.

In the partiular ase of �eld V = R
d
the group Aff(Rd) de�ned as following.

Consider a funtion b : Rd → R
d
whih is a step funtion on R

d
. Take another matrix

valued funtion A : Rd → L(Rd) s.t. A(x) = Id+A0(x), A(x) is invertible, A0 is a matrix

valued step funtion on R
d
. Introdue an in�nite dimensional a�ne group Aff(Rd)(Rd)

that is the set of all pairs g = (A, b) with omponent satisfying assumptions above. De�ne

the group operation

g2g1 = (A2, b2)(A1, b1) = (A1A2, b1 +A1b2).

The unity in this group is e = (Id, 0). For g ∈ Aff(Rd)(Rd) holds g−1 = (A−1,−A−1b). It
is lear that for step mappings we use these de�nitions are orret. Our aim is to onstrut

irreduible representations of Aff(Rd)(Rd). As a rule, only speial lasses of irreduible

representations an be onstruted for in�nite-dimensional groups. For various lasses of

suh groups, speial tools were invented; see [7, 10℄ and referenes therein.

We will follow an approah by Vershik-Gefand -Graev [13℄ proposed in the ase of the

group of di�eomorphisms. A diret appliation of this approah meets ertain di�ulties

related with the absene of the possibility to de�ne the ation of the group Aff(Rd)(Rd)
on a phase spae similar to [13℄. A method to overome this problem is the main tehnial

step in the present paper. We wold like to mention that a similar approah was already
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used in [9℄ for the onstrution of the representation for p-adi in�nie dimensional a�ne

group.

2. Infinite dimensional affine group

In our de�nitions and studies of vetor and matrix valued funtions on R
d
we will

use as basi funtional spaes olletions of step mappings. It means that eah suh

mapping is a �nite sum of indiator funtions with measurable bounded supports with

onstant vetor/matrix oe�ients. Suh spaes of funtions on R
d
are rather unusual

in the framework of in�nite dimensional groups but we will try to show that their use is

natural for the study of a�ne groups.

For x ∈ R
d
onsider the setion Gx = {g(x) | g ∈ Aff(Rd)(Rd)}. It is an a�ne group

with onstant oe�ients. Note that for a ball BN (0) ⊂ R
d
with the radius N entered

at zero we have g(x) = (1, 0), x ∈ Bc
N (0).

De�ne the ation of g on a point x ∈ R
d
as

gx = g(x)x = A(x)−1(x + b(x)).

Denote the orbit Ox = {gx|g ∈ Gx} ⊂ R
d
. Atually, as a set Ox = R

d
but elements of

this set are parametrized by g ∈ Gx. For any element y ∈ Ox and h ∈ Gx we an de�ne

hy = h(gx) = (hg)x ∈ Ox. It means that we have the group Gx ation on the orbit Ox.

It gives

(g1g2)(x)x = g1(x)(g2(x)x)

that orresponds to the group multipliation

g2g1 = (A2, b2)(A1, b1) = (A1A2, b1 +A1b2)

onsidered in the given point x.

Remark 2.1. The situation we have is quite di�erent w.r.t. the standard group of

motions on a phase spae. Namely, we have one �xed point x ∈ R
d
and the setion group

Gx assoiated with this point. Then we have the motion of x under the ation of Gx. It

gives the group ation on the orbit Ox.

We will use the on�guration spae Γ(Rd), i.e., the set of all loally �nite subsets of

R
d
.

Eah on�guration may be identi�ed with the measure

γ(dx) =
∑
x∈γ

δx

whih is a positive Radon measure on R
d
: γ ∈ M(Rd). We de�ne the vague topology on

Γ(Rd) as the weakest topology for whih all mappings

Γ(Rd) ∋ γ 7→< f, γ >∈ R, f ∈ C0(R
d)

are ontinuous. The Borel σ-algebra for this topology denoted B(Γ(Rd)).
For γ ∈ Γ(Rd), γ = {x} ⊂ R

d
de�ne gγ as a motion of the measure γ:

gγ =
∑
xγ

δg(x)x ∈ M(Rd).

Here we have the group ation of Aff(Rd)(Rd) produed by individual transformations

of points from the on�guration. Again, as above, we move a �xed on�guration using

previously de�ned ations of Gx on x ∈ γ.

Note that gγ is not more a on�guration. More preisely, for some BN (0) the set

(gγ)N = gγ ∩ Bc
N (0) is a on�guration in Bc

N(0) but the �nite part of gγ may inlude

multiple points.



350 YURI KONDRATIEV

Denote where B0(R
d) the set of bounded measurable funtions with bounded support.

