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A GLIMPSE ON BIRKHOFF-JAMES ORTHOGONALITY IN
BANACH SPACES

B. P. OJHA AND P. M. BAJRACHARYA

ABsTrACT. This paper is an overview of various results on Birkhoff-James orthogo-
nality of operators in Hilbert space and Banach spaces. We mainly focus on Birkhoff
orthogonality of linear(bounded and compact) operators in terms of matrices, projec-
tion angles, Hilbert C'*-modules as well as on Banach modules. The article concludes
with some open problems regarding possible correlation between Birkhoff-James or-
thogonality and Carlsson orthogonality, particularly in the case of Pythagorean or-
thogonality.

Jlaro oryis pisHOMaHITHHX PE3y/IbTATIB MO0 OPTOroHaALHOCTI B cenci bipkroda-
Jl>xeiiMca onepaTopis y rinbpbeproBux i 6aHaxoBUX IpocTOopax. [lepeBakHO pO3riIs-
JAETBC OpPTOroHasbHiCTE 3a Bipkrodom simifinmx (0oOmerkeHunx I KOMIAKTHHX)
omeparopiB y TepMiHaX MAaTpHllb, KyTiB, rigbbeprosux C*-momyniB, a Takox
DanaxoBux MojysiB. Haesgeni jesiki BigKpuri nuTaHHs CTOCOBHO ClLiBBiJHOIIEHB
oproronasipHicTio Bipkroda-/Ixxefimca Ta oproronasbpricTio Kapsccona, 30kpema
JUIsL BUIIAAKY 1iharopoBoi OpTOroHaJIBHOCTI.

1. INTRODUCTION

The concept of Birkhoff orthogonality began in 1935 [I]. In the literature of orthogo-
nality this is known with some other names such as; Birkhoff- James orthogonality and
Blaschke Birkhoff-James orthogonality ( see [2]). In this paper [I} B], an orthogonality
which satisfies homogeneity but neither symmetric nor additive is defined by z Ly if and
only if ||x 4+ Ay|| > ||z|| for all A, is known as Birkhoff orthogonality or Birkhoff-James
orthogonality. The geometrical meaning of Birkhoff orthogonality is that if x is an unit
vector of a Banach space X and y € X, then x is Birkhoff orthogonal to y means that
the straight line {x + Ay : A € K} is tangent to the unit ball of X at x. This concept is
similar to the statement: suppose two lines [; and /s intersect at the point m, then /1 Ll
if and only if the distance from a point of I5 to a given point n of [ is never less than
the distance from m and n. [3] For any hyper-plane H C X, x is said to be orthogonal
to Hif Vo € H,zLh.

Bhatia and Semrl in [4] generalize the definition of Birkhoff orthogonality in terms of
matrices. For any matrices A and B they denote the symbol ||A|| for operator norm of
A and A is orthogonal to B in the sense of Birkhoff-James iff for any complex number
z, ||[A+ zBJ| > ||A]l. A matrix A is orthogonal to B iff there exist a unit vector z € H
such that ||Az|| = ||A|| and (Az, Bz) = 0 [4]. They also introduced Birkhoff- James
orthogonality in [4] as ALB if and only if ||A + zB||, > ||Allp, where ||A|, denotes
Schatten p-norm of A defined by [|A]|, = [Z?:l Sj(A)p]% for 1 < p < oo and S1(4) >
...... Sn(A) are singular values of A. Taking the special case for p = 2, Bhatia and Semrl in
[4] also proved that the given orthogonality is equivalent to usual Hilbert space condition
(A, B) = 0, which defines an inner-product on the space of matrices as (A, B) = tr(A*B).
The norm associated to this inner product is ||.||2. In an infinite dimensional case [4], for
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any bounded operators in a Hilbert space H, A1 B if and only if there exist a sequence
{zy} of unit vectors such in H that ||Az| — [|4||, and (Az,, Bx,) — 0.

Benitz et al. [5] proved that X is an inner-product space if and only if for any linear
operators A and C in a finite dimensional normed space X, ALC & Ju € Sx : ||Au|| =
[lu]], AuLCu, where Sy = {x € X :||z|| =1} and “L” denotes the Birkhoff-James or-
thogonality.

Theorem 1.1. [5] If Sx is not an ellipse(X is not an inner-product space), then there
exists linear operators A and C in X such that ALC, but there does not exists u € Sx
such that | A|| = ||AU|| and AulCu.

