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A GLIMPSE ON BIRKHOFF-JAMES ORTHOGONALITY IN

BANACH SPACES

B. P. OJHA AND P. M. BAJRACHARYA

Abstra
t. This paper is an overview of various results on Birkho�-James orthogo-

nality of operators in Hilbert spa
e and Bana
h spa
es. We mainly fo
us on Birkho�

orthogonality of linear(bounded and 
ompa
t) operators in terms of matri
es, proje
-

tion angles, Hilbert C∗
-modules as well as on Bana
h modules. The arti
le 
on
ludes

with some open problems regarding possible 
orrelation between Birkho�-James or-

thogonality and Carlsson orthogonality, parti
ularly in the 
ase of Pythagorean or-

thogonality.

Äàíî îãëÿä ðiçíîìàíiòíèõ ðåçóëüòàòiâ ùîäî îðòîãîíàëüíîñòi â ñåíñi Áiðêãî�à-

Äæåéìñà îïåðàòîðiâ ó ãiëüáåðòîâèõ i áàíàõîâèõ ïðîñòîðàõ. Ïåðåâàæíî ðîçãëÿ-

äà¹òüñÿ îðòîãîíàëüíiñòü çà Áiðêãî�îì ëiíiéíèõ (îáìåæåíèõ i êîìïàêòíèõ)

îïåðàòîðiâ ó òåðìiíàõ ìàòðèöü, êóòiâ, ãiëüáåðòîâèõ Ñ*-ìîäóëiâ, à òàêîæ

áàíàõîâèõ ìîäóëiâ. Íàâåäåíi äåÿêi âiäêðèòi ïèòàííÿ ñòîñîâíî ñïiââiäíîøåíü

îðòîãîíàëüíiñòþ Áiðêãî�à-Äæåéìñà òà îðòîãîíàëüíiñòþ Êàðëññîíà, çîêðåìà

äëÿ âèïàäêó ïi�àãîðîâî¨ îðòîãîíàëüíîñòi.

1. Introdu
tion

The 
on
ept of Birkho� orthogonality began in 1935 [1℄. In the literature of orthogo-

nality this is known with some other names su
h as; Birkho�- James orthogonality and

Blas
hke Birkho�-James orthogonality ( see [2℄). In this paper [1, 3℄, an orthogonality

whi
h satis�es homogeneity but neither symmetri
 nor additive is de�ned by x⊥y if and

only if ‖x + λy‖ ≥ ‖x‖ for all λ, is known as Birkho� orthogonality or Birkho�-James

orthogonality. The geometri
al meaning of Birkho� orthogonality is that if x is an unit

ve
tor of a Bana
h spa
e X and y ∈ X , then x is Birkho� orthogonal to y means that

the straight line {x+ λy : λ ∈ K} is tangent to the unit ball of X at x. This 
on
ept is

similar to the statement: suppose two lines l1 and l2 interse
t at the point m, then l1⊥l2
if and only if the distan
e from a point of l2 to a given point n of l1 is never less than

the distan
e from m and n. [3℄ For any hyper-plane H ⊂ X , x is said to be orthogonal

to H if ∀x ∈ H,x⊥h.

Bhatia and Semrl in [4℄ generalize the de�nition of Birkho� orthogonality in terms of

matri
es. For any matri
es A and B they denote the symbol ‖A‖ for operator norm of

A and A is orthogonal to B in the sense of Birkho�-James i� for any 
omplex number

z, ‖A + zB‖ ≥ ‖A‖. A matrix A is orthogonal to B i� there exist a unit ve
tor x ∈ H

su
h that ‖Ax‖ = ‖A‖ and 〈Ax,Bx〉 = 0 [4℄. They also introdu
ed Birkho�- James

orthogonality in [4℄ as A⊥B if and only if ‖A + zB‖p ≥ ‖A‖p, where ‖A‖p denotes

S
hatten p-norm of A de�ned by ‖A‖p = [
∑n

j=1 Sj(A)
p]

1

p
for 1 ≤ p < ∞ and S1(A) ≥

......Sn(A) are singular values of A. Taking the spe
ial 
ase for p = 2, Bhatia and Semrl in

[4℄ also proved that the given orthogonality is equivalent to usual Hilbert spa
e 
ondition

〈A,B〉 = 0, whi
h de�nes an inner-produ
t on the spa
e of matri
es as 〈A,B〉 = tr(A∗B).
The norm asso
iated to this inner produ
t is ‖.‖2. In an in�nite dimensional 
ase [4℄, for
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any bounded operators in a Hilbert spa
e H, A⊥B if and only if there exist a sequen
e

{xn} of unit ve
tors su
h in H that ‖Ax‖ → ‖A‖, and 〈Axn, Bxn〉 → 0.
Benitz et al. [5℄ proved that X is an inner-produ
t spa
e if and only if for any linear

operators A and C in a �nite dimensional normed spa
e X, A⊥C ⇔ ∃u ∈ SX : ‖Au‖ =
‖u‖, Au⊥Cu, where SX = {x ∈ X : ‖x‖ = 1} and “⊥′′

denotes the Birkho�-James or-

thogonality.

Theorem 1.1. [5℄ If SX is not an ellipse(X is not an inner-produ
t spa
e), then there

exists linear operators A and C in X su
h that A⊥C, but there does not exists u ∈ SX

su
h that ‖A‖ = ‖AU‖ and Au⊥Cu.

