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A PROOF OF THE BAUM-CONNES CONJECTURE FOR REAL

SEMISIMPLE LIE GROUPS WITH COEFFICIENTS ON FLAG

VARIETIES

ZHAOTING WEI

Abstra
t. We 
onsider the equivariant K-theory of a real semisimple Lie group

whi
h a
ts on the (
omplex) �ag variety of its 
omplexi�
ation group. We 
onstru
t

an assemble map in the framework of KK-theory and then we prove that it is an

isomorphism. The prove relies on a 
areful study of the orbits of the real group

a
tion on the �ag variety and then pie
ing together di�erent orbits. This result is a

spe
ial 
ase of the Baum-Connes 
onje
ture with 
oe�
ients.

�îçãëÿäà¹òüñÿ åêâiâàðiàíòíà Ê-òåîðiÿ äiéñíî¨ íàïiâïðîñòî¨ ãðóïè Ëi, ùî äi¹

íà (êîìïëåêñíîìó) ìíîãîâèäi ïðàïîðiâ íà êîìïëåêñè�iêîâàíié ãðóïi. Áóäó¹òüñÿ

âiäîáðàæåííÿ ñêëàäàííÿ â ñåíñi ÊÊ-òåîði¨, i äîâîäèòüñÿ, ùî âîíî ¹ içîìîð�içìîì.

Äîâåäåííÿ ñïèðà¹òüñÿ íà äåòàëüíå äîñëiäæåííÿ îðáiò äiéñíî¨ ãðóïè íà ìíîãîâèäi

ïðàïîðiâ i êëàñè�iêàöi¨ öèõ îðáiò. �åçóëüòàò ¹ ÷àñòèííèì âèïàäêîì ãiïîòåçè

Áàóìà-Êîííà ç êîå�iöi¹íòàìè.

1. Introdu
tion

Let G be a lo
ally 
ompa
t topologi
al group and A is a C∗
-algebra equipped with a


ontinuous a
tion of G by C∗
-algebra automorphisms. Following [3, Se
tion 4℄, we de�ne

the equivariant K-theory of A to be the K-theory of the redu
ed 
rossed produ
t algebra:

K

∗
G(A) := K

∗(C∗
r (G,A)).

The equivariant K-theory de�ned in this way has a useful 
onne
tion to Baum-Connes


onje
ture and representation theory. It is well-known that C∗
r (G) re�e
ts the tempered

unitary dual when G is a redu
tive Lie group, see [3, Se
tion 4.1℄.

When G is 
ompa
t and X is a 
ompa
t G-topologi
al spa
e, let C0(X ) denote the

C∗
-algebra of 
ompa
t supported 
omplex value 
ontinuous fun
tions on X . Then it is

well-known that our K

∗
G(C0(X )) 
oin
ides with the equivariant K-theory of X , see [7℄. If

X is itself 
ompa
t, we 
an also denote C0(X ) by C(X ).

Remark 1.1. Be aware that this is not the same as Kasparov's de�nition of equivariant

K-theory in [8℄.

Ba
k to general G. For any C∗
-algebra A and B with 
ontinuous G-a
tion we have

the equivariant KK-theory group KK

G
∗ (A,B) as in [8, De�nition 2.3℄.

The Baum-Connes 
onje
ture 
an be formulated as follows. Let G be almost 
onne
ted

and U be its maximal 
ompa
t subgroup and S := G/U be the quotient spa
e. We have

the assemble map [6℄

µG : KKG
∗ (C0(S),C)→ K

∗
G(C).

The Baum-Connes 
onje
ture 
laims that the assemble map µG is an isomorphism. In

2003, J. Chabert, S. E
hterho�, R. Nest [4℄ proved this 
onje
ture for almost 
onne
ted

Lie groups and for linear p-adi
 groups.
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Re
all that a topologi
al group G is 
alled almost 
onne
ted if G/G0 is 
ompa
t, where

G0 denotes the identity 
omponent of G. For a Lie group G, almost 
onne
ted simply

means that G has �nitely many 
onne
ted 
omponents.

Remark 1.2. Baum-Connes 
onje
ture is still open for 
ertain dis
rete groups, for ex-

ample G = SL(3,Z). Noti
e that in this 
ase G is not almost 
onne
ted and the spa
e

S = G/U should be repla
ed by the universal proper G-spa
e EG. See [2℄ for more

details. For an introdu
tion of Baum-Connes 
onje
ture for dis
rete groups we refer to

[16℄.

Moreover, for a C∗
-algebra A with 
ontinuous G-a
tion, we have the Baum-Connes


onje
ture 
onje
ture with 
oe�
ients in A, whi
h 
laims that the map

µG,A : KKG
∗ (C0(S), A)→ K

∗
G(A)

is an isomorphism. There are 
ounter examples for some 
ertain G and A as in [5℄. For

general G and A Baum-Connes 
onje
ture with 
oe�
ients is still open.

In this paper we fo
us on the 
ase that G is a real semisimple Lie group and A is the

C∗
-algebra of 
ontinuous fun
tions on the 
omplexi�ed �ag variety of G. In more details

let GC be the 
omplexi�
ation of G, We have the �ag variety B of GC. The group GC

(hen
e G and U) a
ts on B, so we also have the assemble map

µG,B : KKG
∗ (C0(S), C(B))→ K

∗
G(C(B)). (1.1)

The main result of this paper is the following theorem:

Theorem 1.3. For any real semisimple Lie group G, the assemble map

µG,B : KKG
∗ (C0(S), C(B))→ K

∗
G(C(B))

is an isomorphism.