Theorem 1.2 ([5]). A real finite dimensional normed space X is an inner-product space
if and only if , for A,C € L(X), ALC & 3z € Sx : || 4| = || Az||, AzLCx.

where, Ppy = Dy, <(1) 8) and Dyy = <z; Z;)

Theorem 1.3. [6] The g-angle has the following properties:
(i) Part of parallelism property: Aq(x,y) =0 iff x and y are linearly dependent.
(ii) Part of homogeneity property: Aq.(Az, By) = Aq(x,y) for every z,y € X and
A,B e R —{0}.

In [6] Chen Zhi-Zhi et al. have given slightly different definition of Birkhoff orthogonal-
ity in such a way that; x is Birkhoff orthogonal to y iff A,(x,y) = by using projections
of the angles between two vectors x and y in a real two dimensional normed space X.
Definition 1.4. [6] The g-angle between two vectors x and y is given by g(z,y) =
Ut where g(z,y) = 2[4 (¢, )+ (2, )] and o (2, y) = lim, o LHLEEL

oS ,
In that case v L,y if g(z,y) = 0 or Ay(z,y) = 3.

For any = = (z1,22)7 and y = (y1,%2)" in a two dimensional real normed space X,

0 if x and y are linearly dependent
q(z,y) =

| Peyl ™", if x and y are linearly independent.

Continuity property: If z,, — = and y,, — y, then Ay(zy, yn) — Aq(z,y), where A,(z,y)
is q-angle between x and y defined by A,(z,y) = sin~*[q(z, y)].

Lemma 1.5. [6] If x is Birkhoff orthogonal to y. Then for any m,n € R, |mz + ny| >
[[ma]].

Proof. If m = 0, the conclusion is obviously true. If m # 0 and if x is Birkhoff orthogonal
toy,
m
lma +nyl| = [mllle + =yl = [ml2]| = mz]]. 0

Theorem 1.6. [7| Let x = (x1,22)T and y = (y1,92)T be two vectors in a two dimen-
sional real normed space X with basis {e1,ea}. Then x is Birkhoff-orthogonal to to y iff
Ay(z,y) = 5 d.e. | Peyll = 1.

2. ORTHOGONALITY ON C*-MODULE

[8] Let A be a C*-algebra and H be a (left) &/ module. Suppose that the linear
structure given on 7 and H are compatible, that is, A(az) = a(Az) for every A € C and
a € H. Then there exists a mapping (.,.) : H x H — & with the following properties:

(i) (z,x) > 0 for every z € H,
(i) (z,z)=0iff z =0,
(iii) (z,y) = (y,x)" for every z,y € H,
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(iv) (azx,y) = a(x,y) of every a € & and z,y € H,

(v) (z+y,2) = (z,2) + (y, 2) for every z,y,z € H
The pair {H, (., .)} is called a (left) pre-Hilbert </ module. The map (.,.) is called an /-
valued inner-product. If the pre-Hilbert «/-module {H, (., .)} is complete with respect to
the norm ||z|| = || (z,z) |2, then it is called < Hilbert C*-module over <7. Rajic et al., in
[7, 8] introduced a new concept of Birkhoff-James orthogonality in a Hilbert C*-modules
over a C*-algebra </ and proved that such orthogonality with respect to «/-valued inner
product coincide if and only if &7 is isomorphic to C.

[8] A mapping T : V — W between «/-modules V and W is called adjointable if there
exists mapping 7% : W — V such that (Tz,y) = (x,T*y) for all v € V,y € W. Such
a mapping T is bounded, linear and satisfies T'(za) = T'(z)a for all z € V and a €
/. The space of all adjointable mapping from V into W is denoted by B(V,W). Let
0z.4(2) = z(y, z), where 0, , € B(V,W) and K (B, V) denotes the closed linear subspace
of B(V,W) spanned by {Q., : © € W,y € V'} is called space of compact operators.