Theorem 1.2 ([5℄). A real �nite dimensional normed spa
e X is an inner-produ
t spa
e

if and only if , for A,C ∈ L(X), A⊥C ⇔ ∃x ∈ SX : ‖A‖ = ‖Ax‖, Ax⊥Cx.

where, Pxy = Dxy

(

1 0
0 0

)

and Dxy =

(

x1 y1
x2 y2

)

.

Theorem 1.3. [6℄ The q-angle has the following properties:

(i) Part of parallelism property: Aq(x, y) = 0 i� x and y are linearly dependent.

(ii) Part of homogeneity property: Aq(Ax,By) = Aq(x, y) for every x, y ∈ X and

A,B ∈ R− {0}.
In [6℄ Chen Zhi-Zhi et al. have given slightly di�erent de�nition of Birkho� orthogonal-

ity in su
h a way that; x is Birkho� orthogonal to y i� Aq(x, y) =
π
2 by using proje
tions

of the angles between two ve
tors x and y in a real two dimensional normed spa
e X.

De�nition 1.4. [6℄ The g-angle between two ve
tors x and y is given by g(x, y) =

cos−1 g(x,y)
‖x‖ ‖y‖ , where g(x, y) =

1
2‖x‖[τ+(x, y)+τ−(x, y)] and τ±(x, y) = limt→±0

‖x+ty‖−‖x‖
t

.

In that 
ase x⊥gy if g(x, y) = 0 or Ag(x, y) =
π
2 .

For any x = (x1, x2)
T
and y = (y1, y2)

T
in a two dimensional real normed spa
e X,

q(x, y) =

{

0 if x and y are linearly dependent

‖Pxy‖−1
, if x and y are linearly independent.

Continuity property: If xn → x and yn → y, then Aq(xn, yn) → Aq(x, y), where Aq(x, y)

is q-angle between x and y de�ned by Aq(x, y) = sin−1[q(x, y)].

Lemma 1.5. [6℄ If x is Birkho� orthogonal to y. Then for any m,n ∈ R, ‖mx+ ny‖ ≥
‖mx‖.
Proof. If m = 0, the 
on
lusion is obviously true. If m 6= 0 and if x is Birkho� orthogonal

to y,

‖mx+ ny‖ = |m|‖x+
m

n
y‖ ≥ |m|‖x‖ = ‖mx‖. �

Theorem 1.6. [7℄ Let x = (x1, x2)
T
and y = (y1, y2)

T
be two ve
tors in a two dimen-

sional real normed spa
e X with basis {e1, e2} . Then x is Birkho�-orthogonal to to y i�

Aq(x, y) =
π
2 i.e. ‖Pxy‖ = 1.

2. Orthogonality on C∗
-module

[8℄ Let A be a C∗
-algebra and H be a (left) A module. Suppose that the linear

stru
ture given on A and H are 
ompatible, that is, λ(ax) = a(λx) for every λ ∈ C and

a ∈ H . Then there exists a mapping 〈., .〉 : H ×H → A with the following properties:

(i) 〈x, x〉 ≥ 0 for every x ∈ H ,

(ii) 〈x, x〉 = 0 i� x = 0,
(iii) 〈x, y〉 = 〈y, x〉∗ for every x, y ∈ H ,
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(iv) 〈ax, y〉 = a 〈x, y〉 of every a ∈ A and x, y ∈ H ,

(v) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for every x, y, z ∈ H

The pair {H, 〈., .〉} is 
alled a (left) pre-Hilbert A module. The map 〈., .〉 is 
alled an A -

valued inner-produ
t. If the pre-Hilbert A -module {H, 〈., .〉} is 
omplete with respe
t to

the norm ‖x‖ = ‖ 〈x, x〉 ‖ 1

2
, then it is 
alled A Hilbert C∗

-module over A . Raji
 et al., in

[7, 8℄ introdu
ed a new 
on
ept of Birkho�-James orthogonality in a Hilbert C∗
-modules

over a C∗
-algebra A and proved that su
h orthogonality with respe
t to A -valued inner

produ
t 
oin
ide if and only if A is isomorphi
 to C.

[8℄ A mapping T : V → W between A -modules V and W is 
alled adjointable if there

exists mapping T ∗ : W → V su
h that 〈Tx, y〉 = 〈x, T ∗y〉 for all v ∈ V, y ∈ W . Su
h

a mapping T is bounded, linear and satis�es T (xa) = T (x)a for all x ∈ V and a ∈
A . The spa
e of all adjointable mapping from V into W is denoted by B(V,W ). Let

θx,y(z) = x(y, z), where θx,y ∈ B(V,W ) and K(B, V ) denotes the 
losed linear subspa
e

of B(V,W ) spanned by {Qxy : x ∈ W, y ∈ V } is 
alled spa
e of 
ompa
t operators.

Proposition 2.1. [8℄ Let A,B ∈ B(H).Then minλ∈C‖A + λB‖2 = sup‖xi‖=1MA,B(ξ),
where

MA,B(ξ) =

{

‖Aξ‖2 − |〈Aξ,Bξ〉|2

‖Bξ‖2 if, Bξ 6= 0

‖Aξ‖2 if, Bξ = 0

Proposition 2.2. [8℄ let A be a C∗
-algebra, and a, b ∈ A . Then minλ∈C‖a + λb‖2 =

maxϕ∈S(A)MA,B(ϕ), where

Ma,b(ϕ) =

{

ϕ(a∗a)− |ϕ(a∗b)2

ϕ(b∗b) if, ϕ(b∗b) 6= 0

ϕ(a∗a) if, ϕ(b∗b) = 0

Theorem 2.3. [8℄ Le V be a Hilbert C∗
-module over a C∗

-algebra A and x, y ∈ V . Then

minϕ∈C‖x+ ϕy‖2 = maxϕ∈S(A)Mx,y(ϕ), where Mx,y(ϕ) ∈ A is de�ned by

Mx,y(ϕ) =

{

ϕ(〈x, x〉)− |ϕ(〈x,y〉)2

ϕ(〈y,y〉) if, ϕ(〈y, y〉) 6= 0

ϕ(〈x, x〉) if, ϕ(〈y, y〉) = 0

Theorem 2.4. [8℄ Let V be a Hilbert C∗
-module over a C∗

-algebra A . Let x, y ∈ V .