Remark 1.4. The signi�
an
e of K

∗
G(C(B)) has been dis
ussed in [3, Se
tion 4.4℄.

The proof of Theorem 1.3 in this paper relies on a 
areful study of the orbits of the

real group a
tion on the �ag variety: We �rst proof the isomorphism on one single orbit

of the G-a
tion by redu
ing to solvable subgroups, and then we pie
e together assemble

maps on di�erent orbits. The proof does not require the hard te
hniques in fun
tional

analysis and representation theory so it 
an be 
onsidered as an geometri
 proof.

This paper is organized as follows: In Se
tion 2 and 3 we 
onstru
t the assemble map.

In Se
tion 4 we study the assemble map on one single G-orbit of the �ag variety. In

Se
tion 5 we study the G-orbits on B and in Se
tion 6 we prove the Theorem 1.3. In

Se
tion 7 we give an example to illustrate the idea of the 
onstru
tion.

This work is inspired by the study of equivariant K-theory in [3℄ and Matsuki 
orre-

sponden
e in [11℄.

2. Real Semisimple Lie Groups and Flag Varieties

We will use the following notations in this paper. Let G be a 
onne
ted linear real

semisimple Lie group, U be the identity 
omponent of a maximal 
ompa
t subgroup of

G. In the sequel we �x su
h a U and 
all it the maximal 
ompa
t subgroup of G. We

denote the spa
e G/U by S.
Let GC be the 
omplexi�
ation of G, BC be the Borel subgroup of GC and B = GC/BC

be the �ag variety.

Obviously G a
ts on the �ag variety B. Unlike GC, the G-a
tion is not transitive, see

Se
tion 5 below or [11℄.
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Example 2.1. If G = SL(2,R) then U = SO(2) and S = G/U = H the upper half

plane.

On the other hand GC = SL(2,C). Hen
e

BC =

{(

a b
0 a−1

)∣

∣

∣

∣

a ∈ C
∗, B ∈ C

}

and

B = GC/BC = CP 1 ∼= S2.

GC (hen
e G) a
ts on B = CP 1
by fra
tional linear transform. In proje
tive 
oordinates

we have

(

a b
c d

)

·

(

u
v

)

:=

(

au+ bv
cu+ dv

)

.

If we set z = u/v, then
(

a b
c d

)

· z :=
az + b

cz + d
.

We will study G-orbits of B in more details in Se
tion 7.

3. KK-theory and the Assemble Map

In this se
tion we qui
kly review KK-theory and 
onstru
t the assemble map

µG,T : KKG
∗ (S, T )→ K

∗
G(T ) (3.2)

for any G-spa
e T . We work in the framework of Kasparov as in [8℄.

In this paper we use KK-theory as a bla
k box and most results in this se
tion are

given without proof.

3.1. A qui
k review of equivariant K-theory. Let G be a lo
ally 
ompa
t group.

We 
all a C∗
-algebra with 
ontinuous G a
tion a G-C∗

-algebra. For a G-C∗
-algebra A,

we de�ne the redu
ed 
ross produ
t C∗
-algebra C∗

r (G,A) as the 
ompletion of the twisted


onvolution algebra of 
ompa
tly supported and 
ontinuous fun
tions from G into A.
The 
onvolution produ
t is

f1 ⋆ f2(g) =

∫

G

f1(h)αh(f2(h
−1g))dh

where α denotes the a
tion of G on A. If A is represented faithfully and isometri
ally

on a Hilbert spa
e H, then the 
ompletion is under the operator norm on L2(G,H). In
parti
ular, C∗

r (G,C) = C∗
r (G). See [12, Chapter 7℄ for details.

Let T be a topologi
al spa
e with 
ontinuous G-a
tion. Let C0(T ) be the spa
e of


ontinuous fun
tions on T whi
h vanishes at in�nity. If T is 
ompa
t, then C0(T ) = C(T )
is the spa
e of all 
ontinuous fun
tions on X . We de�ne

K

∗
G(T ) := K

∗(C∗
r (G,C0(T ))). (3.3)

• K

∗
G(pt) re�e
ts the tempered unitary dual when G is a redu
tive Lie group, see

[2℄.

• When G is 
ompa
t and X is a 
ompa
t G-topologi
al spa
e, let C(X ) denote
the C∗

-algebra of 
omplex value 
ontinuous fun
tions on X . Then our K

∗
G(X )


oin
ides with the equivariant K-theory of X , see [7℄.
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3.2. A qui
k review of equivariant KK-theory. For two G-C∗
-algebras A and B,

Kasparov introdu
ed the equivariant KK-theory KK

G
i (A,B) for i = 0, 1 in [8℄. In this

paper we do not go to details of the 
onstru
tion but we list some properties of KK-theory

here.

Proposition 3.1. KK

G
i (A,B) is an abelian group for i = 0, 1, and it is 
ontravariant

for A and 
ovariant for B.

Re
all that a C∗
-algebra is 
alled σ-unital if it possesses a 
ountable approximate

unit.

Theorem 3.2. [[8, Theorem 2.11, De�nition 2.12, and Theorem 2.14℄℄ If A is separable,

then we have the r Kasparov produ
t

KK

G
i (A,B1)⊗ KK

G
j (B1, B2)→ KKG

i+j(A,B2).

