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ON FIXED POINT RESULTS FOR A CLASS OF GENERALIZED

MEAN NONEXPANSIVE MAPPINGS

A. A. MEBAWONDU, C. IZUCHUKWU, K. O. OYEWOLE, AND O. T. MEWOMO

Abstrat. In this paper, we introdue a new lass of generalized mean nonexpan-

sive mappings and propose an iterative algorithm for approximating the �xed points

of this lass of mappings in the frame work of uniformly onvex Banah spaes. We

establish some �xed point results for this lass of mappings and prove the onver-

gene of the propose iterative algorithm. Finally, numerial experiment is presented

to demonstrate the e�ieny of our algorithm in omparison with other existing

algorithms in literature.

Ââîäèòüñÿ íîâèé êëàñ óçàãàëüíåíèõ íåðîçòÿãóþ÷èõ ó ñåðåäíüîìó âiäîáðàæåíü,

äëÿ ÿêèõ ïðîïîíó¹òüñÿ iòåðàöiéíèé àëãîðèòì íàáëèæåíîãî çíàõîäæåííÿ íåðóõîìèõ

òî÷îê â êîíòåêñòi ðiâíîìiðíî îïóêëèõ áàíàõîâèõ ïðîñòîðiâ. Äëÿ öüîãî êëàñó

âiäîáðàæåíü äîâåäåíi òåîðåìè ïðî íåðóõîìó òî÷êó, à òàêîæ çáiæíiñòü çàçíà÷åíîãî

àëãîðèòìó. Øëÿõîì ÷èñåëüíîãî åêñïåðèìåíòó íàø àëãîðèòì ïîðiâíþ¹òüñÿ ç

âiäîìèìè.

1. Introdution

Banah ontration priniple an be seen as the pivot of the theory of �xed points and

appliations. The theory of �xed points plays an important role in nonlinear funtional

analysis and is very useful in establishing the existene and uniqueness results for nonlin-

ear di�erential and integral equations. The importane of Banah ontration priniple

annot be over emphasized in the study of �xed point theory and appliations, see [6℄.

Several authors have generalized the well elebrated Banah ontration priniple by on-

sidering a lass of nonlinear mappings and spaes whih are more general than the lass

of ontration mappings and metri spaes (see [3, 10, 26, 27℄ and the referenes therein).

One of suh generalizations of the ontration mapping in the sense of Banah is the

well-known nonexpansive mapping. In 1965, Browder [8℄, Gohde [13℄ and Kirk [23℄ gave

some existene results for the �xed points of nonexpansive mappings and these were later

generalized by other authors (see, [35, 37℄).

In 1975, Zhang [44℄ introdued and studied the lass of mean nonexpansive mappings in

Banah spaes. He proved the unique existene of �xed points for this lass of mappings

in Banah spaes with normal struture. For a Banah spae X and a nonempty, losed

and onvex subset C of X, we reall that a mapping T : C → X is said to be mean

nonexpasive if there exist a, b ≥ 0 with a+ b ≤ 1 suh that

‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖, (1.1)

for all x, y ∈ C.
In 2007, Wu [43℄ proved that if a + b < 1, then the mean nonexpansive mapping T
has a unique �xed point. Zuo in [46℄ proved that a mean nonexpansive mapping has

approximate �xed point sequene, and under some suitable onditions, he obtained some

existene and uniqueness theorems for �xed points of mean nonexpansive mapping.
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In 2008, Suzuki [37℄ introdued a lass of mappings satisfying ondition (C), alled the

Suzuki generalized nonexpansive mappings and proved some �xed point results for this

lass of mappings.

De�nition 1.1. Let C be a nonempty subset of a Banah spaeX, a mapping T : C → X
is said to satisfy ondition (C) on C, if for all x, y ∈ C,

1

2
‖Tx− x‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

In 2010, Nakprasit [29℄ gave an example of a mapping that is mean nonexpansive but

not Suzuki generalized nonexpansive and an example of a mapping that is Suzuki gen-

eralized nonexpansive but not mean nonexpansive. He showed that an inreasing mean

nonexpansive mapping implies Suzuki generalized nonexpansive mapping.

Remark 1.2. We note from the results obtained in [29℄ that the lass of mean nonex-

panisve mappings and the lass of Suzuki generalized nonexpansive mappings are two

di�erent lasses of mappings. Thus, it is natural to ask the following question: Can we

�nd a lass of mappings that will generalize these lasses of mappings, thereby bridging

the gap between these two lasses of mappings?

In 2011, Falset et al. [11℄ introdued another lass of mappings satisfying ondition (Cλ)
and established some �xed point results for this lass of mappings. Mappings satisfying

(Cλ) are proper generalization of mappings satisfying ondition (C).

De�nition 1.3. Let C be a nonempty subset of a Banah spae X and λ ∈ (0, 1). A
mapping T : C → X is said to satisfy ondition (Cλ) on C if for all x, y ∈ C,

λ‖Tx− x‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Remark 1.4. It is easy to see that if λ = 1
2 , we obtain Suzuki generalized nonexpansive

mapping. It is also worth mentioning that if we apply similar argument as in [29℄, we

an obtain an example of a mapping that is mean nonexpansive but does not satisfy-

ing ondition (Cλ) and like-wise a mapping satisfying ondition (Cλ) that is not mean

nonexpansive. Thus, we ask: Can we �nd a lass of mappings that will generalize these

lasses of mappings?

Zhou and Cui in [45℄ studied the existene of �xed points for mean nonexpansive map-

pings and obtained the demilosedness priniple for this lass of mappings in CAT(0)

spaes. In addition, they proved a ∆-onvergene and strong onvergene results of

Ishikawa iteration proess for mean nonexpansive mappings under some suitable ondi-

tions. For some reent generalizations of mean nonexpansive mappings, see ([9, 25℄ and

the referene therein).