Proposition 2.1. [8] Let A, B € B(H).Then minxec||A + AB||> = sup)zij=1Ma,5(£),
where
2 -
(6 = {nAsn? - LBt i Be#o
1 Ag]1? if, ~ BE=0

Proposition 2.2. [8] let &7 be a C*-algebra, and a,b € o/. Then minyec|la + \b||? =
mazyesayMa,B(p), where

Map(0) = {@(a*a) - 'f}(&izf if, (b*b) #0
<P(0,*a,) if, Sﬁ(b*b) -0

Theorem 2.3. [8] Le V be a Hilbert C*-module over a C*-algebra o/ and x,y € V. Then
mingec||z + @y||* = mazpesayMey (@), where M, ,(p) € o is defined by

e((z,z)) if, o((y,9)) =0

Theorem 2.4. [§] Let V be a Hilbert C*-module over a C*-algebra <. Let x,y € V.
Then xLpy < 3o € S() : o({x,2)) = ||z||* and ¢({x,y)) = 0.

Mmy(w)_{@(@@)—% if. o((y,y)) #0

Theorem 2.5. [8] Let V be a Hilbert C*-module over a C*-algebra o/ and x,y € V.
Then

(i) vLpy & (x,z) L{z,y) < (x,z) L (y,x).
(i) z1lpy = xlpx{(x,y) and xLlpx (y,x).

Arambasic and Rajic (see in[8]) characterized Hilbert C*-modules where the Birkhoff
orthogonality coincides with the usual orthogonality with respect to inner-product space.
By using the Gelfand-Mazur theorem, it can be proved that 7 is isomorphic to C and
using this concept, C is only the unital C*-algebra in which Birkhoff orthogonality x 1 gy
coincides with x*y = 0 for all elements z,y € <.

Theorem 2.6. let V # {0} be a full Hilbert <7 -module. then the following statements
are equivalent:

(i) For all x,y € V the condition (xLpy < (x,y) = 0) is always true.
(ii) < is isomorphic to C.



376 B. P. OJHA AND P. M. BAJRACHARYA

3. GENERALIZATION OF BHATIA-SEMRL PROPERTY

In 2013, Sain and Paul [9] linked the Bhatia-Semrl property with norm attaining
operators in a finite dimensional normed spaces which attain its norm on connected closed
subset of Sx and proved that the linear operator T satisfies the condition; T 1LpA =
Jx € D : TxlpAz, where A is a linear operator on L(X) and D is connected closed
subset of Sx. For the normed linear space X of dimension 2, their next research in 2015
(see [10]) explore the converse of previous result as obtained in [9]. They proved that
if a linear operator T satisfies Bhatia-Semrl property, then the set of unit vectors Sx,
on which T attains norm, is connected in the projective space RP = Sx \ {2 ~ —z}
and conversely. For a strictly convex normed space X, the set of operators in L(X)
satisfying the Bhatia-Semrl property is dense in L(X). [I0] Let T be a linear operator
on a normed space X. Then the set of unit vectors in Sx at which T attains norm is
given by My = {x € Sx : ||Tz| = ||T]|}. Such a T satisfies Bhatia-Semrl property if for
any operator A € L(X),T1lpA = 3z € My : TxLlpgAz.. Sain et al. proved a slight
different concept depending on the nature of My described in [9] by stating that ; if
My # DU (—D) and the condition on the form of My implying that T may not satisfies
the Bhatia-Semrl property.

Theorem 3.1. [10] Let T be a linear operator on a finite dimensional real normed space
X and My ={x € Sx : ||Tz|| = ||T||}- If Mt can be partitioned into tow non-empty sets
which are contained in complementary subset of X, then there is a linear operator A on
X such that T1gA but Tx [ p Ax.

Theorem 3.2. [10] Let T be a linear operator on a finite dimensional real smooth normed
space X. If My = {x € Sx : ||Tz|| = ||T||} is a countable set with more than 2 points.
Then for any x € My there is a linear operator A on X such that T LpA but Tx [ p Ax

Theorem 3.3. Let T be a linear operator on a two dimensional real normed space X,
and let My = {x € Sx : |Tx| = ||T||}. If My has more than two components, then for
any © € My there is a linear operator A on X such that T 1A but Tx fp Ax.

4. STRONG BIRKHOFF-JAMES ORTHOGONALITY

Paul et al. in the paper [II] proved that a normed linear space X is strictly convex
if and only if for all x € Sx there is bounded linear operator A which attain its norm
only at the points of the form Az with A € Si. To prove this, they have introduced a
concept of strong Birkhoff-James orthogonality. [II] For any normed linear space X, x
is said to be strongly orthogonal to y in the sense of Birkhoff-James iff ||z| < ||z + \y|
for all A # 0. The notation z L SBy was used to indicate the strongly Birkhoff-James
orthogonality and proved that the strongly Birkhoff-James orthogonality implies Birkhoff
orthogonality, but the converse may not be true. To illustrate this concept, two elements
(1,0) and (0,1) are taken in [ (R?), showing that (1,0) and (0, 1) are orthogonal in the
sense of Birkhoff-James but not strongly orthogonal to each other.