More generally if A1 and A2 are separable, then we have the Kasparov produ
t

KK

G
i (A1, B1⊗̂D)⊗KK

G
j (D⊗̂A2, B2)→ KKG

i+j(A1⊗̂A2, B1⊗̂B2). (3.4)

denoted by x1 ⊗D x2. Moreover, the Kasparov produ
t has the following properties

(1) It is bilinear;

(2) It is 
ontravariant in A1 and A2 and 
ovariant in B1 and B2;

(3) It is fun
torial in D;

(4) It is asso
iative;

(5) For any σ-unital G-C∗
-algebra A, there exists a two side multipli
ative unit 1A ∈

KK

G
0 (A,A).

Proposition 3.3. For a σ-unital G-C∗
-algebra D, we have a homomorphism

σD : KKG
i (A,B)→ KK

G
i (A⊗̂D,B⊗̂D), (3.5)

where ⊗̂ denotes the tensor produ
t 
ompleted under the minimal norm. The map σD is


ompatible with the Kasparov produ
t in the sense that if A1, A2, and D1 are separable,

then

σD1
(x1 ⊗D x2) = σD1

(x1)⊗D⊗̂D1
σD1

(x2)

for x1 ∈ KK

G
∗ (A1, B1⊗̂D) and x2 ∈ KK

G
∗ (D⊗̂A2, B2).

Proposition 3.4. Let f : G1 → G2 be a homomorphism between groups, we have the

natural restri
tion homomorphism

rG2,G1 : KKG2

∗ (A,B) −→ KK

G1

∗ (A,B)

whi
h is 
ompatible with the Kasparov produ
t.

Proposition 3.5. [[8, Theorem 3.11℄℄ There is a natural homomorphism

jGr : KKG
∗ (A,B) −→ KK∗(C

∗
r (G,A), C∗

r (G,B))

whi
h is 
ompatible with the Kasparov produ
t. Here KK∗(−,−) denotes the ordinary

(non-equivariant) KK-theory. Moreover, for 1A ∈ KK

G
0 (A,A) we have

jGr (1A) = 1C∗
r (G,A) ∈ KK0(C

∗
r (G,A), C∗

r (G,A)).

As before, if A = C0(X ) and B = C0(Y) for topologi
al spa
es X and Y, then we

denote KK

G
i (C0(X ), C0(Y)) simply by KK

G
i (X ,Y).

We have the Poin
are duality isomorphism in KK-theory.

Theorem 3.6. [[8, Theorem 4.10℄, see also [3, Se
tion 4.3℄℄ For a G-manifold X , let
Cτ (X ) denote the algebra of 
ontinuous se
tions of the Cli�ord bundle over X vanishing

at in�nity. Then we have the following isomorphism

KK

G
∗ (X , T )

∼= K

∗
G(C0(T )⊗ Cτ (X )). (3.6)
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3.3. The Dira
 Element. For G, X and Cτ (X ) as in Theorem 3.6, Kasparov de�ned

the Dira
 element [8, Se
tion 4.2℄:

dG,X ∈ KK

G
0 (Cτ (X ),C) (3.7)

Remark 3.7. In the de�nition of dG,X we do not require that X is spin. We will dis
uss

the spin 
ase in Se
tion 3.4 below.

Now we want to �nd the relation between equivariant KK-theory and the K-theory of


rossed-produ
t algebras.

First remember that for any G-spa
e T we have the map as in (3.3)

σT : KKG
∗ (A,B) −→ KK

G
∗ (A⊗ C0(T ), B ⊗ C0(T )).

Apply σT to dG,S ∈ KK

G
0 (Cτ (S),C) we get

σT (dG,S) ∈ KK

G
0 (Cτ (S) ⊗ C0(T ), C0(T )).

Then apply the map jGr in Proposition 3.5 to σT (dG,S) we get

jGr (σT (dG,S)) ∈ KK0(C
∗
r (G,Cτ (S)⊗ C0(T )), C

∗
r (G,C0(T ))).

We denote jGr (σT (dG,S)) by DG,S or simply by D if G is 
lear.

De�nition 3.8 (The assemble map). Let S = G/U , for any T , the Poin
are duality and
the Kasparov produ
t with D give us the desired map

· ⊗D : KKG
∗ (S, T )

∼= K

∗
G(C0(T )⊗ Cτ (S))→ K

∗
G(T ). (3.8)

Remark 3.9. As pointed out in Remark 3.7, we do not require S to be spin to de�ne

the assemble map.

3.4. The Spin Case. Let us study the assemble map in the spin 
ase to get more

intuition.

When S is spin and even dimensional, it is well known that Cτ (S) is strongly Morita

equivalent to C0(S). Hen
e the Poin
are duality gives us

KK

G
∗ (S, T )

∼= K

∗
G(T × S). (3.9)

In this 
ase, the Dira
 element dG,S is exa
tly the index map of the Dira
 operator

in the S dire
tion ([1℄) and this justi�ed the name "Dira
 element". In this 
ase the

assemble map is given by the index map

D : K∗
G(T × S)→ K

∗
G(T ) (3.10)

We 
an look at K

∗
G(T × S) from another viewpoint. Remember that S = G/U . We

have the following obvious result

Lemma 3.10. Let T be a G-spa
e in the above setting and H be a subgroup of G. Then

G×H T is G-isomorphi
 to G/H×T , where G a
ts on G/H ×T by the diagonal a
tion.

Hen
e

K

∗
G(G/H × T ) ∼= K

∗
G(G×H T ).