Several authors have introdued di�erent iterative proesses for approximating the �xed

points of nonexpansive and other nonlinear mappings in Hilbert, Banah, Hadamard

and p-uniformly onvex metri spaes, see [4, 5, 16, 17, 21, 31, 32, 38, 39, 41℄. In

general, developing a faster and more e�ient iterative algorithms for approximating

�xed points of nonlinear mappings is still an ative area of researh in nonlinear funtional

analysis and �xed point theory. The Mann iterative proess [24℄ is one of the oldest and

fundamental iterative proess, whih is given as follows:

{

x0 ∈ C,

xn+1 = (1− αn)xn + αnTxn, n ≥ 0,
(1.2)

where {αn} is a sequene in (0, 1) and T is any nonlinear mapping on C.
In [19℄, Kadioglu and Yildirim introdued a Piard Normal S-iteration proess and show

that the rate of onvergene of this iteration proess is faster than that of Normal S-

iteration proess. This iteration proess is given as follows: For eah x0 ∈ C, the
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sequene {xn} in C is de�ned by











zn = (1− βn)xn + βnTxn,

yn = (1− αn)zn + αnTzn,

xn+1 = Tyn, n ≥ 0,

(1.3)

where {αn} and {βn} are sequenes in (0, 1) and T is a nonlinear mapping on C.
In 2014, Gursoy and Karakay in [14℄ introdued the following iteration proess alled

Piard-S iteration: For eah x0 ∈ C, the sequene {xn} in C is de�ned by











zn = (1− αn)xn + αnTxn,

yn = (1 − βn)Txn + βnTzn,

xn+1 = Tyn, n ≥ 0,

(1.4)

where {αn} and {βn} are sequenes in (0, 1) and T is a nonlinear mapping on C. They
proved that this iterative proess onverges faster than the Mann [24℄, Ishikawa [15℄,

Noor [30℄, Abbas et al. [1℄, and some other existing iterative shemes in literature.

In 2017, Karakaya et al. in [20℄ introdued the following iteration proess: For eah

x0 ∈ C, the sequene {xn} in C is de�ned by











zn = Txn,

yn = (1− αn)zn + αnTzn,

xn+1 = Tyn, n ≥ 0,

(1.5)

where {αn} is a sequene in (0, 1). They proved that this iterative proess onverges

faster than Mann [24℄, Ishikawa [15℄, Noor [30℄, Abass et al. [1℄ and some other existing

iterative shemes in literature.

In 2018, Ullah et al. [42℄ introdued the following iteration proess alled the M-iteration

proess: For eah x0 ∈ C, the sequene {xn} in C is de�ned by











zn = (1− αn)xn + αnTxn,

yn = Tzn

xn+1 = Tyn, n ≥ 0,

(1.6)

where {αn} is a sequene in (0, 1). They proved that this iterative proess onverges

faster than Mann [24℄, Ishikawa [15℄, Noor [30℄, Abass et al. [1℄, iterative proess (1.4),

iterative proess (1.3) and some existing iterative shemes in literature. It was shown in

[2℄ that the iterative proess (1.5) and (1.6) have the same rate of onvergene.

Remark 1.5. Sine it is more desirable to onstrut iterative proesses that are more

e�ient and have higher rate of onvergene, we then ask: Can we onstrut a more

e�ient iterative proess with better rate of onvergene than the existing ones?

It is well-known that nonexpansive mappings are ontinuous on their domain and the

ontinuity nature of this lass of mappings make it less important in theoretial and ap-

pliation wise. On the other hand, it has been shown that mean nonexpansive mappings,

Suzuki generalized nonexpansive mappings, mapping satisfying ondition (Cλ) need not

be ontinuous on their domain. As suh, these lasses of mappings have great impor-

tane in theoretial and appliation-wise ompare to nonexpansive mappings. Motivated

by the researh work desribed above and the urrent researh interest in this diretion,

our purpose in this paper is to introdue a new lass of generalized mean nonexpansive

mappings and propose a new three steps iteration proess for approximating the �xed

point of this lass of mappings in uniformly onvex Banah spaes. Using this iteration

proess, we obtain some onvergene results for approximating the �xed points of this
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lass of mappings. Furthermore, we show that our proposed iterative sheme performs

faster than some existing iterative shemes in the literature.

2. Preliminaries

Let X be a Banah spae with dimension greater than or equal to 2. The funtion

δX : (0, 2] → [0, 1] de�ned by

δX(ǫ) = inf

{

1− ‖
1

2
(x+ y)‖ : ‖x‖ = 1; ‖y‖ = 1, ǫ = ‖x− y‖

}

is alled the modulus of onvexity of X. If δX(ǫ) > 0 for all ǫ ∈ (0, 2], then X is alled

uniformly onvex. Let X be a Banah spae, X∗
its dual and S(X) = {x ∈ X : ‖x‖ = 1}.

The value of f ∈ X∗
at x ∈ X is denoted by 〈x, f〉.

De�nition 2.1. (1) The multivalued mapping J : X → 2X
∗

de�ned by

J(x) =

{

f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2
}

is alled the normalized duality mapping.

(2) A Banah spae X is alled smooth if limt→0
‖x+ty‖−‖x‖

t
exists for eah x, y ∈

S(X). In this ase, the norm of X is alled Gateaux di�erentiable. It is known

that J is single valued whenever X is smooth.