Definition 4.1. (Strongly orthogonal set)[II]: A finite set of elements {z1,..... 24}
is said to be strongly orthogonal set in the sense of Birkhoff-James iff for each m €

{1,2, ik} [ @mll < [ + et s Annll, whenever A, # 0.

In case of an infinite set, if every finite subset of the set is strongly orthogonal in the
sense of Birkhoff-James, then the infinite set is said to strongly orthogonal and conversely.

Theorem 4.2. [I1] Let X be a normed linear space and xo € Sy. If there ezists a
Hamel basis of X containing xo which is strongly orthogonal relative to xq in the sense
of Birkhoff-James, then xq is an extreme point of Bx.
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Theorem 4.3. [11] Let X be a normed linear space and xo € Sx be an exposed point
of Bx. Then there exists a Hamel basis of X containing xo which is strongly orthogonal
relative to xg in the sense of Birkhoff-James.

Theorem 4.4. [I1] Let X be a normed linear space and xo € Sx. If there exist a
Hamel basis of X containing xo which is strongly orthogonal relative to xy in the sense of
Birkhoff-James, then there exists a bounded invertivle linear operator A on X such that
Al = || Aol > [|Ay]| for all y € Sx with y # \xg, A € Sk.

Theorem 4.5. For a normed space X, and a point x € span(X), the following are
equivalent:
(i)  is an exposed point of Bx.
(i) There is a Hamel basis of X containing x which is strongly orthonormal relative
to x in the sense of Birkhoff-James.
(iii) There exists a bounded linear operator A on X which attains only at the points
of the form Ax with A € Sj,.

Theorem 4.6. [II] For a normed linear space X, the following are equivalent.

(i) X is strictly convez.
(i) For each x € Sx, there exist a Hamel basis of X containing x which is strongly
orthonormal relative to x in the sense of Birkhoff-James.

5. ORTHOGONALITY OF OPERATORS IN COMPLEX BANACH SPACES

To study the difference of orthogonality in the complex case in comparison to the real
case, Paul et al. in 2018 [12] came with a new concept of Birkhoff-James orthogonality by
introducing new definitions on a complex reflexive Banach spaces and introduced more
than one equivalent characterization of Birkhoff-James orthogonality of compact linear
operators in the complex case. [I2] For any bounded linear operator T, A € L(X), T
is said to be Birkhoff-James orthogonal to A if ||T'+ AA|| > ||T'|| for all A € C and
Mr ={x € Sx : |Tz|| = ||T||}. In the real Banach space X, Sain introduced two sets "
and =~ in his paper [13] by

(i) a7 ={ye X :|lz+ My| > ||z|| forall X>0}and
(i) 2t ={y e X : |z + \y|| > ||z|| forall X <0}
For the complex Banach space, Paul et al. in 2018 introduced the following notations
[12] depending on Sain’s concept : For any v € V,
(i) 2 ={ye X :fla+ Xyl > [|z|| forall A\=trt>0}
(i) 27 ={y € X :[[z+ Ay| > ||o| forall \=tr,t <0}
zv = {ye X ||z + My|| > ||z|| forall X=trtecR}
where V ={y e C:|y|=1,arg(y) € [0, 27]}.

Ifp=e"y, then zf =ux7,2, =2F and z# =z7. In the complex Banach space,

x*zﬁ{xi:’yéV},x*:ﬂ{x;:’yEV}andxl:ﬂ{z%:”yEV}

(iii
(iv
(v
(vi

)
)
)
)

Proposition 5.1. [13] Let z,y € X, where X is an complex Banach space and v € V.
Then following statements are true
(i) Either y € x ory € a7 .
(i) xlyy sy cxd oryecal.
(i) y € x = ny € (Ex)¥ for all n,& > 0.
(w) yeat = —yeca andyc (—x);

o
(v) y € xy = ny € (Ex)5 for all n,& > 0.
(vi) yca, = —ycal andyc (—z)7.

(vii) y € 28 = py € (px)? for all p € C.
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(viii) y € x5 = py € (ux); for all p € C.