Proof. The map

G×H T →G/H × T

(g, t) 7→(g, gt)

gives the G-isomorphism �

We also have the following isomorphism, see [14℄
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Lemma 3.11 (The indu
tion map). Consider a group G and a 
losed subgroup H ⊂ G.

For an H-spa
e T , there is an indu
tion map

K

∗
H(T )→ K

∗
G(G×H T )

whi
h is a natural isomorphism. Here the G-a
tion on G×H T is the left multipli
ation

on the �rst 
omponent.

Proof. Just noti
e that C∗
r (H,C0(T )) and C∗

r (G,C0(G×H T )) are strongly Morita equiv-

alent. �

Remark 3.12. Although simple, the idea of Lemma 3.10 and 3.11 will appear later in

Lemma 4.4.

Corollary 3.13. Let G be an almost 
onne
ted Lie group and U be its maximal 
ompa
t

subgroup. If S = G/U is spin and even dimensional, then for any G-spa
e T we have a

natural isomorphism

KK

G
∗ (S, T )

∼= K

∗
G(T × S)

∼= K∗
U (T ). (3.11)

A

ording to Corollary 3.13, the assemble map in De�nition 3.8 has the following form

D : K∗
U (T )→ K

∗
G(T ). (3.12)

The Connes-Kasparov 
onje
ture, whi
h is a spe
ial 
ase of the Baum-Connes 
onje
ture,


laims that the above map is an isomorphism.

Remark 3.14. The original Connes-Kasparov 
onje
ture does not require G/U to be

spin but it is stated in a slightly di�erent way, see [13℄.

3.5. The Dual Dira
 Element. We are looking for an inverse element of dG,X ∈

KK

G
0 (Cτ (X ),C). For this purpose Kasparov introdu
ed the 
on
ept ofG-spe
ial manifold

in [8, Se
tion 5.1℄.

De�nition 3.15. A G- manifold X is 
alled G-spe
ial if there exists an element ηG,X ∈

KK

G
0 (C, Cτ (X )) 
alled the dual Dira
 element, su
h that

dG,X ⊗C ηG,X = 1Cτ(X )

under the Kasparov produ
t KK

G
0 (Cτ (X ),C)⊗KK

G
0 (C, Cτ (X ))→ KK

G
0 (Cτ (X ), Cτ (X )).

Remark 3.16. It is 
lear that the element ηG,X is unique if exists.

De�nition 3.17. We 
onsider ηG,X ⊗Cτ (X ) dG,X ∈ KK

G
0 (C,C) as the Kasparov produ
t

in the other way and we denote it by γG,X .

Remark 3.18. Even for a G-spe
ial manifold X , the element γG,X ∈ KK

G
0 (C,C) need

not to be 1C. If γG,X = 1C, then dG,X and ηG,X are inverse to ea
h other under the

Kasparov produ
t.

In [8℄ Kasparov gave several examples of G-spe
ial manifolds, in parti
ular he gave

the following result.

Lemma 3.19. [[8, Theorem 5.7℄℄ Let G be an almost 
onne
ted group and U the max-

imal 
ompa
t subgroup, then the homogeneous spa
e S = G/U is a G-spe
ial manifold.

Moreover the element γG,S is independent of the 
hoi
e of U .
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3.6. When γG,X = 1? Kasparov proved that γG,X = 1 in some spe
ial 
ases, whi
h is

su�
ient for our purpose. First we re
all the 
on
ept of amenable group.

De�nition 3.20. A group G is 
alled amenable if there exists a left invariant mean µ
on the spa
e L∞(G). Here we 
all µ : L∞(G) → R a mean if it is a non-negative linear

fun
tional su
h that µ(1) = 1. A mean µ is 
alled left invariant if µ(f) = µ(lg(f)) for
any f ∈ L∞(G) and g ∈ G, where lgf(g

′) := f(gg′).

Example 3.21. • An abelian group is amenable;

• A solvable group is amenable;

• A 
ompa
t group is amenable;

• Every (
losed) subgroup of an amenable group is amenable;

• A non-
ompa
t real (or 
omplex) semisimple Lie group is never amenable.

Lemma 3.22. If X is a G2-spe
ial manifold and f : G1 → G2 be a homomorphism of

groups. Then X is also G1-spe
ial and we have rG2,G1(dG2,X ) = dG1,X , r
G2,G1(ηG2,X ) =

ηG1,X , and

rG2,G1(γG2,X ) = γG1,X ,

where rG2,G1
is the restri
tion homomorphism as in Proposition 3.4.

Proof. It is 
lear sin
e rG2,G1
is 
ompatible with the Kasparov produ
t. �

Kasparov proved the following result for amenable groups.

Theorem 3.23. [[8, Theorem 5.9℄℄ Let f : G1 → G2 be a homomorphism between

almost 
onne
ted groups with the kernel ker f amenable and the image 
losed. Let Ui be

the maximal subgroup of Gi and Si = Gi/Ui for i = 1, 2. Without loss of generality we

assume f(U1) ⊂ U2. Then the restri
tion homomorphism gives us

rG2,G1(γG2,S2
) = γG1,S1

. (3.13)

Corollary 3.24. For an almost 
onne
ted group G, let H < G be a 
losed subgroup.

Without loss of generality we 
hoose the maximal 
ompa
t subgroup U of G su
h that

U ∩H is the maximal subgroup of H. Let S = G/U and SH = H/U ∩H.Then we have

rG,H(γG,S) = γH,SH
. (3.14)

Corollary 3.25. Let P be an amenable almost 
onne
ted group and L be the maximal


ompa
t subgroup of P . Then γP,P/L = 1 hen
e dP,P/L and ηP,P/L are inverse to ea
h

other in the KK-groups.