Then x⊥By ⇔ ∃ϕ ∈ S(A ) : ϕ(〈x, x〉) = ‖x‖2 and ϕ(〈x, y〉) = 0.

Theorem 2.5. [8℄ Let V be a Hilbert C∗
-module over a C∗

-algebra A and x, y ∈ V .

Then

(i) x⊥By ⇔ 〈x, x〉 ⊥ 〈x, y〉 ⇔ 〈x, x〉 ⊥B 〈y, x〉.
(ii) x⊥By ⇒ x⊥Bx 〈x, y〉 and x⊥Bx 〈y, x〉.

Arambasi
 and Raji
 (see in[8℄) 
hara
terized Hilbert C∗
-modules where the Birkho�

orthogonality 
oin
ides with the usual orthogonality with respe
t to inner-produ
t spa
e.

By using the Gelfand-Mazur theorem, it 
an be proved that A is isomorphi
 to C and

using this 
on
ept, C is only the unital C∗
-algebra in whi
h Birkho� orthogonality x⊥By


oin
ides with x∗y = 0 for all elements x, y ∈ A .

Theorem 2.6. let V 6= {0} be a full Hilbert A -module. then the following statements

are equivalent:

(i) For all x, y ∈ V the 
ondition (x⊥By ⇔ 〈x, y〉 = 0) is always true.
(ii) A is isomorphi
 to C.
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3. Generalization of Bhatia-Semrl Property

In 2013, Sain and Paul [9℄ linked the Bhatia-Semrl property with norm attaining

operators in a �nite dimensional normed spa
es whi
h attain its norm on 
onne
ted 
losed

subset of SX and proved that the linear operator T satis�es the 
ondition; T⊥BA ⇒
∃x ∈ D : Tx⊥BAx, where A is a linear operator on L(X) and D is 
onne
ted 
losed

subset of SX . For the normed linear spa
e X of dimension 2, their next resear
h in 2015

(see [10℄) explore the 
onverse of previous result as obtained in [9℄. They proved that

if a linear operator T satis�es Bhatia-Semrl property, then the set of unit ve
tors SX ,

on whi
h T attains norm, is 
onne
ted in the proje
tive spa
e RP
′

= SX \ {x ∼ −x}
and 
onversely. For a stri
tly 
onvex normed spa
e X, the set of operators in L(X)
satisfying the Bhatia-Semrl property is dense in L(X). [10℄ Let T be a linear operator

on a normed spa
e X. Then the set of unit ve
tors in SX at whi
h T attains norm is

given by MT = {x ∈ SX : ‖Tx‖ = ‖T ‖}. Su
h a T satis�es Bhatia-Semrl property if for

any operator A ∈ L(X), T⊥BA ⇒ ∃x ∈ MT : Tx⊥BAx.. Sain et al. proved a slight

di�erent 
on
ept depending on the nature of MT des
ribed in [9℄ by stating that ; if

MT 6= D∪ (−D) and the 
ondition on the form of MT implying that T may not satis�es

the Bhatia-Semrl property.

Theorem 3.1. [10℄ Let T be a linear operator on a �nite dimensional real normed spa
e

X and MT = {x ∈ SX : ‖Tx‖ = ‖T ‖}. If MT 
an be partitioned into tow non-empty sets

whi
h are 
ontained in 
omplementary subset of X, then there is a linear operator A on

X su
h that T⊥BA but Tx 6⊥B Ax.

Theorem 3.2. [10℄ Let T be a linear operator on a �nite dimensional real smooth normed

spa
e X. If MT = {x ∈ SX : ‖Tx‖ = ‖T ‖} is a 
ountable set with more than 2 points.

Then for any x ∈ MT there is a linear operator A on X su
h that T⊥BA but Tx 6⊥B Ax

Theorem 3.3. Let T be a linear operator on a two dimensional real normed spa
e X,

and let MT = {x ∈ SX : ‖Tx‖ = ‖T ‖}. If MT has more than two 
omponents, then for

any x ∈ MT there is a linear operator A on X su
h that T⊥BA but Tx 6⊥B Ax.

4. Strong Birkhoff-James orthogonality

Paul et al. in the paper [11℄ proved that a normed linear spa
e X is stri
tly 
onvex

if and only if for all x ∈ SX there is bounded linear operator A whi
h attain its norm

only at the points of the form λx with λ ∈ Sk. To prove this, they have introdu
ed a


on
ept of strong Birkho�-James orthogonality. [11℄ For any normed linear spa
e X, x

is said to be strongly orthogonal to y in the sense of Birkho�-James i� ‖x‖ < ‖x+ λy‖
for all λ 6= 0. The notation x⊥SBy was used to indi
ate the strongly Birkho�-James

orthogonality and proved that the strongly Birkho�-James orthogonality implies Birkho�

orthogonality, but the 
onverse may not be true. To illustrate this 
on
ept, two elements

(1, 0) and (0, 1) are taken in l∞(R2), showing that (1, 0) and (0, 1) are orthogonal in the

sense of Birkho�-James but not strongly orthogonal to ea
h other.