Proposition 5.2. [13| Let x,y € X, where X is a complex Banach space. Then the
following are true
(i) xlpysycat andy € ™.
(ii) y € 2t = ny(&x)™ for all n, & > 0.
(iii) y ezt = —y €z andy € (—x)".
(v) yeax~ = —yeczt andy € (—x)*.
(v) y€ax =ny € ((x)” for all n,& > 0.

Theorem 5.3. [13] Let X be a reflexive complex Banach space, and Y be any complex
Banach space. Let T,A € K(x,y). ThenT Llp A=Vy eV, I z=uz(vy),y=y(y) €
My : Az € (Tx)d and Ty € (Ty); .

Theorem 5.4. [I3] Let X be a complex Banach Space. Let z,y € X and v = €%, where
0 €[0,27]. If y € «¥, then either y € x7 for all p with argp € [0,6] or y € x} for all p
with arg p € [0, 7.

Theorem 5.5. [13] Let be a linear operator on a finite dimensional complex Banach
space X, such that Mr is a closed connected subset of Sx. Then for A € L(X), T 1lg
AesvVyeV 3 x=ux(y) e Mr:Tx Ly Ax.

Theorem 5.6. [13] Let T be a linear operator in a finite dimensional complex Banach
space X such that My is a closed connected subset of the unit sphere of X. Then for
Ac LX), T lp A< 3 0c (0,7 and v,y € My : Az € (Tx)T for all v with
argy € [0 —7,0] and Ay € (Ty)T for all v with argy € [0,0 + 7.

6. GEOMETRIC PROPERTIES

Definition 6.1. [I4] Let z,y € X and T = {pn € K : |u| = 1}. Then x is said to be norm
parallel to y if ||z + py|| = ||z|| + ||ly|| for all p e T.

Norm parallelism is symmetric as well as homogeneous; whereas, Birkhoff-James or-
thogonality is homogeneous but not symmetric in a Banach space. [14] In the case of
Hilbert space, two elements are linearly dependent iff they are norm- parallel; however,
in normed spaces two linearly dependent vectors are norm-parallel, but the converse may
not be true. For instance, (1,1) and (1,0) are norm parallel but not linearly dependent.
Depending on the concept of Birkhoff-James orthogonality and strong Birkhoff-James or-
thogonality Paul et al.[14] introduce a new geometric notion of semi-rotund point. For any
normed linear space X, f # x € X is said the semi-rotund point of Xif dJy € X 1z Lgp y.
If for every z # 0 € X, x is a semi-rotund point, the normed space X is said to be
semi-rotund space. Dragomir introduced the concept of approximate Birkhoff-James or-
thogonality [15] as follows: x is said to be approximate Birkhoff-James orthogonal to y if
|z + pyl| > (1 — e)||z|| for all p € K and € € [0, 1]; however, Chmielinski [14] [16] defined
approximate Birkhoff-James orthogonality as ; * Ly< ||z + py|| > V1 — €2||z|| for all
1 € K. The concept of approximate parallelism was developed by Zamani and Moslehian
[17] by stating that x is approximately parallel to y if inf {||z + Ay|| : A € K} < €||z|| for
all e € [0,1].

Proposition 6.2. [14] let X be a bounded linear operator form a normed space X to
normed space Y and x € Mz. Then for any e € [0,1] andy € X, we have x|, = Tz||Ty.

Theorem 6.3. [14] Let T and A are compact linear operators form a reflexive Banach
space X to any normed space Y. Then T||A< 3 x € MpNMa : Tx||Ax.
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Theorem 6.4. [I4] If T and A are bounded linear operators form a normed space X
to Y. Then T||A < F{zn} € Sx : limpoo |[Tnl| = || T, limp 00 ||Azn|| = [|A]l and
limy, o0 | Txn + pAzy, || = | T + ||Al|, for some p € K.

Proposition 6.5. [14] Let T be a bounded linear operator form a normed space X into
normed space Y and let x € Myp. Then Tx L5 Ty = x LS y for any € € [0,1] and
yeX.

Theorem 6.6. [14] let T and A are bounded linear operators from finite dimensional
Banach spaces X to Y. Then T Llgp A & Ye > 0,3pe > 0 : V|u| < pe,3y, €
(Veenry B(z,€)) NSy« (| Ty + nAy,ll > |-

Theorem 6.7. [14] Let T and A are compact linear operators fron a reflezive Banach
space X to any normed space Y be such that T Lp A but T JYsp A. Then there exists
x € Mr such that Tx 1 g Ax.