(3) A Banah spae X is Frehet di�erentiable, if for eah x ∈ S(X), the limit above

exists and is attained uniformly for y ∈ S(X). In this ase, we have that for all

x, h ∈ X,

〈h, J(x)〉 +
1

2
‖x‖2 ≤

1

2
‖x+ h‖2 ≤ 〈h, J(x)〉 +

1

2
‖x‖2 + b(‖h‖),

where b is an inreasing funtion de�ned on [0,∞) suh that limt↓0
b(t)
t

= 0.
(4) A Banah spae X is said to have Opial property [33℄, if for every weakly on-

vergent sequene {xn} in X with weak limit y, we have

lim inf
n→∞

‖xn − y‖ < lim inf
n→∞

‖xn − z‖∀z ∈ X,

with y 6= z.
Let C be a nonempty subset of a Banah spae X and {xn} a bounded sequene in

X. For all x, y ∈ X, we de�ne

(1) asymptoti radius of {xn} at x by r(x, {xn}) = lim supn→∞ ‖xn − x‖;
(2) asymptoti radius of {xn} relative to C by r(C, {xn}) = inf{r, (x, {xn}) : x ∈ C};
(3) asymptoti enter of {xn} relative to C byA(C, {xn}) = {r(x, {xn}) = r(C, {xn}) :

x ∈ C}.

We note that A(C, {xn}) is not empty and more so, if X is uniformly onvex, then

A(C, {xn}) has exatly one point (see [12℄).

In the sequel, we refer to F (T ) as the set of �xed points of T.

De�nition 2.2. Let C be a subset of a normed spae X. A mapping T : C → C is said

to satisfy ondition (I) if there exists a nondereasing funtion f : [0,∞) → [0,∞) suh
that f(0) = 0 and f(t) > 0 ∀ t ∈ (0,∞) and that ‖x−Tx‖ ≥ f(d(x, F (T ))) for all x ∈ C,
where d(x, F (T )) denotes distane from x to F (T ).

De�nition 2.3. Let C be a nonempty subset of a Banah spae X and {xn} be a

sequene in X. Then {xn} is said to be Fejer monotone with respet to C, if for all x ∈ C
and n ∈ N, we have

‖xn+1 − x‖ ≤ ‖xn − x‖.
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Lemma 2.4. [36℄ Let X be a uniformly onvex Banah spae and 0 < p ≤ tn ≤ q < 1
for all n ∈ N. Let {xn} and {yn} be two sequenes in X suh that lim supn→∞ ‖xn‖ ≤ c,
lim supn→∞ ‖yn‖ ≤ c and limn→∞ ‖tnxn + (1 − tn)yn‖ = c holds for some c ≥ 0. Then
limn→∞ ‖xn − yn‖ = 0.

3. Generalized Mean Nonexpansive Mappings

In this setion, we introdue a lass of mappings alled the generalized mean nonexpansive

mappings. We give some basi properties and demilosedness priniple for this lass of

mappings.

De�nition 3.1. Let C be a nonempty subset of a Banah spae X. A mapping T : C →
X will be alled generalized mean nonexpansive mapping if there exist a, b, λ ∈ [0, 1],
with a+ b ≤ 1 suh that for all x, y ∈ C,

λ‖Tx− x‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖. (3.7)

Remark 3.2. It is easy to see that

(1) nonexpansive mappings are generalized mean nonexpansive,

(2) mean nonexpansive mappings are generalized mean nonexpansive,

(3) mappings satisfying ondition (C) are generalized mean nonexpansive,

(4) mappings satisfying ondition (Cλ) are generalized mean nonexpansive.

The following example shows that the onverse of these statements are not always

true.

Example 3.3. Suppose X = R and C = {0, 0.1, 0.2, · · · , 4}. Let T : C → R be a

mapping de�ned by

Tx =











3
2 if x ∈ [0, 3],

1 if x ∈ (3, 4),

0 if x = 4.

(3.8)

Then T is a generalized mean nonexpansive but does not satisfy ondition (Cλ) and

onsequently T does not satisfy ondition (C) and not a nonexpansive mapping.

Proof. To show that T is a generalized mean nonexpansive mapping, we take λ = 1
30 and

a = b = 1
2 and onsider the following ases:

Case 1: Suppose x, y ∈ [0, 3]. For this ase, we onsider the following subases.

Case 1(a): Suppose x = y.

λ‖x− Tx‖ =
1

30
|x− 1.5| ≥ 0 = ‖x− y‖.

If

λ‖x− Tx‖ =
1

30
|x− 1.5| = 0 = ‖x− y‖,

we have

‖Tx− Ty‖ = 0 ≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

On the other hand, if

λ‖x− Tx‖ =
1

30
|x− 1.5| > 0 = ‖x− y‖.

Then, we have nothing to show.

Case 1(b): Suppose x 6= y.

λ‖x− Tx‖ =
1

30
|x− 1.5| ≤ 0.1 ≤ ‖x− y‖.
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We then have that

‖Tx− Ty‖ = 0 ≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

Case 2: Suppose x ∈ [0, 3] and y ∈ (3, 4).

λ‖x− Tx‖ =
1

30
|x− 1.5| ≤ 0.1 ≤ ‖x− y‖.

We then have that

‖Tx− Ty‖ =
1

2
≤

1

2
‖y − Ty‖

=
1

2
‖y − x+ x− Ty‖

≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

Case 3: Suppose x ∈ [0, 3] and y = 4.

λ‖x− Tx‖ =
1

30
|x− 1.5| < 1 ≤ ‖x− y‖.

We then have that

‖Tx− Ty‖ = 1.5 ≤
1

2
‖y − Ty‖

=
1

2
‖y − x+ x− Ty‖

≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

Case 4: Suppose x ∈ (3, 4) and y = [0, 3].