Now we 
an immediately get an isomorphi
 result in the almost 
onne
ted amenable


ase. The following result is impli
itly given in [8, Se
tion 5.10℄.

Corollary 3.26. If P is an almost 
onne
ted amenable group, L is the maximal 
ompa
t

subgroup of P . Then for any P -spa
e T , the assemble map

µP,T : KKP
∗ (P/L, T )→ K

∗
P (T ) (3.15)

is an isomorphism.

Proof. By De�nition 3.8, the assembly map is given by right multipli
ation with the

element D = jPr (σT (dP,P/L)). Corollary 3.25 tells us that dP,P/L is invertible, and by

Proposition 3.3 and Proposition 3.5, both jPr and σT are 
ompatible with the Kasparov

produ
t. So µP,T is an isomorphism. �

Remark 3.27. The results of Corollary 3.25 and Corollary 3.26 do not hold for a general

group G. So we 
annot apply the Dira
-dual Dira
 method to prove Baum-Connes


onje
ture with 
oe�
ients in general. Nevertheless in this paper we 
onsider the 
ase

that G is a real semisimple Lie group and T = B is the �ag variety of GC. Although in

this 
ase G is not amenable, we 
an use geometri
 tri
k to redu
e to the amenable 
ase.
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4. The Assemble Map on a Single G-Orbit of the Flag Variety

As in Se
tion 2 let G be a 
onne
ted real semisimple Lie group and U be its maximal


ompa
t subgroup. Let S = G/U and B be the �ag variety of GC. It is 
lear that the

G-a
tion on B is not transitive and let us denote O+
α to be one of the G-orbits.

Remark 4.1. This notation will be justi�ed in Se
tion 5.

The following proposition is the main result of this se
tion.

Proposition 4.2. Let G be a 
onne
ted real semisimple Lie group and U be its maximal


ompa
t subgroup. Let S = G/U and B be the �ag variety of GC. Let O+
α be a G-orbit

in B. Then the assemble map

µG,O+
α
: KKG

∗ (S,O
+
α )→ K

∗
G(O

+
α ). (4.16)

is an isomorphism.

Remark 4.3. Proposition 4.2, whi
h fo
uses on a single G-orbit, is the building blo
k

of Theorem 1.3. We will pie
e together di�erent orbits in Se
tion 6.

The proof of Proposition 4.2 
onsists of several steps. First we prove the following

lemma:

Lemma 4.4 (Inter
hange subgroups). Let G, S, and O+
α be as in Proposition 4.2. Let

H be the isotropy group of G at a point point x ∈ O+
α . Then there is an isomorphism:

KK

G
∗ (S,O

+
α )

∼
−→ KK

H
∗ (S, pt).

Proof. First by Poin
are duality

KK

G
∗ (S,O

+
α )
∼= K

∗
G(C0(O

+
α )⊗ Cτ (S)).

Then noti
e that O+
α 
an by identi�ed with G/H . By a strong Morita equivalen
e

argument similar to Lemma 3.11 we have

K

∗
G(C0(O

+
α )⊗ Cτ (S)) ∼= K

∗
H(Cτ (S)).

Finally by Poin
are duality again we have

K

∗
H(Cτ (S)) ∼= KK

H
∗ (S, pt).

We �nish the proof. �

Next we proof the following result.

Proposition 4.5. Let G, S, O+
α , and H be as in Proposition 4.2 and Lemma 4.4. We

have the following 
ommutative diagram:

KK

G
∗ (S,O

+
α )

∼
−−−−→ KK

H
∗ (S, pt)





y

µ
G,O

+
α





y

µH,pt

K

∗
G(O

+
α )

∼
−−−−→ K

∗
H(pt)

(4.17)

where the verti
al maps are the assemble maps and the horizontal isomorphisms are given

in Lemma 3.11 and Proposition 4.5.

Proof. To prove the proposition we need to have a 
loser look at the maps. First we look

at the right verti
al map. At the beginning we have the Dira
 element

dG,S ∈ KK

G
0 (Cτ (S),C)

and apply the restri
tion homomorphism rG,H
in Proposition 3.4 we get

rG,H(dG,S) ∈ KK

H
0 (Cτ (S),C)



BAUM-CONNES CONJECTURE ON FLAG VARIETIES 397

whi
h by de�nition equals to dH,S ∈ KK

H
0 (Cτ (S),C), the Dira
 element of H .

Then we apply the map

jHr : KKH
∗ (Cτ (S),C) −→ KK∗(C

∗
r (H,Cτ (S)), C

∗
r (H))

in Proposition 3.5 and get

jHr (rG,H
dG,S) ∈ KK0(C

∗
r (H,Cτ (S)), C

∗
r (H))

and we denote it by DH . Right multipli
ation of DH gives the verti
al map on the right

in the diagram

KK

H
∗ (S, pt)

µH,pt

−→ K

∗
H(pt).

On the other hand we have the map in Proposition 3.3

σ
O

+
α
: KKG

∗ (Cτ (S),C) −→ KK

G
∗ (Cτ (S)⊗ C0(O

+
α ), C0(O

+
α ))

so we get

σ
O

+
α
(dG,S) ∈ KK

G
0 (Cτ (S)⊗ C0(O

+
α ), C0(O

+
α ))

then via jGr we get

jGr (σ
O

+
α
(dG,S)) ∈ KK(C∗

r (G,Cτ (S) ⊗ C0(O
+
α )), C

∗
r (G,C0(O

+
α )))

whi
h we denote by DG,O+
α
. Right multipli
ation of DG,O+

α
gives the left verti
al map

KK

G
∗ (S,O

+
α )

µ
G,O

+
α−→ K

∗
G(O

+
α ).