Theorem 6.8. [14] Let T and A are bounded linear operators from a normed space X
to Y. If T Lgp A but T Lsp A, then there ewxists a sequence {x,} in Sx such that
| Txn| — || T, Azp, — O or there exist a sequence {z,,} in Sx and sequence {e,} in RT
such that || Tzy| — ||T), €n — 0, and Tz, LY Ax,,.

7. RELATION BETWEEN BIRKHOFF-JAME, ROBERT, AND ISOSCELES ORTHOGONALITY
IN TERMS OF BOUNDED LINEAR OPERATORS

Recently, Bottazzi et al. in [I8] has introduced a new generalization of earlier results on
orthogonality of bonded linear operators. They discussed about Birkhoff-James,Isosceles,
and Robert orthogonality in Banach spaces in terms of bounded linear operators. For
better description of Birkhoff-James orthogonality, they introduced the sets,
O={x€Sx :Tx Lp Ax} for any T, A € B(X) and My = {z € Sx : |Tz|| = ||T||}.
For any bounded linear operator A on the Hilbert space H; A*, R(A), and N(A) denotes
the adjoint, range and kernal of A respectively. The bounded linear operators A and B
in a real or complex Hilbert space H have a disjoint support if AB* = BA* = 0.

Theorem 7.1. [18] Let X be reflexive Banach space and Y be Banach spaces, either both
real, or both complex. Let T and A are compact linear operators from X to Y be such
that for any xo € Sx,

Mo — +x0 in the real case
T erg:0€[0,2n] in the complex case

ThenTLBA@ﬁT,AﬂMT;é(b.

Theorem 7.2. [18] Let T and A are compact linear operators from a reflexive Banach
space X to any real Banach space Y. If T is Birkhoff-James orthogonal to A, then the set
Or. A is non-empty.

Theorem 7.3. [18] Let X, Y be two Banach spaces, either both real,or, both complez. let
and T and A are bounded linear operators from X to Y. Then, Op o = Sx =T 1Lp A.

Theorem 7.4. [18] A real or complex Hilbert space H is of finite dimensional if and only
if for any bounded linear operators in H, T Lp A= Op s # ¢.

Proposition 7.5. [I8] For any bounded linear operators A and T in a real or complex
Hilbert space H satisfying T*A = 0, then the following statements holds:

(Z) AJ_B T (deJ_B A,

(ii) A Lr T, and in particular, A L; T

Proposition 7.6. [I8] Let X be real or complex normed space. Let x,y € X and assume
that x +y Lpy andx—y Lpy. Thenz Ly
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Remark 7.7. In order to illustrate the concept regarding to the converse part of the
above proposition Sain et al in [18] introduced strongly Isosceles orthogonality in the real
Banach space by stating that: An element x € X is said to strongly orthogonal to y € X
(written as « Lgy y) if the following conditions are satisfied;
(1) x Ly Y,
(ii) there exists a real sequence {\,}
x Ly Ay for all m € N,

neny With Ap, > 0 such that limy, 00 Ap = 0 and

Theorem 7.8. [18] Let x,y € X. Then z Lsr y = = L% y and in particular and is X
is real normed space then x Lsry=x Lpy.

8. BIRKHOFF-JAMES ORTHOGONALITY BY APPLYING SEMI-INNER PRODUCT

The concepts of Birkhoff-James orthogonality has been widely used by various re-
searchers since 1935. The latest research on this topic by Sain, Mal, and Paul [I9]have
studied Birkhoff-James orthogonality of compact linear operators between Hilbert space
and Banach spaces by applying the notion of semi-inner product in normed linear spaces.

Definition 8.1. [19] For any normed linear space x, A scalar valued function (.,.) :
X x X — K is a semi-inner product if for any &, 7 € K and for any x,y,z € X, it
satisfies the following conditions:

(i) (Ex+ny,2) = &(x,2) +n(z, 2),
(ii) (z,x) > 0, whenever = # 0.
(iil) | (z,y) < (2, 2)(y,9),

(iv) (z, 524) &(x,y).