λ‖x− Tx‖ =
1

30
|x− 1| ≤ ‖x− y‖.

We then have that

‖Tx− Ty‖ =
1

2
≤

1

2
‖2x− (y + Ty)‖

=
1

2
‖x− y + x− Ty‖

≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

Case 5: Suppose x ∈ (3, 4) and y = 4.

λ‖x− Tx‖ =
1

30
|x− 1| < 0.1 ≤ ‖x− y‖.

We then have that

‖Tx− Ty‖ = 1 =
1

2
‖2x− (y + Ty)‖

=
1

2
‖x− y + x− Ty‖

≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

Case 6: Suppose x = 4 and y ∈ [0, 3].

λ‖x− Tx‖ =
1

30
|4− 0| < 1 ≤ ‖x− y‖.
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We then have that

‖Tx− Ty‖ = 1.5 ≤
1

2
‖2x− (y + Ty)‖

=
1

2
‖x− y + x− Ty‖

≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

Case 7: Suppose x = 4 and y ∈ (3, 4).

λ‖x− Tx‖ =
1

30
|4− 0| ≤ ‖x− y‖.

We then have that

‖Tx− Ty‖ = 1 ≤
1

2
‖2x− (y + Ty)‖

=
1

2
‖x− y + x− Ty‖

≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

It is easy to see that the other ases follows similar approah. Hene, T is a generalized

mean nonexpansive mapping.

However, we now show that T does not satisfy ondition Cλ. For any λ ∈ (0, 1), x = 2.7
and y = 4, we have that

λ‖x− Tx‖ = λ(1.2) < 1.2 < 1.3 = ‖x− y‖,

but

‖Tx− Ty‖ = 1.5 > 1.3 = ‖x− y‖.

Hene, T does not satisfy ondition Cλ and onsequently T does not satisfy ondition

(C) and T is not a nonexpansive mapping. �

Proposition 3.1. Let C be a nonempty subset of a Banah spae X and T : C → X be a

generalized mean nonexpansive mapping with F (T ) 6= ∅. Then T is quasi-nonexapansive.

Proof. Let x ∈ F (T ) and y ∈ C,

λ‖Tx− x‖ = 0 ≤ ‖x− y‖.

So, we have

‖x− Ty‖ = ‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖

⇒ (1− b)‖x− Ty‖ ≤ (1 − b)‖x− y‖

⇒ ‖x− Ty‖ ≤ ‖x− y‖.

Hene, T is quasi-nonexpanisve. �

Theorem 3.4. Let C be a nonempty subset of a Banah spae X and T : C → X be

a generalized mean nonexpansive mapping. Then F (T ) is losed. Furthermore, if X is

stritly onvex and C is onvex, then F (T ) is onvex.

Proof. Let {xn} be a sequene in F (T ) suh that {xn} onverges to some y ∈ C. We

show that y ∈ F (T ). Sine

λ‖Txn − xn‖ = 0 ≤ ‖xn − y‖,
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so, we have

‖xn − Ty‖ = ‖Txn − Ty‖

≤ a‖xn − y‖+ b‖xn − Ty‖

⇒ ‖xn − Ty‖ ≤ ‖xn − y‖.

Sine lim
n→∞

‖xn − y‖ = 0, we obtain

lim
n→∞

‖xn − Ty‖ = 0.

As suh, we have that

Ty = y.

Hene, F (T ) is losed.
Now suppose that X is stritly onvex and C is onvex. We show that F (T ) is onvex.
Let β ∈ (0, 1) and x, y ∈ F (T ) with x 6= y. Sine

λ‖x− Tx‖ = 0 ≤ ‖x− z‖,

we obtain

‖x− Tz‖ = ‖Tx− Tz‖ ≤ a‖x− z‖+ b‖x− Tz‖

⇒ ‖x− Tz‖ ≤ ‖x− z‖. (3.9)

Using similar argument, we have

‖y − Tz‖ ≤ ‖y − z‖. (3.10)

Let z = βx+ (1− β)y ∈ C, for β ∈ [0, 1], then from (3.9) and (3.10), we obtain

‖x− y‖ ≤ ‖x− Tz‖+ ‖Tz − y‖

≤ ‖x− z‖+ ‖z − y‖ (3.11)

= ‖x− (βx+ (1 − β)y)‖+ ‖(βx+ (1 − β)y − y‖

≤ (1 − β)‖x− x‖+ β‖x− y‖+ (1− β)‖x− y‖+ β‖y − y‖

= ‖x− y‖.

Using the fat thatX is stritly onvex, there exists µ ∈ [0, 1] suh that Tz = µx+(1−µ)y.
Now

(1− µ)‖x− y‖ = ‖Tx− Tz‖ ≤ ‖x− z‖ = (1− β)‖x− y‖ (3.12)

and

µ‖x− y‖ = ‖Ty − Tz‖ ≤ ‖x− z‖ = β‖x− y‖. (3.13)

From the above inequalities, we have that 1 − µ ≤ 1 − β and µ ≤ β, this implies that

µ = β. Thus, z ∈ F (T ), whih implies that F (T ) is onvex. �

Lemma 3.5. Let C be a nonempty subset of a Banah spae X. Suppose that T : C → C
is a generalized mean nonexpansive mapping on C. Then for all x, y ∈ C and for β ∈ [0, 1],
we have the following

(1) ‖T 2x− Tx‖ ≤ ‖Tx− x‖,

(2) either

β
2 ‖x− Tx‖ ≤ ‖x− y‖ or

β
2 ‖Tx− T 2x‖ ≤ ‖Tx− y‖,

(3) either ‖Tx−Ty‖ ≤ a‖x−y‖+b‖x−Ty‖ or ‖T 2x−Ty‖ ≤ a‖Tx−y‖+b‖Tx−Ty‖.