For any f ∈ B0(R
d)) we have orresponding ylinder funtion on Γ(Rd):

Lf (γ) =< f, γ >=

∫
Rd

f(x)γ(dx) =
∑
x∈γ

f(x).

Denote Pcyl the set of all ylinder polynomials generated by suh funtions. More gener-

ally, onsider funtions of the form

F (γ) = ψ(< f1, γ >, . . . , < fn, γ >), γ ∈ Γ(Rd), fj ∈ B0(R
d), ψ ∈ Cb(R

n). (2.1)

These funtions form the set Fb(Γ(R
d)) of all bounded ylinder funtions.

For any lopen set Λ ∈ Ob(R
d) (also alled a �nite volume) denote Γ(Λ) the set of all

(with neessity �nite) on�gurations in Λ. We have as before the vague topology on this

spae and the Borel σ-algebra B(Γ(Λ)) is generated by funtions

Γ(Λ) ∋ γ 7→< f, γ >∈ R

for f ∈ B0(Λ). For any Λ ∈ Ob(R
d) and T ∈ B(Γ(Λ)) de�ne a ylinder set

C(T ) = {γ ∈ Γ(Rd) | γΛ = γ ∩ Λ ∈ T }.

Suh sets form a σ-algebra BΛ(Γ(R
d)) of ylinder sets for the �nite volume Λ. The set of

bounded funtions on Γ(Rd) measurable w.r.t. BΛ(Γ(R
d)) we denote BΛ(Γ(R

d)). That

is a set of ylinder funtions on Γ(Rd). As a generating family for this set we an use the

funtions of the form

F (γ) = ψ(< f1, γ >, . . . , < fn, γ >), γ ∈ Γ(Rd), fj ∈ B0(Λ), ψ ∈ Cb(R
n).

For so-alled one-partile funtions f : Rd → R, f ∈ B0(R
d) onsider

(gf)(x) = f(g(x)x), x ∈ R
d.

Then gf ∈ B0(R
d). Thus, we have the group ation

B0(R
d) ∋ f 7→ gf ∈ B0(R

d), g ∈ Aff(Rd)

of the in�nite dimensional group Aff(Rd) in the spae of funtions B0(R
d).

Note that due to our de�nition, we have

< f, gγ >=< gf, γ >

and it is reasonable to de�ne for ylinder funtions (2.1) the ation of the group Aff(Rd)
as

(VgF )(γ) = ψ(< gf1, γ >, . . . , < gfn, γ > .

Obviously Vg : Fb(Γ(R
d)) → Fb(Γ(R

d)).
Denote m(dx) the Lebesgue measure on R

d
. The dual transformation to one-partile

motion is de�ned via the following relation∫
Rd

f(g(x)x)m(dx) =

∫
Rd

f(x)g∗m(dx)

if exists suh measure g∗m on R
d
.

Lemma 2.1. For eah g ∈ Aff(Rd)

g∗m(dx) = ρg(x)m(dx)

where ρg = 1Bc
R
(0) + r0g , r0g ∈ D(Rd,R+). Here as above

Bc
R(0) = {x ∈ R

d | |x|p ≥ R}.
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Proof. We have following representations for oe�ients of g(x):

b(x) =
n∑

k=1

bk1Bk
(x),

a(x) =

n∑
k=1

ak1Bk
(x) + 1Bc

R
(0)(x)

where Bk are ertain balls in R
d
. Then

∫
Rd

f(g(x)x)m(dx) =

n∑
k=1

∫
Bk

f(
x+ bk

ak
)m(dx) +

∫
Bc

R
(0)

f(x)m(dx) =

n∑
k=1

∫
Ck

f(y)|ak|pm(dy) +

∫
Bc

R
(0)

f(y)m(dy),

where

Ck = a−1
k (Bk + bk).

Therefore,

g∗m = (

n∑
k=1

|ak|p1Ck
+ 1Bc

R
(0))m.

Note that informally we an write

(g∗m)(dx) = dm(g−1x).

�

Note that by the duality we have the group ation on the Lebesgue measure. Namely,

for f ∈ B0(R
d) and g1, g2 ∈ Aff(Rd)∫

Rd

(g2g1)f(x)m(dx) =

∫
Rd

g1f(x)(g
∗
2m)(dx) =

∫
Rd

f(x)(g∗1g
∗
2m)(dx) =

∫
Rd

f(x)((g2g1)
∗m)(dx).

In partiular

(g−1)∗(g∗m) = m.

Lemma 2.2. Let F ∈ BΛ(Γ(R
d)) and g ∈ Aff(Rd) has the form g(x) = (1, h1B(x)) with

ertain h ∈ R
d
and B ∈ Ob(R

d) s.t. Λ ⊂ B. Then

VgF ∈ BΛ−h(Γ(R
d)).