De�nition 4.1. (Strongly orthogonal set)[11℄: A �nite set of elements {x1, ......xk}
is said to be strongly orthogonal set in the sense of Birkho�-James i� for ea
h m ∈
{1, 2, ......k} ‖xm‖ < ‖xm +

∑k
m=1,m 6=n λnxn‖, whenever λn 6= 0.

In 
ase of an in�nite set, if every �nite subset of the set is strongly orthogonal in the

sense of Birkho�-James, then the in�nite set is said to strongly orthogonal and 
onversely.

Theorem 4.2. [11℄ Let X be a normed linear spa
e and x0 ∈ Sx. If there exists a

Hamel basis of X 
ontaining x0 whi
h is strongly orthogonal relative to x0 in the sense

of Birkho�-James, then x0 is an extreme point of BX .
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Theorem 4.3. [11℄ Let X be a normed linear spa
e and x0 ∈ SX be an exposed point

of BX . Then there exists a Hamel basis of X 
ontaining x0 whi
h is strongly orthogonal

relative to x0 in the sense of Birkho�-James.

Theorem 4.4. [11℄ Let X be a normed linear spa
e and x0 ∈ SX . If there exist a

Hamel basis of X 
ontaining x0 whi
h is strongly orthogonal relative to x0 in the sense of

Birkho�-James, then there exists a bounded invertivle linear operator A on X su
h that

‖A‖ = ‖A0‖ > ‖Ay‖ for all y ∈ SX with y 6= λx0, λ ∈ Sk.

Theorem 4.5. [11℄ For a normed spa
e X, and a point x ∈ span(X), the following are

equivalent:

(i) x is an exposed point of BX .

(ii) There is a Hamel basis of X 
ontaining x whi
h is strongly orthonormal relative

to x in the sense of Birkho�-James.

(iii) There exists a bounded linear operator A on X whi
h attains only at the points

of the form λx with λ ∈ Sk.

Theorem 4.6. [11℄ For a normed linear spa
e X, the following are equivalent.

(i) X is stri
tly 
onvex.

(ii) For ea
h x ∈ SX , there exist a Hamel basis of X 
ontaining x whi
h is strongly

orthonormal relative to x in the sense of Birkho�-James.

5. Orthogonality of operators in 
omplex Bana
h Spa
es

To study the di�eren
e of orthogonality in the 
omplex 
ase in 
omparison to the real


ase, Paul et al. in 2018 [12℄ 
ame with a new 
on
ept of Birkho�-James orthogonality by

introdu
ing new de�nitions on a 
omplex re�exive Bana
h spa
es and introdu
ed more

than one equivalent 
hara
terization of Birkho�-James orthogonality of 
ompa
t linear

operators in the 
omplex 
ase. [12℄ For any bounded linear operator T,A ∈ L(X), T
is said to be Birkho�-James orthogonal to A if ‖T + λA‖ ≥ ‖T ‖ for all λ ∈ C and

MT = {x ∈ SX : ‖Tx‖ = ‖T ‖}. In the real Bana
h spa
e X, Sain introdu
ed two sets x+

and x−
in his paper [13℄ by

(i) x+ = {y ∈ X : ‖x+ λy‖ ≥ ‖x‖ for all λ ≥ 0} and

(ii) x+ = {y ∈ X : ‖x+ λy‖ ≥ ‖x‖ for all λ ≤ 0}
For the 
omplex Bana
h spa
e, Paul et al. in 2018 introdu
ed the following notations

[12℄ depending on Sain's 
on
ept : For any γ ∈ V,

(i) x+
γ = {y ∈ X : ‖x+ λy‖ ≥ ‖x‖ for all λ = tr, t ≥ 0}

(ii) x−
γ = {y ∈ X : ‖x+ λy‖ ≥ ‖x| for all λ = tr, t ≤ 0}

(iii) x
1

γ = {y ∈ X : ‖x+ λy‖ ≥ ‖x‖ for all λ = tr, t ∈ R}
(iv) where V = {γ ∈ C : |γ| = 1, arg(γ) ∈ [0, 2π]}.
(v) If µ = eiπγ, then x+

µ = x−
γ , x

−
µ = x+

γ and x
1

µ = x
1

γ . In the 
omplex Bana
h spa
e,

(vi) x+ = ∩
{

x+
γ : γ ∈ V

}

, x− = ∩
{

x−
γ : γ ∈ V

}

and x⊥ = ∩
{

x
1

γ : γ ∈ V
}

Proposition 5.1. [13℄ Let x, y ∈ X, where X is an 
omplex Bana
h spa
e and γ ∈ V .

Then following statements are true

(i) Either y ∈ x+
γ or y ∈ x−

γ .

(ii) x⊥γy ⇔ y ∈ x+
γ or y ∈ x−

γ .

(iii) y ∈ x+
γ ⇒ ηy ∈ (ξx)+γ for all η, ξ > 0.

(iv) y ∈ x+
γ ⇒ −y ∈ x−

γ and y ∈ (−x)−γ .

(v) y ∈ x−
γ ⇒ ηy ∈ (ξx)−γ for all η, ξ > 0.

(vi) y ∈ x−
γ ⇒ −y ∈ x+

γ and y ∈ (−x)+γ .

(vii) y ∈ x+
γ ⇒ µy ∈ (µx)+γ for all µ ∈ C.
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(viii) y ∈ x−
γ ⇒ µy ∈ (µx)−γ for all µ ∈ C.

Proposition 5.2. [13℄ Let x, y ∈ X, where X is a 
omplex Bana
h spa
e. Then the

following are true

(i) x⊥By ⇔ y ∈ x+
and y ∈ x−

.