Proof. (1) For x ∈ C, we have that λ‖Tx− x‖ ≤ ‖Tx− x‖, whih implies that

‖T 2x− Tx‖ = ‖T (Tx)− Tx‖ ≤ a‖Tx− x‖+ b‖Tx− Tx‖ ≤ ‖Tx− x‖.
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(2) Suppose on the ontrary that

β
2 ‖x−Tx‖ > ‖x− y‖ or β

2 ‖Tx−T 2x‖ > ‖Tx− y‖
for some x, y ∈ C. Now, using (1), observe that

‖x− Tx‖ ≤ ‖x− y‖+ ‖y − Tx‖

<
β

2
‖x− Tx‖+

β

2
‖Tx− T 2x‖

≤
β

2
‖x− Tx‖+

β

2
‖x− Tx‖

= β‖x− Tx‖

≤ ‖x− Tx‖,

whih is a ontradition. Thus, we obtain the desired result.

(3) The proof of (3) follows from (2). Thus we omit it.

�

Lemma 3.6. Let C be a nonempty subset of a Banah spe X and T : C → C a

generalized mean nonexpansvie mapping. Then for all x, y ∈ C,

‖x− Ty‖ ≤
(2 + a+ b)

(1− b)
‖x− Tx‖+ ‖x− y‖.

Proof. From Lemma 3.5, we have for x, y ∈ C that ‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖
or ‖T 2x− Ty‖ ≤ a‖Tx− y‖+ b‖Tx− Ty‖.

Considering ‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖, we obtain that

‖x− Ty‖ ≤ ‖x− Tx‖+ ‖Tx− Ty‖

≤ ‖x− Tx‖+ a‖x− y‖+ b‖x− Ty‖

≤ ‖x− Tx‖+ (1− b)‖x− y‖+ b‖x− Ty‖

⇒‖x− Ty‖ ≤
1

(1− b)
‖x− Tx‖+ ‖x− y‖ ≤

(2 + a+ b)

(1− b)
‖x− Tx‖+ ‖x− y‖.

Also, onsidering ‖T 2x − Ty‖ ≤ a‖Tx− y‖ + b‖Tx− Ty‖, using (1) of Lemma 3.5, we

obtain that

‖x− Ty‖ ≤ ‖x− Tx‖+ ‖Tx− T 2x‖+ ‖T 2x− Ty‖

≤ ‖x− Tx‖+ ‖x− Tx‖+ a‖Tx− y‖+ b‖Tx− Ty‖

≤ 2‖x− Tx‖+ a‖Tx− x‖+ a‖x− y‖+ b‖Tx− x‖ + b‖x− Ty‖

≤ (2 + a+ b)‖x− Tx‖+ (1− b)‖x− y‖+ b‖x− Ty‖

⇒‖x− Ty‖ ≤
(2 + a+ b)

(1− b)
‖x− Tx‖+ ‖x− y‖.

Thus in both ases, we obtain the desired result. �

Theorem 3.7. Let C be a nonempty losed subset of a Banah spae X with Opial

property and T : C → C be a generalized mean nonexpansive mapping with λ = β
2 , β ∈

[0, 1]. If {xn} onverges weakly to x and limn→∞ ‖Txn − xn‖ = 0, then Tx = x. That is
I − T is demilosed at zero, where I is the identity mapping on X.

Proof. By Lemma 3.5

λ‖xn − Txn‖ ≤ ‖xn − x‖.

Thus by de�nition

‖Txn − Tx‖ ≤ a‖xn − x‖+ b‖xn − Tx‖.
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Now, observe that

‖xn − Tx‖ ≤ ‖xn − Txn‖+ ‖Txn − Tx‖

≤ ‖xn − Txn‖+ a‖xn − x‖+ b‖xn − Tx‖

≤ ‖xn − Txn‖+ (1− b)‖xn − x‖ + b‖xn − Tx‖

⇒‖xn − Tx‖ ≤
1

(1− b)
‖xn − Txn‖+ ‖xn − x‖.

Using our hypothesis, we have that

lim inf
n→∞

‖xn − Tx‖ ≤ lim inf
n→∞

‖xn − x‖. (3.14)

Using our hypothesis that {xn} onverges weakly to x and Opial property, we have

lim inf
n→∞

‖xn − x‖ ≤ lim inf
n→∞

‖xn − Tx‖,

whih ontradits (3.14). Thus, we have that Tx = x. �

Theorem 3.8. Let C be a nonempty losed onvex subset of a uniformly onvex Banah

spae X. Suppose that T : C → C is a generalized mean nonexpansive mapping on C
suh that λ = β

2 with β ∈ (0, 1). Then F (T ) 6= ∅ if and only if {T n(x)} is a bounded

sequene for some x ∈ C, where n ∈ N.

Proof. Suppose that {T n(x)} is a bounded sequene for some x ∈ C and de�ne {xn} =
{T n(x)} for all n ∈ N. Then there exists y ∈ C suh that A(C, {xn}) = {y}. Sine

β

2
‖Txn − xn‖ =

β

2
‖xn+1 − xn‖ ≤ ‖xn+1 − xn‖,

we obtain that

‖xn+2 − xn+1‖ = ‖Txn+1 − Txn‖

≤ a‖xn+1 − xn‖+ b‖xn+1 − Txn‖

= a‖xn+1 − xn‖+ b‖xn+1 − xn+1‖

≤ ‖xn+1 − xn‖.