Proof. Due to the formula for the ation VgF we need to analyze the support of funtions

fj(x + h1B(x)) for supp f⊂Λ. If x ∈ Bc
then x ∈ Λc

and therefore fj(x + h1B(x)) =
fj(x) = 0. For x ∈ B we have fj(x+h) and only for x+h ∈ Λ this value may be nonzero,

i.e., supp gfj ⊂ Λ− h.

�

Denote πm the Poisson measure on Γ(Rd) with the intensity measure m.

Lemma 2.3. For all F ∈ Pcyl or F ∈ Fb(Γ(R
d)) and g ∈ Aff(Rd) holds∫

Γ(Rd)

VgFdπm =

∫
Γ(Rd)

Fdπg∗m.
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Proof. It is enough to show this equality for exponential funtions

F (γ) = e<f,γ>, f ∈ D(Rd).

We have ∫
Γ(Rd)

VgFdπm =

∫
Γ(Rd)

e<gf,γ>dπm(γ) =

exp[

∫
Rd

(egf(x) − 1)dm(x)] = exp[

∫
Rd

(ef(x) − 1)d(g∗m)(x) =

∫
Γ(Rd)

Fdπg∗m.

�

Remark 2.2. For all funtions F,G ∈ F(Γ(Rd)) a similar alulation shows∫
Γ(Rd)

VgF Gdπm =

∫
Γ(Rd)

F Vg−1Gdπg∗m.

Let πm be the Poisson measure on Γ(Rd) with the intensity measure m. For any

Λ ∈ Ob(R
d) onsider the distribution πΛ

m of πm in Γ(Λ) orresponding the projetion

γ → γΛ. It is again a Poisson measure πmΛ
in Γ(Λ) with the intensity mΛ whih is the

restrition of m on Λ. In�nite divisibility of πm gives for Fj ∈ BΛj
(Γ(Rd)), j = 1, 2 with

Λ1 ∩ Λ2 = ∅∫
Γ(Rd)

F1(γ)F2(γ)dπm(γ) =

∫
Γ(Rd)

F1(γ)dπm(γ)

∫
Γ(Rd)

F2(γ)dπm(γ) =

∫
Γ(Λ1)

F1dπ
Λ1

m

∫
Γ(Λ2)

F2dπ
Λ2

m .

Lemma 2.4. For any F ∈ BΛ(Γ(R
d) and g = (1, h1B) ∈ Aff(Rd) with Λ ∩ (B + h) = ∅

holds ∫
Γ(Rd)

(VgF )(γ)dπm(γ) =

∫
Γ(Rd)

F (γ)dπm(γ).

Proof. Due to our alulations above we have∫
Γ(Rd)

(VgF )(γ)dπm(γ) =

∫
Γ(Rd)

F (γ)dπg∗m(γ) =

∫
Γ(Λ)

F (η)dπΛ
g∗m(η) =

∫
Γ(Λ)

F (η)dπ(g∗m)Λ(η).

But we have shown

(g∗m)(dx) = (1 + 1B+h(x))m(dx) = m(dx)

for x ∈ Λ, i.e., (g∗m)Λ = m.

�

Lemma 2.5. For any F1, F2 ∈ Fb(Γ(R
d)) there exists g ∈ Aff(Rd) suh that∫

Γ(Rd)

F1 VgF2dπm =

∫
Γ(Rd)

F1dπm

∫
Γ(Rd)

F2dπm.
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Proof. By the de�nition, Fj ∈ BΛj
(Γ(Rd)), j = 1, 2 for some Λ1,Λ2 ∈ O(Rd).

Let us take g = (1, h1B) with the following assumptions:

Λ2 ⊂ B, Λ1 ∩ (Λ2 − h) = ∅, Λ2 ∩ (B + h) = ∅.

Then aordingly to previous lemmas∫
Γ(Rd)

F1VgF2dπm =

∫
Γ(Rd)

F1dπm

∫
Γ(Rd)

F2dπm.

�

3. Aff(Rd) and Poisson measures

For F ∈ Pcyl or F ∈ Fb(Γ(R
d)), we onsider the motion of F by g ∈ Aff(Rd) given

by the operator Vg. Operators Vg have the group property de�ned point-wisely: for any

γ ∈ Γ(Rd)

(Vh(VgF ))(γ) = (VhgF )(γ).

This equality is the onsequene of our de�nition of the group ation of Aff(Rd) on

ylinder funtions.

As above, onsider πm, the Poisson measure on Γ(Rd) with the intensity measure m.