Every semi-inner product space is a normed space with the norm |z|*> = (x,2)
and the norm of any normed space can be generated through a semi-inner product
in infinitely many ways. Sain et al. in [I9] characterized the Birkhoff-James orthog-
onality set of any compact linear operators between a reflexive Banach space any Ba-
nach spaces. They also proved that there is an relationship between the concept of
semi-inner product spaces and the sets 27 = {y € X : ||z + ~yy|| > ||=|/fory > 0} and
et ={y e X: |z +yyl = [x]fory <0}

Theorem 8.2. [19] Let T and A be compact linear operators from a reflexive Banach
space X to any Banach space Y. If any one of the following conditions holds;

(i) My is a connected subset of Sx.

(ii) My is not connected but Mp = DU (—D), where D is a non-empty subset of Sx.
ThenT 1lp A< Jx e My :Tx 1Lg Ax.

Theorem 8.3. [19] For a finite-dimensional Banach space X, the following statements
are are equivalent.
(i) For any linear operator T on X, My is the unit sphere of some subspace of X.
(i) For any linear operator T on X, My = Dy U (—Dr), where Dr is connected
subset of X.
(iii) X is an Euclidean space.

As an correlation between the semi-inner product space and geometric concepts of the
sets Sain et al. proved the following theorem.

Theorem 8.4. [19] Let z,y € X, where X is a normed linear space. Then the following
are true.

(i) y € xt iff there exists a semi-inner product (.,.) on X with (y,z) > 0.
(ii) y € = iff there exists a semi-inner product (.,.) on X with (y,x) <O0.
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Theorem 8.5. Let T and A be compact linear operators from a reflexive Banach space
X to any Banach space Y be such that T 1L A. let Oy denotes the collection of all
semi-inner product on Y. Then

|| = sup{(Tz,y) : x € Sx,y € Sy, (.,.) € Oy, (Ax,y) > 0}
sup{(T'z,y) : x € Sx,y € Sy, (.,.) € Oy, (Az,y) <0}

Theorem 8.6. [19] Let T and A be bounded linear operators form a normed space X to
Y be such that T L g A. Ley Oy denotes the collection of semi-inner product space on Y.
Let € > 0 be arbitrary but fived after A choice. Then
(i) IT| = max {li(€),l2(e)} = max {l1(€),l3(€)}, where
(ii) l1(e) = sup{(Tz,y) : x € Sx,y € Sy, (.,.) € Oy, | (Ax,y) |[< €}
(iii) l2(€) = sup{(Tx,y) : z € Sx,y € Sy, (.,.) € Oy, Az € (y)*°}
(iv) l3(e) =sup{(Tx,y): x € Sx,y € Sy, (.,.) € Oy, Ax € (y)~¢}

Theorem 8.7. [19] Let X be normed linear space such that X* is strictly convezx. Let
f,9 € X* be such that f 1 g g. then

1l = {sup{f(:v) L2 € Sy, g(x) > 0}
sup{f(z): 2z € S,,g(x) <0}.

Theorem 8.8. [19] Let T and A are compact linear operators from a reflezive Banach
space X to any Banach space Y be such that for each N\ € R, Mriyxa = D\ U (—=Dy,),
where Dy is a non-empty connected subset of Sx. Let Oy denotes the collection of all
semi-inner product space on Y. Then

dist(T, span {A}) = sup{(Tz,y) : x € Sx.,y € Sy, (.,.) € Oy, (Az,y) =0} .

Theorem 8.9. [19] Let X be a reflexive Banach space and Y be any Banach space. Let
Z be a finite dimensional subspace of K(X,Y). Let T € K(X,Y)\ Z. Let us further
assume that for any A € R and for any A € 2, Mpixa = Dy aU (=D a), where Dy 4
is non-empty connected subset of Sx. Then there exist Ay € Z such that

dis(T, %) =sup{(Tz,y) : x € Sx,y € Sy, (Apx,y) = 0}.

Moreover, Ay is the best approximation of T in Z.

9. MODULAR BIRKHOFF ORTHGONALITY IN BANACH MODULES

We have already mentioned that Rajic et al. in[8] studied Birkhoff-James orthogonality
in a Hilbert C*-modules over a C*-algebra. The most current research as generalization
of Birkhoff-James orthogonality from Hilbert space to Banach spaces in [20], Sain and
Tanaka studied the stronger version of modular Birkhoff-James orthogonality in the set
of bounded and compact linear operators. In order to prove their study they introduced
the following notions: X+ = {y € X : 2 Ly} and My = {x € Sx : ||Az| = ||A]|}. An
element = # 0 € X is said to be smooth point in X if 7 (z) = {f € S% : f(z) = ||=||} is
a singleton set. For any Banach space X, an element z € X is said to be left symmetric
in X if for any y € X, * Lp y = y Lp x. Similarly x is said to be right symmetric in X
ifforanyy e X,y Lp o= 2 Lpy. If xis both left as well as right symmetric, then x
is said to be a symmetric point.