The horizontal maps in the diagram are given by strong Morita equivalen
e. We also

noti
e that under strong Morita equivalen
e, DG,O+
α

∼= DH , so the diagram 
ommutes.

�

Lemma 4.6. Let G be a 
onne
ted real semisimple Lie group and B be the �ag variety

of GC. Let H be the isotropy group of G at any point point x ∈ B is amenable and almost


onne
ted.

Proof. It is 
lear sin
e H is a 
losed subgroup of a Borel subgroup of GC. �

A

ording to Proposition 4.5, in order to prove the 
laim of Proposition 4.2, it is

su�
ient to prove the following proposition.

Proposition 4.7.

µH,pt : KK
H
∗ (S, pt)→ K

∗
H(pt) (4.18)

is an isomorphism.

Proof. It is su�
ient to prove

DH = jHr (dH,S) ∈ KK0(C
∗
r (H,Cτ (S)), C

∗
r (H))

is invertible. In fa
t, we 
an prove that dH,S ∈ KK

H
0 (Cτ (S),C) is invertible. This follows

from the fa
t that H is almost 
onne
ted amenable together with some formal arguments

as follows.

As in the 
onstru
tion in Se
tion 3.5, we have the dual Dira
 element

ηH,S ∈ KK

H
0 (C, Cτ (S))

and

dH,S⊗CηH,S = 1 ∈ KK

H
0 (Cτ (S), Cτ (S)),

ηH,S⊗Cτ (H)dH,S = γH,S ∈ KK

H
0 (C,C).

It is 
lear that H is an almost 
onne
ted amenable group therefore Corollary 3.25 tells

us that

γH,SH
= 1
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where SH = H/U ∩H . By Lemma 3.22 and Corollary 3.24 we know that γH,SH
= γH,S

hen
e

γH,S = 1. (4.19)

Now we proved that dH,S hen
e DH is invertible. As a result we have

µH,pt : KK
H
∗ (S, pt)→ K

∗
H(pt)

is an isomorphism. �

Proof of Proposition 4.2. Now it is a 
orollary of Proposition 4.5 and Proposition 4.7. �

5. The G-orbits on the Flag Variety

We have proved that the assemble map

µG,O+
α
: KKG

∗ (S,O
+
α )→ K

∗
G(O

+
α )

is an isomorphism on one G-orbit O+
α . In this se
tion we study the geometry of G-orbits

on B and in the next se
tion we will pie
e together orbits.

The result on the G-orbits in [11℄ is important to our purpose, so we summarize their

result here

Theorem 5.1. [[11, 1.2, 3.8℄℄ Let G be a 
onne
ted real semisimple Lie group and B =
GC/BC as before. Let U be the maximal 
ompa
t subgroup of G. On the �ag variety B
there exists a real value fun
tion f su
h that

(1) f is a Morse-Bott fun
tion on B.
(2) f is U invariant, hen
e the gradient �ow φ : R× B → B is also U invariant.

(3) The 
riti
al point set C of f 
onsists of �nitely many U -orbits Oα. The �ow

preserves the orbits of G.

(4) The limits limt→±∞ φt(x) := π±(x) exist for any x ∈ B. For Oα a 
riti
al

U -orbit, the stable set

O+
α = (π+)−1(Oα)

is an G-orbit, and the unstable set

O−
α = (π−)−1(Oα)

is an UC-orbit, where UC is the 
omplexi�
ation of U in GC.

(5) O+
α ∩O

−
α = Oα.

Corollary 5.2. Let G be a 
onne
ted real semisimple Lie group and B = GC/BC as

before. Then the total number of G-orbits in B is �nite.

We will also use the following 
orollary in [11℄:

Corollary 5.3. [[11, 1.4℄℄ Let Oα and Oβ be two 
riti
al U -orbits. Then the 
losure

O+
α ⊃ O

+
β if and only if

O+
α ∩ O

−
β 6= ∅.

From this we 
an get

Corollary 5.4. Let Oα and Oβ be two di�erent 
riti
al U -orbits, i.e. Oα 6= Oβ. Then

O+
α ⊃ O

+
β implies that the Morse-Bott fun
tion f has values

f(Oα) > f(Oβ)
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Proof. By Corollary 5.3,

O+
α ∩ O

−

β 6= ∅.

so there exists an x ∈ O+
α ∩O

−
β .

Sin
e limt→+∞ φt(x) ∈ Oα, we have

f(Oα) > f(x),

similarly

f(x) > f(Oβ).

On the other hand sin
e Oα and Oβ are 
riti
al and Oα 6= Oβ we get

x 6∈ Oα, x 6∈ Oβ

hen
e

f(x) 6= f(Oα), f(x) 6= f(Oβ).

Therefore we have

f(Oα) > f(Oβ).

�

De�nition 5.5. We give a partial order on the set of G-orbits of B whi
h satis�es the

following 
onditions

(1) If f(Oα) > f(Oβ), we require that Oα+ > Oβ+;
(2) If f(Oα) = f(Oβ), we 
hoose and �x an arbitrary partial order on them.