(ii) y ∈ x+ ⇒ ηy(ξx)+ for all η, ξ > 0.
(iii) y ∈ x+ ⇒ −y ∈ x−

and y ∈ (−x)−.
(iv) y ∈ x− ⇒ −y ∈ x+

and y ∈ (−x)+.
(v) y ∈ x− ⇒ ηy ∈ (ξx)− for all η, ξ > 0.

Theorem 5.3. [13℄ Let X be a re�exive 
omplex Bana
h spa
e, and Y be any 
omplex

Bana
h spa
e. Let T,A ∈ K(x, y). Then T ⊥B A ⇔ ∀γ ∈ V, ∃ x = x(γ), y = y(γ) ∈
MT : Ax ∈ (Tx)+γ and Ty ∈ (Ty)−γ .

Theorem 5.4. [13℄ Let X be a 
omplex Bana
h Spa
e. Let x, y ∈ X and r = eiθ, where

θ ∈ [0, 2π]. If y ∈ x+
γ , then either y ∈ x+

µ for all µ with argµ ∈ [0, θ] or y ∈ x+
µ for all µ

with argµ ∈ [0, π].

Theorem 5.5. [13℄ Let be a linear operator on a �nite dimensional 
omplex Bana
h

spa
e X, su
h that MT is a 
losed 
onne
ted subset of SX . Then for A ∈ L(X), T ⊥B

A ⇔ ∀γ ∈ V ∃ x = x(γ) ∈ MT : Tx ⊥ℵ Ax.

Theorem 5.6. [13℄ Let T be a linear operator in a �nite dimensional 
omplex Bana
h

spa
e X su
h that MT is a 
losed 
onne
ted subset of the unit sphere of X. Then for

A ∈ L(X), T ⊥B A ⇔ ∃ θ ∈ [0, π] and x, y ∈ MT : Ax ∈ (Tx)+γ for all γ with

arg γ ∈ [θ − π, θ] and Ay ∈ (Ty)+γ for all γ with arg γ ∈ [θ, θ + π].

6. Geometri
 Properties

De�nition 6.1. [14℄ Let x, y ∈ X and T = {µ ∈ K : |µ| = 1}. Then x is said to be norm

parallel to y if ‖x+ µy‖ = ‖x‖+ ‖y‖ for all µ ∈ T .

Norm parallelism is symmetri
 as well as homogeneous; whereas, Birkho�-James or-

thogonality is homogeneous but not symmetri
 in a Bana
h spa
e. [14℄ In the 
ase of

Hilbert spa
e, two elements are linearly dependent i� they are norm- parallel; however,

in normed spa
es two linearly dependent ve
tors are norm-parallel, but the 
onverse may

not be true. For instan
e, (1, 1) and (1, 0) are norm parallel but not linearly dependent.

Depending on the 
on
ept of Birkho�-James orthogonality and strong Birkho�-James or-

thogonality Paul et al.[14℄ introdu
e a new geometri
 notion of semi-rotund point. For any

normed linear spa
e X, β 6= x ∈ X is said the semi-rotund point of X if ∃y ∈ X : x ⊥SB y.

If for every x 6= 0 ∈ X , x is a semi-rotund point, the normed spa
e X is said to be

semi-rotund spa
e. Dragomir introdu
ed the 
on
ept of approximate Birkho�-James or-

thogonality [15℄ as follows: x is said to be approximate Birkho�-James orthogonal to y if

‖x+ µy‖ ≥ (1− ǫ)‖x‖ for all µ ∈ K and ǫ ∈ [0, 1]; however, Chmielinski [14, 16℄ de�ned

approximate Birkho�-James orthogonality as ; x ⊥ǫ
D⇔ ‖x + µy‖ ≥

√
1− ǫ2‖x‖ for all

µ ∈ K. The 
on
ept of approximate parallelism was developed by Zamani and Moslehian

[17℄ by stating that x is approximately parallel to y if inf {‖x+ λy‖ : λ ∈ K} ≤ ǫ‖x‖ for

all ǫ ∈ [0, 1].

Proposition 6.2. [14℄ let X be a bounded linear operator form a normed spa
e X to

normed spa
e Y and x ∈ MT . Then for any ǫ ∈ [0, 1] and y ∈ X, we have x||ǫy ⇒ Tx||ǫTy.

Theorem 6.3. [14℄ Let T and A are 
ompa
t linear operators form a re�exive Bana
h

spa
e X to any normed spa
e Y. Then T ||A ⇔ ∃ x ∈ MT ∩MA : Tx||Ax.
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Theorem 6.4. [14℄ If T and A are bounded linear operators form a normed spa
e X

to Y. Then T ||A ⇔ ∃{xn} ∈ SX : limn→∞ ‖Txn‖ = ‖T ‖, limn→∞ ‖Axn‖ = ‖A‖ and

limn→∞ ‖Txn + µAxn‖ = ‖T ‖+ ‖A‖, for some µ ∈ K.

Proposition 6.5. [14℄ Let T be a bounded linear operator form a normed spa
e X into

normed spa
e Y and let x ∈ MT . Then Tx ⊥ǫ
D Ty ⇒ x ⊥ǫ

D y for any ǫ ∈ [0, 1] and
y ∈ X.