We laim that ‖xn+1 − xn‖ ≤ 2
β
‖xn − y‖ or ‖xn+2 − xn+1‖ ≤ 2

β
‖xn+1 − y‖ for all n ∈ N.

Suppose on the ontrary that

2
β
‖xn−y‖ < ‖xn+1−xn‖ or

2
β
‖xn+1−y‖ < ‖xn+2−xn+1‖.

Now, observe that

‖xn+1 − xn‖ ≤ ‖xn+1 − y‖+ ‖y − xn‖

<
β

2
‖xn+2 − xn+1‖+

β

2
‖xn+1 − xn‖

≤
β

2
‖xn+1 − xn‖+

β

2
‖xn+1 − xn‖

= β‖xn+1 − xn‖

≤ ‖xn+1 − xn‖.

Thus we have a ontradition. Hene for all n ∈ N, we have that ‖xn+1−xn‖ ≤ 2
β
‖xn−y‖

or ‖xn+2 − xn+1‖ ≤ 2
β
‖xn+1 − y‖.

Now, onsidering the �rst ase,

β
2 ‖xn+1−xn‖ = β

2 ‖Txn−xn‖ ≤ ‖xn− y‖. By de�nition,
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we have that

‖Txn − Ty‖ ≤ a‖xn − y‖+ b‖xn − Ty‖

≤ (1 − b)‖xn − y‖+ b‖xn − Ty‖

⇒ lim sup
n→∞

‖Txn − Ty‖ ≤ a lim sup
n→∞

‖xn − y‖+ b lim sup
n→∞

‖xn − Ty‖

⇒ lim sup
n→∞

‖xn − Ty‖ ≤ lim sup
n→∞

‖xn − y‖.

Thus, we have T (y) ∈ A(C, {xn}), so that Ty = y. Using similar approah, we also obtain

Ty = y for the seond ase. Thus F (T ) 6= ∅.
Conversely, suppose F (T ) 6= ∅. Then there exists say y ∈ F (T ) and by indution, we have
that T ny = y for all n ∈ N. Thus {T n(y)} is a onstant sequene and so bounded. �

4. Convergene Results

In this setion, we propose a three steps iterative algorithm for approximating the �xed

point of generalized mean nonexpansive mapping and establish the strong onvergene

of the algorithm. The propose iterative algorithm is given as follows: For eah x0 ∈ C,
the sequene {xn} in C is de�ned by











zn = (1− γn)xn + γnTxn,

yn = T [(1− αn)zn + αnTzn],

xn+1 = T [(1− βn)Tzn + βnTyn], n ≥ 0,

(4.15)

where {αn}, {βn} and {γn} are sequenes in [0, 1].

Lemma 4.1. Let C be a nonempty losed and onvex subset of a uniformly onvex

Banah spae X and T : C → C be a generalized mean nonexpansive mapping with

F (T ) 6= ∅. Suppose that {xn} is de�ned by (4.15), where {βn}, {γn} and {αn} are se-

quenes in [0, 1]. Then the following hold:

(i) {xn} is bounded.

(ii) limn→∞ ‖xn − x∗‖ exists for all x∗ ∈ F (T ).

Proof. Using (4.15) and Proposition 3.1, we have

‖zn − x∗‖ ≤ (1− γn)‖xn − x∗‖+ γn‖Txn − x∗‖

≤ (1− γn)‖xn − x∗‖+ γn‖xn − x∗‖ (4.16)

≤ ‖xn − x∗‖.

Using (4.15), (4.16) and Proposition 3.1, we have

‖yn − x∗‖ = ‖T [(1− αn)zn + αnTzn]− x∗‖

≤ (1− αn)‖zn − x∗‖+ αn‖Tzn − x∗‖

≤ (1− αn)‖zn − x∗‖+ αn‖zn − x∗‖ (4.17)

= ‖zn − x∗‖

= ‖xn − x∗‖.

Using (4.15), (4.17) and Proposition 3.1, we have

‖xn+1 − x∗‖ = ‖T [(1− βn)Tzn + βnTyn]− x∗‖

≤ (1− βn)‖Tzn − x∗‖+ βn‖Tyn − x∗‖

≤ (1− βn)‖zn − x∗‖+ βn‖yn − x∗‖

≤ (1− βn)‖xn − x∗‖+ βn‖xn − x∗‖ (4.18)

= ‖xn − x∗‖.
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This shows that {‖xn − x∗‖} is bounded and non-dereasing for all x∗ ∈ F (T ). Thus
{xn} is bounded and limn→∞ ‖xn − x∗‖ exists. �

Lemma 4.2. Let C be a nonempty losed and onvex subset of a uniformly onvex

Banah spae X and T : C → C be a generalized mean nonexpansive mapping with

F (T ) 6= ∅. Suppose that {xn} is de�ned by (4.15), where {βn}, {γn} and {αn} are se-

quenes in [0, 1], then limn→∞ ‖Txn − xn‖ = 0.

Proof. Sine F (T ) 6= ∅, let x∗ ∈ F (T ). We have established in Lemma 4.1 that {xn} is

bounded and limn→∞ ‖xn − x∗‖ exists for all x∗ ∈ F (T ). Suppose that limn→∞ ‖xn −
x∗‖ = c. If we take c = 0, then we are done. Thus, we onsider the ase where c > 0.
From (4.16), we have ‖zn − x∗‖ ≤ ‖xn − x∗‖, it then follows that

lim sup
n→∞

‖zn − x∗‖ ≤ c. (4.19)

Also, using Proposition 3.1, we have ‖Txn − x∗‖ ≤ ‖xn − x∗‖, it then follows that

lim sup
n→∞

‖Txn − x∗‖ ≤ c. (4.20)

Using (4.17) and (4.18), we have

‖xn+1 − x∗‖ = ‖T [(1− βn)Tzn + βnTyn]− x∗‖

≤ (1− βn)‖zn − x∗‖+ βn‖yn − x∗‖

≤ (1− βn)‖zn − x∗‖+ βn‖xn − x∗‖.