Now let us list all G-orbits in B in as
ending order, keep in mind that there are �nitely

many of them:

O+
α1

< O+
α2

< . . .O+
αk

. (5.20)

From the de�nition we 
an easily get

Corollary 5.6. For any G-orbits O+
αi
, the union

Zi :=
⋃

O
+
αj

6O
+
αi

O+
αj

is a 
losed subset of B. Noti
e that O+
αi
⊂ Zi

Proof. It is su�
ient to prove that Zi 
ontains all its limit points, whi
h is a dire
t


orollary of De�nition 5.5 and Corollary 5.4. �

Remark 5.7. Corollary 5.4, De�nition 5.5 and Corollary 5.6 are not expli
itly given in

[11℄.

6. The Baum-Connes Conje
ture on Flag Varieties

With the 
onstru
tion in Se
tion 5, we 
an pie
e together assemble maps on di�erent

orbits.

Proposition 6.1. Let O+
αi

and Zi be as in Theorem 5.1 and Corollary 5.6. Then for

1 6 i 6 k − 1 we have a short exa
t sequen
e of 
rossed produ
t algebras:

0→ C∗
r (G,C0(O

+
αi+1

))→ C∗
r (G,C(Zi+1))→ C∗

r (G,C(Zi))→ 0.

Proof. From the 
onstru
tion we also get

Zi ⊂ Zi+1, O
+
αi+1

⊂ Zi+1,

Zi ∪ O
+
αi+1

= Zi+1, Zi ∩ O
+
αi+1

= ∅,

and Zi is 
losed in Zi+1, O+
αi+1

is open in Zi+1.

Sin
e B is a 
ompa
t manifold, we get that Zi and Zi+1 are both 
ompa
t.
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The in
lusion gives a short exa
t sequen
e of C∗
-algebras whi
h is 
ompatible with

the G-a
tions:

0→ C0(O
+
αi+1

)→ C(Zi+1)→ C(Zi)→ 0. (6.21)

Now we need to go to the redu
ed 
rossed-produ
t C∗
-algebras for whi
h we need the

following 
on
ept.

De�nition 6.2. [[9℄℄ A groupG is 
alled C∗
-exa
t if for anyG-equivariant exa
t sequen
e

of C∗
-algebras

0→ A→ B → C → 0

the sequen
e of redu
ed 
ross produ
t C∗
-algebras

0→ C∗
r (G,A)→ C∗

r (G,B)→ C∗
r (G,C)→ 0

is also exa
t.

We use the following result on C∗
-exa
t groups.

Lemma 6.3. [[10, Proposition 6.6 and Corollary 6.9℄℄ Any almost-
onne
ted group is

C∗
-exa
t. In parti
ular any 
onne
ted real semisimple Lie group is C∗

-exa
t.

Apply Lemma 6.3 to (6.21) we get the short exa
t sequen
e

0→ C∗
r (G,C0(O

+
αi+1

))→ C∗
r (G,C(Zi+1))→ C∗

r (G,C(Zi))→ 0. (6.22)

This �nishes the proof of Proposition 6.1. �

From Proposition 6.1 we have the well-known six-term long exa
t sequen
e

K

∗(C∗

r (G,C0(O
+
αi+1

))) −−−−−→ K

∗(C∗

r (G,C(Zi+1))) −−−−−→ K

∗(C∗

r (G,C(Zi)))

x









y

K

∗+1(C∗

r (G,C(Zi))) ←−−−−− K

∗+1(C∗

r (G,C(Zi+1))) ←−−−−− K

∗+1(C∗

r (G,C0(O
+
αi+1

))).

i.e.

K

∗

G(O
+
αi+1

) −−−−−→ K

∗

G(Zi+1) −−−−−→ K

∗

G(Zi)
x









y

K

∗+1

G
(Zi) ←−−−−− K

∗+1

G
(Zi+1) ←−−−−− K

∗+1

G
(O+

αi+1
).

(6.23)

Similarly we have

K

∗

G
(C0(O

+
αi+1

)⊗ Cτ (S)) −−−−−→ K

∗

G
(C(Zi+1)⊗ Cτ (S)) −−−−−→ K

∗

G
(C(Zi) ⊗ Cτ (S))

x









y

K

∗+1

G
(C(Zi) ⊗ Cτ (S)) ←−−−−− K

∗+1

G
(C(Zi+1)⊗ Cτ (S)) ←−−−−− K

∗+1

G
(C0(O

+
αi+1

)⊗ Cτ (S)).

(6.24)

The following proposition 
laims that (6.23) and (6.24) together form a 
ommutative

diagram.



BAUM-CONNES CONJECTURE ON FLAG VARIETIES 401

Proposition 6.4. We have the following 
ommutative diagram:

(6.25)

where the top and bottom are the six-term exa
t sequen
es and the verti
al arrows are

assemble maps µ.

Proof. The diagram 
ommutes be
ause all the verti
al maps µ 
ome from the same

element

dG,S ∈ KK

G
0 (Cτ (S),C)

as in Se
tion 4. �

After all these work we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We use indu
tion on the Zi's. First, for Z1 = O+
α1
, by Proposition

4.2,

K

∗
G(C(Z1)⊗ Cτ (S))

µ
−→ K

∗
G(Z1) (6.26)

is an isomorphism.

Assume that for Zi,

K

∗
G(C(Zi)⊗ Cτ (S))

µ
−→ K

∗
G(Zi) (6.27)

is an isomorphism.

By Proposition 4.2, the verti
al maps on the left fa
e of (6.25) are isomorphisms.