Theorem 6.6. [14℄ let T and A are bounded linear operators from �nite dimensional

Bana
h spa
es X to Y. Then T ⊥SB A ⇔ ∀ǫ > 0, ∃µǫ > 0 : ∀|µ| < µǫ, ∃yµ ∈
(∪x∈MT

B(x, ǫ)) ∩ Sx : ‖Tyµ + µAyµ‖ > ‖T ‖.
Theorem 6.7. [14℄ Let T and A are 
ompa
t linear operators fron a re�exive Bana
h

spa
e X to any normed spa
e Y be su
h that T ⊥B A but T 6⊥SB A. Then there exists

x ∈ MT su
h that Tx ⊥B Ax.

Theorem 6.8. [14℄ Let T and A are bounded linear operators from a normed spa
e X

to Y. If T ⊥B A but T 6⊥SB A, then there exists a sequen
e {xn} in SX su
h that

‖Txn‖ → ‖T ‖, Axn → 0 or there exist a sequen
e {xn} in SX and sequen
e {ǫn} in R+

su
h that ‖Txn‖ → ‖T ‖, ǫn → 0, and Txn ⊥ǫn
D Axn.

7. Relation between Birkhoff-Jame, Robert, and isos
eles orthogonality

in terms of bounded linear operators

Re
ently, Bottazzi et al. in [18℄ has introdu
ed a new generalization of earlier results on

orthogonality of bonded linear operators. They dis
ussed about Birkho�-James,Isos
eles,

and Robert orthogonality in Bana
h spa
es in terms of bounded linear operators. For

better des
ription of Birkho�-James orthogonality, they introdu
ed the sets,

O = {x ∈ SX : Tx ⊥B Ax} for any T,A ∈ B(X) and MT = {x ∈ SX : ‖Tx‖ = ‖T ‖}.
For any bounded linear operator A on the Hilbert spa
e H; A∗, R(A), and N(A) denotes
the adjoint, range and kernal of A respe
tively. The bounded linear operators A and B

in a real or 
omplex Hilbert spa
e H have a disjoint support if AB∗ = BA∗ = 0.

Theorem 7.1. [18℄ Let X be re�exive Bana
h spa
e and Y be Bana
h spa
es, either both

real, or both 
omplex. Let T and A are 
ompa
t linear operators from X to Y be su
h

that for any x0 ∈ SX ,

MT =

{

±x0 in the real 
ase

eiθx0 : θ ∈ [0, 2π] in the 
omplex 
ase

Then T ⊥B A ⇔ OT,A ∩MT 6= φ.

Theorem 7.2. [18℄ Let T and A are 
ompa
t linear operators from a re�exive Bana
h

spa
e X to any real Bana
h spa
e Y. If T is Birkho�-James orthogonal to A, then the set

OT,A is non-empty.

Theorem 7.3. [18℄ Let X, Y be two Bana
h spa
es, either both real,or, both 
omplex. let

and T and A are bounded linear operators from X to Y. Then, OT,A = SX ⇒ T ⊥B A.

Theorem 7.4. [18℄ A real or 
omplex Hilbert spa
e H is of �nite dimensional if and only

if for any bounded linear operators in H, T ⊥B A ⇒ OT,A 6= φ.

Proposition 7.5. [18℄ For any bounded linear operators A and T in a real or 
omplex

Hilbert spa
e H satisfying T ∗A = 0, then the following statements holds:

(i) A ⊥B T and T ⊥B A,

(ii) A ⊥R T , and in parti
ular, A ⊥I T

Proposition 7.6. [18℄ Let X be real or 
omplex normed spa
e. Let x, y ∈ X and assume

that x+ y ⊥B y and x− y ⊥B y. Then x ⊥I y
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Remark 7.7. In order to illustrate the 
on
ept regarding to the 
onverse part of the

above proposition Sain et al in [18℄ introdu
ed strongly Isos
eles orthogonality in the real

Bana
h spa
e by stating that: An element x ∈ X is said to strongly orthogonal to y ∈ X

(written as x ⊥SI y) if the following 
onditions are satis�ed;

(i) x ⊥I y,

(ii) there exists a real sequen
e {λn}n∈N
, with λn > 0 su
h that limn→∞ λn = 0 and

x ⊥I λny for all n ∈ N.

Theorem 7.8. [18℄ Let x, y ∈ X. Then x ⊥SI y ⇒ x ⊥r
B y and in parti
ular and is X

is real normed spa
e then x ⊥SI y ⇒ x ⊥B y.

8. Birkhoff-James orthogonality by applying semi-inner produ
t

The 
on
epts of Birkho�-James orthogonality has been widely used by various re-

sear
hers sin
e 1935. The latest resear
h on this topi
 by Sain, Mal, and Paul [19℄have

studied Birkho�-James orthogonality of 
ompa
t linear operators between Hilbert spa
e

and Bana
h spa
es by applying the notion of semi-inner produ
t in normed linear spa
es.

De�nition 8.1. [19℄ For any normed linear spa
e x, A s
alar valued fun
tion (., .) :
X × X → K is a semi-inner produ
t if for any ξ, η ∈ K and for any x, y, z ∈ X , it

satis�es the following 
onditions:

(i) (ξx+ ηy, z) = ξ(x, z) + η(x, z),
(ii) (x, x) > 0, whenever x 6= 0.
(iii) | (x, y) |2≤ (x, x)(y, y),
(iv) (x, ξy) = ξ̄(x, y).