Taking the lim infn→∞ of both sides and rearranging the inequalities, we have

c ≤ lim inf
n→∞

‖zn − x∗‖. (4.21)

From (4.19) and (4.21), we obtain that limn→∞ ‖zn − x∗‖ = c. That is,

lim
n→∞

‖(1− γn)xn + γnTxn − x∗‖ = c.

Thus by Lemma 2.4, we have

lim
n→∞

‖xn − Txn‖ = 0.

�

Theorem 4.3. Let X be a uniformly onvex Banah spae whih satis�es the Opial's

ondition and C a nonempty losed onvex subset of X. Let T : C → C be a generalized

mean nonexpansive mapping suh that λ = β
2 ∈ [0, 1

2 ] with F (T ) 6= ∅ and {xn} be a

sequene de�ned by Iteration (4.15). Then {xn} onverges weakly to a �xed point of T.

Proof. In Lemma 4.1, we show that limn→∞ ‖xn − x∗‖ exists and that {xn} is bounded.

Now, sine X is uniformly onvex, we an �nd a subsequene say {xni
} of {xn} that

onverges weakly in C. We now show that {xn} has a unique weak subsequential limit

in F (T ). Let u and v be weak limits of the subsequenes {xnk
} and {xnj

} of {xn}
respetively. By Theorem 4.2, we have that limn→∞ ‖xn − Txn‖ = 0 and I − T is

demilosed with respet to zero by Theorem 3.7, we therefore have that Tu = u. Using
similar approah, we an show that v = Tv. In what follows, we show uniqueness. From

Lemma 4.1, we have that limn→∞ ‖xn − v‖ exists. Now, suppose that u 6= v, then by
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Opial's ondition,

lim
n→∞

‖xn − u‖ = lim
k→∞

‖xnk
− u‖

< lim
k→∞

‖xnk
− v‖

= lim
n→∞

‖xn − v‖

= lim
j→∞

‖xnj
− v‖

< lim
j→∞

‖xnj
− u‖

= lim
n→∞

‖xn − u‖.

This is a ontradition, so u = v. Hene {xn} onverges weakly to a �xed point of F (T )
and this ompletes the proof. �

Theorem 4.4. Let C be a nonempty losed onvex subset of a uniformly onvex Banah

spae X. Let T : C → C be a generalized mean nonexpansive mapping on C, {xn} de�ned

by (4.15) and F (T ) 6= ∅. Then {xn} onverges strongly to a point of F (T ) if and only if

lim infn→∞ d(xn, F (T )) = 0 where d(x, F (T )) = inf{‖x− x∗‖ : x∗ ∈ F (T )}.

Proof. Suppose that {xn} onverges to a �xed point, say x∗
of T. Then limn→∞ d(xn, x

∗) =
0, and sine 0 ≤ d(xn, F (T )) ≤ d(xn, x

∗), it follows that limn→∞ d(xn, F (T )) = 0. There-
fore, lim infn→∞ d(xn, F (T )) = 0.
Conversely, suppose that lim infn→∞ d(xn, F (T )) = 0. From Lemma 4.1, we have that

limn→∞ ‖xn − x∗‖ exists and that limn→∞ d(xn, F (T )) exists for all x∗ ∈ F (T ). By our

hypothesis, lim infn→∞ d(xn, F (T )) = 0, so for any give ǫ > 0, there exists n0 ∈ N, suh
that for all n ≥ n0, we have d(xn, F (T )) ≤ ǫ. We now show that {xn} is a Cauhy

sequene in C. Sine, limn→∞ d(xn, F (T )) = 0, for any give ǫ > 0, there exists n0 ∈ N

suh that for n,m ≥ n0, we have

d(xm, F (T )) ≤
ǫ

2
,

d(xn, F (T )) ≤
ǫ

2
.

Therefore, we have

‖xm − xn‖ ≤ ‖xm − x∗‖+ ‖xn − x∗‖

≤ d(xm, F (T )) + d(xn, F (T ))

≤
ǫ

2
+

ǫ

2
= ǫ.

Hene {xn} is Cauhy in C. Sine C is losed, then there exists a point x1 ∈ C suh that

limn→∞ xn = x1. Sine limn→∞ d(xn, F (T )) = 0, it follows that limn→∞ d(x1, F (T )) = 0.
Thus x1 ∈ F (T ) Sine F (T ) is losed. �

Theorem 4.5. Let C be a nonempty losed onvex subset of a uniformly onvex Banah

spae X. Let T : C → C be a generalized mean nonexpansive mapping, {xn} de�ned by

(4.15) and F (T ) 6= ∅. Let T satisfy ondition (I), then {xn} onverges strongly to a �xed

point of T.

Proof. From Lemma 4.1, we have limn→∞ ‖xn − F (T )‖ exists and by Theorem 4.2, we

have limn→∞ ‖xn − Txn‖ = 0. Using the fat that

0 ≤ lim
n→∞

f(d(x, F (T )) ≤ lim
n→∞

‖xn − Txn‖ = 0 ∀x ∈ C,

we have that limn→∞ f(d(xn, F (T ))) = 0. Sine f is nondereasing with f(0) = 0 and

f(t) > 0 for t ∈ (0,∞), it then follows that limn→∞ d(xn, F (T )) = 0. Hene, by Theorem
4.4 {xn} onverges strongly to x∗ ∈ F (T ). �
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5. Numerial Examples

Example 5.1. De�ne a mapping T : [0, 1] → [0, 1] as

Tx =

{

1− x if x ∈ [0, 1/5),
x+4
5 if x ∈ [1/5, 1].