Definition 9.1. [20] A Banach space X is called a right .&7-module (where & is a Banach
algebra) if there exists a mapping of X x .o into X such that for each a,b € & and z € X,
z(ab) = (za)b and [laz| <[zl

An element x € X is said to be right-modular Birkhoff-James orthogonal to y € X, if
x Lpya for all a € & and left-modular Birkhoff-James orthogonal to y if x L g ay for
alla € &
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Theorem 9.2. [20] Let T and A be compact linear operators form a reflexive real Banach
space X to any real Banach space Y such that My = {£xo} for some zo € Sx. Then

Apxy & T(X) C (Azo) ™.

Definition 9.3. |20] A Banach space X is said to be Kadets-Klee if whenever {z,,} is a

sequence in X and z € X is such that {z,} converges weekly to x and lim ||z,[ = ||z,
n—r00

then lim, o ||2n — || = 0.

Theorem 9.4. [20] Let A be a compact linear operator from a reflexive Kadets-Klee real
Banach space to any real Banach space be such that My = {£x¢} for some xy € Sx.
Then given any bounded linear operator T € B(X,Y),A Lpx) T < T(X) C (Azo)*.

Theorem 9.5. [20] Let X, Y be real Banach spaces. Let A € B(X,Y) be a smooth point
in B(X,Y) such that Ma # 0. Then given any T € B(X,y), A Lpx) T < T(X) C
(Azo)t, where Mg = {£xo}.

Theorem 9.6. Let T and A are compact linear operators from a reflexive complex Ba-
nach space X to any complex Banach space Y be such that My = {ei‘gxo :0 €0, 27T]}
for some xy € Sx. Then given any compact linear operator T, A Lgx) T < T(X) C
(AJJQ)J‘.

Theorem 9.7. [20] Let T and A are compact linear operators from a reflexive real Banach
Space X to any real Banach space Y be such that Ma = {Z+xo} for some xg € Sx. Then
given any compact linear operator T, A J_*B(Y) T =< Txog = 0. Moreover,if X is Kadets-

Klee, then same is true for any T € B(X,y).

Theorem 9.8. [20] Let T and A are compact linear operators from a _T’eﬂem've complex
Banach space to any complex Banach space Y be such that My = {ewazo :0 €10, 271']}
for some xo € Sx. Then given any T € K(X,Y), A J_*B(Y) TeTrg=0.

If A is a bounded linear operator from a normed spaces X to Y, then its adjoint
A* € B(Y*, X*) is defined by (A*y*) = y*Ax for each z € X, y* € Y* and | A*| = ||z
For any subsets R and S of a Banach space X, R Lp Sifz Lpyforallz € Randy € S.

Proposition 9.9. [20] Let T and A are bounded linear operators from a Banach space
XtoY. If A(x) Lp T(X), then A L T.

Theorem 9.10. [20] Let X and Y be finite dimensional Banach spaces with dim(X) >
dim(Y) > 0, and let A € B(X,y) and suppose that A(X) =Y. Then A is right symmetric
for Lpx) in B(X,Y).

10. OPEN PROBLEMS
Definition 10.1. [2I] In a normed linear space X,
m
rly & Zakﬂbkx + cryl|? =0,

k=1
where m > 2 and ay, by, ¢ are real numbers such that

m m m
E akbkck = 1, E akbi = E akci =0
k=1 k=1 k=1

Problem 10.2. Birkhoff-James, Robert, and isosceles orthogonality has been studied in
terms of linear operators in Hilbert space and general Banach spaces.This fact raises a
question- can Carlsson orthogonality (in particular Pythagorean orthogonality) be char-
acterized in terms of operators in Hilbert C* as well as Banach modules?
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Problem 10.3. According to proposition-7.8 in [20] if two bounded linear operators in a
real or complex Hilbert space satisfy T*A = 0, then these operators are Birkhoff-James,
Robert and isosceles orthogonal. This fact leaves behind a question if we can prove the
condition of Pythagorean orthogonality by introducing some different nature of operators
A and T in the same space or not.
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