Every semi-inner produ
t spa
e is a normed spa
e with the norm ‖x‖2 = (x, x)
and the norm of any normed spa
e 
an be generated through a semi-inner produ
t

in in�nitely many ways. Sain et al. in [19℄ 
hara
terized the Birkho�-James orthog-

onality set of any 
ompa
t linear operators between a re�exive Bana
h spa
e any Ba-

na
h spa
es. They also proved that there is an relationship between the 
on
ept of

semi-inner produ
t spa
es and the sets x+ = {y ∈ X : ‖x+ γy‖ ≥ ‖x‖forγ ≥ 0} and

x+ = {y ∈ X : ‖x+ γy‖ ≥ ‖x‖forγ ≤ 0}

Theorem 8.2. [19℄ Let T and A be 
ompa
t linear operators from a re�exive Bana
h

spa
e X to any Bana
h spa
e Y. If any one of the following 
onditions holds;

(i) MT is a 
onne
ted subset of SX .

(ii) MT is not 
onne
ted but MT = D∪ (−D), where D is a non-empty subset of SX .

Then T ⊥B A ⇔ ∃x ∈ MT : Tx ⊥B Ax.

Theorem 8.3. [19℄ For a �nite-dimensional Bana
h spa
e X, the following statements

are are equivalent.

(i) For any linear operator T on X, MT is the unit sphere of some subspa
e of X.

(ii) For any linear operator T on X, MT = DT ∪ (−DT ), where DT is 
onne
ted

subset of X.

(iii) X is an Eu
lidean spa
e.

As an 
orrelation between the semi-inner produ
t spa
e and geometri
 
on
epts of the

sets Sain et al. proved the following theorem.

Theorem 8.4. [19℄ Let x, y ∈ X, where X is a normed linear spa
e. Then the following

are true.

(i) y ∈ x+
i� there exists a semi-inner produ
t (., .) on X with (y, x) ≥ 0.

(ii) y ∈ x−
i� there exists a semi-inner produ
t (., .) on X with (y, x) ≤ 0.
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Theorem 8.5. Let T and A be 
ompa
t linear operators from a re�exive Bana
h spa
e

X to any Bana
h spa
e Y be su
h that T ⊥B A. let OY denotes the 
olle
tion of all

semi-inner produ
t on Y. Then

‖T ‖ =

{

sup {(Tx, y) : x ∈ SX , y ∈ SY , (., .) ∈ OY , (Ax, y) ≥ 0}
sup {(Tx, y) : x ∈ SX , y ∈ SY , (., .) ∈ OY , (Ax, y) ≤ 0}

Theorem 8.6. [19℄ Let T and A be bounded linear operators form a normed spa
e X to

Y be su
h that T ⊥B A. Ley OY denotes the 
olle
tion of semi-inner produ
t spa
e on Y.

Let ǫ > 0 be arbitrary but �xed after A 
hoi
e. Then

(i) ‖T ‖ = max {l1(ǫ), l2(ǫ)} = max {l1(ǫ), l3(ǫ)}, where
(ii) l1(ǫ) = sup {(Tx, y) : x ∈ SX , y ∈ SY , (., .) ∈ OY , | (Ax, y) |< ǫ}
(iii) l2(ǫ) = sup {(Tx, y) : x ∈ SX , y ∈ SY , (., .) ∈ OY , Ax ∈ (y)+ǫ}
(iv) l3(ǫ) = sup {(Tx, y) : x ∈ SX , y ∈ SY , (., .) ∈ OY , Ax ∈ (y)−ǫ}

Theorem 8.7. [19℄ Let X be normed linear spa
e su
h that X∗
is stri
tly 
onvex. Let

f, g ∈ X∗
be su
h that f ⊥B g. then

‖f‖ =

{

sup {f(x) : x ∈ Sx, g(x) ≥ 0}
sup {f(x) : x ∈ Sx, g(x) ≤ 0} .

Theorem 8.8. [19℄ Let T and A are 
ompa
t linear operators from a re�exive Bana
h

spa
e X to any Bana
h spa
e Y be su
h that for ea
h λ ∈ R,MT+λA = Dλ ∪ (−Dλ),
where Dλ is a non-empty 
onne
ted subset of SX . Let OY denotes the 
olle
tion of all

semi-inner produ
t spa
e on Y. Then

dist(T, span {A}) = sup {(Tx, y) : x ∈ SX , y ∈ SY , (., .) ∈ OY , (Ax, y) = 0} .
Theorem 8.9. [19℄ Let X be a re�exive Bana
h spa
e and Y be any Bana
h spa
e. Let

Z be a �nite dimensional subspa
e of K(X,Y ). Let T ∈ K(X,Y ) \ Z . Let us further

assume that for any λ ∈ R and for any A ∈ Z ,MT+λA = Dλ,A ∪ (−Dλ,A), where Dλ,A

is non-empty 
onne
ted subset of SX . Then there exist A0 ∈ Z su
h that

dis(T,Z ) = sup {(Tx, y) : x ∈ SX , y ∈ SY , (A0x, y) = 0} .
Moreover, A0 is the best approximation of T in Z .

9. Modular Birkhoff orthgonality in Bana
h modules

We have already mentioned that Raji
 et al. in[8℄ studied Birkho�-James orthogonality

in a Hilbert C∗
-modules over a C∗

-algebra. The most 
urrent resear
h as generalization

of Birkho�-James orthogonality from Hilbert spa
e to Bana
h spa
es in [20℄, Sain and

Tanaka studied the stronger version of modular Birkho�-James orthogonality in the set

of bounded and 
ompa
t linear operators. In order to prove their study they introdu
ed

the following notions: X⊥ = {y ∈ X : x ⊥B y} and MA = {x ∈ SX : ‖Ax‖ = ‖A‖}. An
element x 6= 0 ∈ X is said to be smooth point in X if T (x) = {f ∈ S∗

X : f(x) = ‖x‖} is

a singleton set. For any Bana
h spa
e X, an element x ∈ X is said to be left symmetri


in X if for any y ∈ X , x ⊥B y ⇒ y ⊥B x. Similarly x is said to be right symmetri
 in X

if for any y ∈ X , y ⊥B x ⇒ x ⊥B y. If x is both left as well as right symmetri
, then x

is said to be a symmetri
 point.