(5.22)

Then T is a generalized mean nonexpansive mapping but not mean nonexpansive.

Proof. Suppose T is mean nonexpansive, then there exist nonnegative real numbers a
and b, suh that a + b ≤ 1 and ‖Tx− Ty‖ ≤ a‖x− y‖ + b‖x − Ty‖ for all x, y ∈ [0, 1].
Now suppose x = 1 and y = 0, we then have that

‖Tx− Ty‖ = 0

≤ a‖x− y‖+ b‖x− Ty‖

= a.

So a ≤ 1 and b = 0. Thus T is nonexpansive, but this ontradits the fat that T is not

ontinuous. Hene T is not mean nonexpansive.

To show that T is generalized mean nonexpansive, it su�es to show that T is Suzuki

generalized nonexpansive. To do this, we onsider the following ases:

Case 1: Let x ∈ [0, 1
5 ), as suh, we have that

1
2‖x−Tx‖ = 1−2x

2 ∈ ( 3
10 ,

1
2 ]. By de�nition,

for

1
2‖x− Tx‖ ≤ ‖x− y‖, we must have that y ≥ 1

2 , that is y ∈ [ 12 , 1]. And so, we have

‖Tx− Ty‖ =

∣

∣

∣

∣

5x+ y − 1

5

∣

∣

∣

∣

<
1

5

and

‖x− y‖ = |x− y| >

∣

∣

∣

∣

1

5
−

1

2

∣

∣

∣

∣

=
3

10
.

Thus we have that

1
2‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Case 2: Let x ∈ [ 15 , 1], as suh, we have that
1
2‖x− Tx‖ = 2−2x

5 ∈ [0, 45 ]. By de�nition,

for

1
2‖x− Tx‖ ≤ ‖x− y‖, we must have that 2−2x

5 ≤ |x− y|. We have two possibilities.

Case 2a: If x < y, we have that 2−2x
5 < y − x, as suh we must have that

2+3x
5 ≤ y ⇒

y ∈ [ 1325 , 1] ⊂ [ 15 , 1]. And so, we obtain that

‖Tx− Ty‖ =

∣

∣

∣

∣

x+ 4

5
−

y + 4

5

∣

∣

∣

∣

=
1

5
|x− y| ≤ ‖x− y‖.

Thus we have that

1
2‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Case 2b: If x ≥ y, we have that 2−2x
5 ≤ x− y, as suh, we have y ≤ 7x−2

5 ⇒ y ∈ [−3
25 , 1].

We only need to onsider the ase in whih y ∈ [0, 1]. For y ≤ 7x−2
5 , we obtain that

x ≥ 5y+2
7 , whih implies that x ∈ [ 27 , 1], as suh we onsider x ∈ [ 27 , 1] and y ∈ [0, 1]. For

x ∈ [ 27 , 1] and y ∈ [ 15 , 1] have been onsidered in ase 2a. So, we onsider x ∈ [ 27 , 1] and

y ∈ [0, 1
5 ). To start with, suppose x ∈ [ 27 ,

2
5 ] and y ∈ [0, 1

5 ), we therefore have that

‖Tx− Ty‖ =

∣

∣

∣

∣

x+ 4

5
− (1− y)

∣

∣

∣

∣

=

∣

∣

∣

∣

x+ 5y − 1

5

∣

∣

∣

∣

≤
2

25

and

‖x− y‖ = |x− y| >

∣

∣

∣

∣

2

7
−

1

5

∣

∣

∣

∣

=
3

35
.
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Thus we have that

1
2‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Also for x ∈ [ 25 , 1] and y ∈ [0, 15 ), we therefore have that

‖Tx− Ty‖ =

∣

∣

∣

∣

x+ 4

5
− (1− y)

∣

∣

∣

∣

=

∣

∣

∣

∣

x+ 5y − 1

5

∣

∣

∣

∣

≤
1

5

and

‖x− y‖ = |x− y| >

∣

∣

∣

∣

2

5
−

1

5

∣

∣

∣

∣

=
1

5
.

Thus we have that

1
2‖x − Tx‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤ ‖x − y‖. Hene T is Suzuki

generalized nonexpansive and so a generalized mean nonexpansive.

In what follows, we numerially ompare our new iteration proess with some existing

iterative proesses. Taking αn = 2n√
7n+9

, γn = 2√
n+9

, βn = 1
3n+7 and x0 = 0.9.

Step Our Algorithm Karakay et al. Algorithm M. Algorithm Piard-S Algorithm

x0 0.9 0.9 0.9 0.9

x1 0.9967649 0.9960000 0.9960000 0.9960000

x2 0.9999356 0.9999040 0.9999040 0.9998602

x3 1 0.9999987 0.9999987 0.9999954

x4 1 1 1 0.9999999

x5 1 1 1 1

This omparison shows that the iterative proesses (4.15) onverges faster than the it-

erative proesses (1.4), (1.5) and (1.6). More so, the iterative proesses (1.5) and (1.6)

onverges at the same time. �

6. Conlusion

In this paper, we introdued a lass of mappings, alled the generalized mean nonex-

pansive mappings and obtained some �xed point results for this lass of mappings. In

addition, we proposed an iterative algorithm for approximating the �xed point of this

lass of mappings and established the onvergene of the iterative algorithm in uniformly

onvex Banah spaes. Furthermore, we show that the proposed iterative proess is more

e�ient and onverges faster than some iterative proesses in literature.
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