For the transformation Vg the dual objet is de�ned as the measure V ∗
g πm on Γ(Rd) given

by the relation ∫
Γ(Rd)

(VgF )(γ)dπm(γ) =

∫
Γ(Rd)

F (γ)d(V ∗
g πm)(γ),

where V ∗
g πm = πg∗m, see Lemma 2.3.

Corollary 3.1. For any g ∈ Aff(Rd) the Poisson measure V ∗
g πm is absolutely ontinuous

w.r.t. πm with the Radon-Nykodim derivative

R(g, γ) =
dπg∗m(γ)

dπm(γ)
∈ L1(πm).

.

Proof. Note that density ρg = 1Bc
R
(0) + r0g , r0g ∈ D(Rd,R+) of g

∗m w.r.t. m may be

equal zero on some part of R
d
and, therefore, the equivalene of of onsidered Poisson

measures is absent. Due to [11℄, the Radon-Nykodim derivative

R(g, γ) =
dπg∗m(γ)

dπm(γ)

exists if ∫
Rd

|ρg(x)− 1|m(dx) =

∫
BR(0)

|1− r0g(x)|m(dx) <∞.

�

Remark 3.1. As in the proof of Proposition 2.2 from [2℄ we have an expliit formula

for R(g, γ):

R(g, γ) =
∏
x∈γ

ρg(x) exp(

∫
Rd

(1− ρg(x))m(dx).

The point-wise existene of this expression is obvious.

This fat gives us the possibility to apply the Vershik-Gelfand-Graev approah realized

by these authors for the ase of di�eomorphism group.

Namely, for F ∈ Pcyl or F ∈ Pcyl(Γ(R
d) and g ∈ Aff(Rd) introdue operators

(UgF )(γ) = (R(g−1, γ))1/2(VgF )(γ).
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Theorem 3.1. Operators Ug, g ∈ Aff(Rd) are unitary in L2(Γ(Rd), πm) and give an

irreduible representation of Aff(Rd).

Proof. Let us hek the isometry property of these operators. We have using Lemmas

2.3, 2.1 ∫
Γ(Rd)

|Ug|
2dπm =

∫
Γ(Rd)

|VgF |
2(γ)dπ(g−1)∗m(γ) =

∫
Γ(Rd)

|F (γ)|2dπ(gg−1)∗m(γ) =

∫
Γ(Rd)

|F (γ)|2dπm(γ).

From Lemma 2.3 follows that U∗
g = Ug−1 .

We need only to hek irreduibility that shall follow from the ergodiity of Poisson

measures [13℄. But to this end we need �rst of all to de�ne the ation of the group

Aff(Rd) on sets from B(Γ(Rd). As we pointed out above, we an not de�ne this ation

point-wisely. But we an de�ne the ation of operators Vg on the indiators 1A(γ) for
A ∈ B(Γ(Q)). Namely, for given A we take a sequene of ylinder sets An, n ∈ N suh

that

πm(A∆An) → 0, n→ ∞.

Then

Ug1An
= Vg1An

(R(g−1, ·))1/2 → G(R(g−1, ·))1/2 ∈ L2(πm), n→ ∞

in L2(πm). Eah Vg1An
is an indiator of a ylinder set and

Vg1An
→ G πm − a.s., n→ ∞.

Therefore, G = 1 or G = 0 πm-a.s. We denote this funtion Vg1A.
For the proof of the ergodiity of the measure πm w.r.t. Aff(Rd) we need to show the

following fat: for any A ∈ B(Γ(Rd)) suh that ∀g ∈ Aff(Rd) Vg1A = 1A πm − a.s. holds

πm(A) = 0 or πm(A) = 1.
Fist of all, we will show that for any pair of sets A1, A2 ∈ B(Γ(Q)) with πm(A1) >

0, πm(A2) > 0 there exists g ∈ Aff(Rd) suh that∫
Γ(Rd)

1A1
Vg1A2

dπm ≥
1

2
πm(A1)πm(A2). (3.2)

Beause any Borel set may be approximated by ylinder sets, it is enough to show this

fat for ylinder sets. But for suh sets due to Lemma 2.5 we an hoose g ∈ Aff(Rd)
suh that ∫

Γ(Rd)

1A1
Vg1A2

dπm = πm(A1)πm(A2).

Then using an approximation we will have (3.2).

To �nish the proof of the ergodiity, we onsider any A ∈ B(Γ(Rd) suh that

∀g ∈ Aff(Rd) Vg1A = 1A πm − a.s., πm(A) > 0.

We will show that then πm(A) = 1. Assume πm(Γ \A) > 0. Due to the statement above,

there exists g ∈ Aff(Rd) suh that∫
Γ(Rd)

1Γ\AVg1A > 0.

But due to the invariane of 1A it means∫
Γ(Rd)

1Γ\A1Adπm > 0

that is impossible. �
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