De�nition 9.1. [20℄ A Bana
h spa
e X is 
alled a right A -module (where A is a Bana
h

algebra) if there exists a mapping of X×A into X su
h that for ea
h a, b ∈ A and x ∈ X ,

x(ab) = (xa)b and ‖ax‖ ≤ ‖x‖‖a‖.
An element x ∈ X is said to be right-modular Birkho�-James orthogonal to y ∈ X , if

x ⊥B ya for all a ∈ A and left-modular Birkho�-James orthogonal to y if x ⊥B ay for

all a ∈ A .



382 B. P. OJHA AND P. M. BAJRACHARYA

Theorem 9.2. [20℄ Let T and A be 
ompa
t linear operators form a re�exive real Bana
h

spa
e X to any real Bana
h spa
e Y su
h that MA = {±x0} for some x0 ∈ SX . Then

A⊥
B(X) ⇔ T (X) ⊂ (Ax0)

⊥.

De�nition 9.3. [20℄ A Bana
h spa
e X is said to be Kadets-Klee if whenever {xn} is a

sequen
e in X and x ∈ X is su
h that {xn} 
onverges weekly to x and lim
n→∞

‖xn‖ = ‖x‖,
then limn→∞ ‖xn − x‖ = 0.

Theorem 9.4. [20℄ Let A be a 
ompa
t linear operator from a re�exive Kadets-Klee real

Bana
h spa
e to any real Bana
h spa
e be su
h that MT = {±x0} for some x0 ∈ SX .

Then given any bounded linear operator T ∈ B(X,Y ), A ⊥B(X) T ⇔ T (X) ⊂ (Ax0)
⊥
.

Theorem 9.5. [20℄ Let X, Y be real Bana
h spa
es. Let A ∈ B(X,Y ) be a smooth point

in B(X,Y ) su
h that MA 6= 0. Then given any T ∈ B(X, y), A ⊥B(X) T ⇔ T (X) ⊂
(Ax0)

⊥
, where MA = {±x0}.

Theorem 9.6. Let T and A are 
ompa
t linear operators from a re�exive 
omplex Ba-

na
h spa
e X to any 
omplex Bana
h spa
e Y be su
h that MA =
{

eiθx0 : θ ∈ [0, 2π]
}

for some x0 ∈ SX . Then given any 
ompa
t linear operator T, A ⊥B(X) T ⇔ T (X) ⊂
(Ax0)

⊥
.

Theorem 9.7. [20℄ Let T and A are 
ompa
t linear operators from a re�exive real Bana
h

Spa
e X to any real Bana
h spa
e Y be su
h that MA = {±x0} for some x0 ∈ SX . Then

given any 
ompa
t linear operator T, A ⊥∗
B(Y ) T =⇔ Tx0 = 0. Moreover,if X is Kadets-

Klee, then same is true for any T ∈ B(X, y).

Theorem 9.8. [20℄ Let T and A are 
ompa
t linear operators from a re�exive 
omplex

Bana
h spa
e to any 
omplex Bana
h spa
e Y be su
h that MA =
{

eiθx0 : θ ∈ [0, 2π]
}

for some x0 ∈ SX . Then given any T ∈ K(X,Y ), A ⊥∗
B(Y ) T ⇔ Tx0 = 0 .

If A is a bounded linear operator from a normed spa
es X to Y, then its adjoint

A∗ ∈ B(Y ∗, X∗) is de�ned by (A∗y∗) = y∗Ax for ea
h x ∈ X , y∗ ∈ Y ∗
and ‖A∗‖ = ‖x‖.

For any subsets R and S of a Bana
h spa
e X, R ⊥B S if x ⊥B y for all x ∈ R and y ∈ S.

Proposition 9.9. [20℄ Let T and A are bounded linear operators from a Bana
h spa
e

X to Y. If A(x) ⊥B T (X), then A ⊥B T.

Theorem 9.10. [20℄ Let X and Y be �nite dimensional Bana
h spa
es with dim(X) ≥
dim(Y ) > 0, and let A ∈ B(X, y) and suppose that A(X) = Y . Then A is right symmetri


for ⊥B(X) in B(X,Y ).

10. Open problems

De�nition 10.1. [21℄ In a normed linear spa
e X ,

x⊥y ⇔
m
∑

k=1

ak‖bkx+ cky‖2 = 0,

where m ≥ 2 and ak, bk, ck are real numbers su
h that

m
∑

k=1

akbkck = 1,

m
∑

k=1

akb
2
k =

m
∑

k=1

akc
2
k = 0

.

Problem 10.2. Birkho�-James, Robert, and isos
eles orthogonality has been studied in

terms of linear operators in Hilbert spa
e and general Bana
h spa
es.This fa
t raises a

question- 
an Carlsson orthogonality(in parti
ular Pythagorean orthogonality) be 
har-

a
terized in terms of operators in Hilbert C∗
as well as Bana
h modules?
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Problem 10.3. A

ording to proposition-7.8 in [20℄ if two bounded linear operators in a

real or 
omplex Hilbert spa
e satisfy T ∗A = 0, then these operators are Birkho�-James,

Robert and isos
eles orthogonal. This fa
t leaves behind a question if we 
an prove the


ondition of Pythagorean orthogonality by introdu
ing some di�erent nature of operators

A and T in the same spa
e or not.
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