Moreover by indu
tion assumption the verti
al maps on the right fa
e are isomorphism

too, hen
e by a 5-lemma-argument we get the middle verti
al maps are also isomorphisms,

i.e. for Zi+1,

K

∗
G(C(Zi+1)⊗ Cτ (S))

µ
−→ K

∗
G(Zi+1) (6.28)

is an isomorphism.

There are �nitely many orbits in B so the indu
tion stops at the largest Zk whi
h is

B, hen
e
µG,B : KKG

∗ (S,B)→ K

∗
G(B) (6.29)

is an isomorphism. we �nish the proof Theorem 1.3. �

7. An Example: SL(2,R)

Re
all Example 2.1. If G = SL(2,R) then GC = SL(2,C). We have S = G/U = H

and

B = GC/BC = CP 1 ∼= S2.

GC (hen
e G) a
ts on B = CP 1
by fra
tional linear transform

(

a b
c d

)

·

(

u
v

)

:=

(

au+ bv
cu+ dv

)

.
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If we set z = u/v, then
(

a b
c d

)

· z :=
az + b

cz + d
. (7.30)

From (7.30) we 
an see that the a
tion of G on B is not transitive. In fa
t, it has three

orbits

O+
α1

=R ∪∞ ∼= S1
the equator,

O+
α2

={x+ iy|y > 0} ∼= C the upper hemisphere,

O+
α3

={x+ iy|y < 0} ∼= C the lower hemisphere.

O+
α1

is a 
losed orbit with dimension 1; O+
α2

and O+
α3

are open orbits with dimension 2.

We look at O+
α1

�rst. Take the point 1 ∈ O+
α1
. The isotropy group at 1 is the upper

triangular group B in SL(2,R). So

K

∗
G(O

+
α1
) = K

∗
B(pt).

B is solvable hen
e amenable and Z/2Z is the maximal 
ompa
t group of B. By

Theorem 3.26

K

0
B(pt) = R(Z/2Z)

is the representation ring of the group with two elements and

K

1
B(pt) = 0.

So

K

0
G(O

+
α1
) = R(Z/2Z)

and

K

1
G(O

+
α1
) = 0.

For O+
α2

and O+
α3
, the isotropy groups are both

T =

{(

cos θ sin θ
− sin θ cos θ

)}

hen
e by the similar reason to O+
α1

we have

K

0
G(O

+
α2
) = K

0
G(O

+
α3
) = K

0
T (pt) = R(T )

is the representation ring of T and

K

1
G(O

+
α2
) = K

1
G(O

+
α3
) = K

1
T (pt) = 0.

Now O+
α2
∪O+

α3
is open in B so as in the last se
tion we have the short exa
t sequen
e

0 −→ C0(O
+
α2
∪ O+

α3
) −→ C(B) −→ C(O+

α1
) −→ 0 (7.31)

and further

0 −→ C∗
r (G,O+

α2
∪ O+

α3
) −→ C∗

r (G,B) −→ C∗
r (G,O+

α1
) −→ 0.

i.e.

0 −→ C∗
r (G,O+

α2
)⊕ C∗

r (G,O+
α3
) −→ C∗

r (G,B) −→ C∗
r (G,O+

α1
) −→ 0. (7.32)

We get the six-term exa
t sequen
e

K

0
G(O

+
α2
)⊕K

0
G(O

+
α3
) −−−−→ K

0
G(B) −−−−→ K

0
G(O

+
α1
)

x









y

K

1
G(O

+
α1
) ←−−−− K

1
G(B) ←−−−− K

1
G(O

+
α2
)⊕K

1
G(O

+
α3
).

(7.33)

Combine with the previous 
al
ulation we get

0 −→ R(T )⊕R(T ) −→ K

0
G(B) −→ R(Z/2Z) −→ 0 (7.34)
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and K

1
G(B) = 0.

In 
on
lusion we have

K

0
G(B) ≈R(T )⊕R(T )⊕R(Z/2Z),

K

1
G(B) =0.

(7.35)

Next we look at KK

G
∗ (S,B). By Corollary 3.13 we have KK

G
∗ (S,B)

∼= K

∗
U (B). We

know that for G = SL(2,R) the maximal 
ompa
t subgroup U = T . By Bott periodi
ity

we have

K

0
U (O

+
α2
) = K

0
U (O

+
α3
) ∼= K

0
U (C)

∼= K

0
U (pt) = R(U) = R(T ) (7.36)

and

K

1
U (O

+
α2
) = K

1
U (O

+
α3
) ∼= K

1
U (C)

∼= K

1
U (pt) = 0. (7.37)

As for O+
α1
, we noti
e that U a
ts on O+

α1

∼= S1
by "square", so the isotropy group is

Z/2Z. Hen
e

K

0
U (O

+
α1
) = R(Z/2Z) and K

1
U (O

+
α1
) = 0.

By the six-term long exa
t sequen
e we have

K

0
U (B) ≈R(T )⊕R(T )⊕R(Z/2Z),

K

1
U (B) =0.

(7.38)

(7.35) and (7.38) is 
ompatible with the Baum-Connes 
onje
ture (in fa
t, Connes-

Kasparov 
onje
ture as in Se
tion 3.4) whi
h states that

K

∗
U (B) ∼= K

∗
G(B). (7.39)

Remark 7.1. Using Bott periodi
ity theorem we 
an obtain pre
isely the algebra stru
-

ture of K

∗
U (B) as in [15℄. Therefore Baum-Connes 
onje
ture will be a powerful tool to

investigate KG(B) and to study the representation theory of G.
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