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A PROOF OF THE BAUM-CONNES CONJECTURE FOR REAL

SEMISIMPLE LIE GROUPS WITH COEFFICIENTS ON FLAG

VARIETIES

ZHAOTING WEI

Abstrat. We onsider the equivariant K-theory of a real semisimple Lie group

whih ats on the (omplex) �ag variety of its omplexi�ation group. We onstrut

an assemble map in the framework of KK-theory and then we prove that it is an

isomorphism. The prove relies on a areful study of the orbits of the real group

ation on the �ag variety and then pieing together di�erent orbits. This result is a

speial ase of the Baum-Connes onjeture with oe�ients.

�îçãëÿäà¹òüñÿ åêâiâàðiàíòíà Ê-òåîðiÿ äiéñíî¨ íàïiâïðîñòî¨ ãðóïè Ëi, ùî äi¹

íà (êîìïëåêñíîìó) ìíîãîâèäi ïðàïîðiâ íà êîìïëåêñè�iêîâàíié ãðóïi. Áóäó¹òüñÿ

âiäîáðàæåííÿ ñêëàäàííÿ â ñåíñi ÊÊ-òåîði¨, i äîâîäèòüñÿ, ùî âîíî ¹ içîìîð�içìîì.

Äîâåäåííÿ ñïèðà¹òüñÿ íà äåòàëüíå äîñëiäæåííÿ îðáiò äiéñíî¨ ãðóïè íà ìíîãîâèäi

ïðàïîðiâ i êëàñè�iêàöi¨ öèõ îðáiò. �åçóëüòàò ¹ ÷àñòèííèì âèïàäêîì ãiïîòåçè

Áàóìà-Êîííà ç êîå�iöi¹íòàìè.

1. Introdution

Let G be a loally ompat topologial group and A is a C∗
-algebra equipped with a

ontinuous ation of G by C∗
-algebra automorphisms. Following [3, Setion 4℄, we de�ne

the equivariant K-theory of A to be the K-theory of the redued rossed produt algebra:

K

∗
G(A) := K

∗(C∗
r (G,A)).

The equivariant K-theory de�ned in this way has a useful onnetion to Baum-Connes

onjeture and representation theory. It is well-known that C∗
r (G) re�ets the tempered

unitary dual when G is a redutive Lie group, see [3, Setion 4.1℄.

When G is ompat and X is a ompat G-topologial spae, let C0(X ) denote the

C∗
-algebra of ompat supported omplex value ontinuous funtions on X . Then it is

well-known that our K

∗
G(C0(X )) oinides with the equivariant K-theory of X , see [7℄. If

X is itself ompat, we an also denote C0(X ) by C(X ).

Remark 1.1. Be aware that this is not the same as Kasparov's de�nition of equivariant

K-theory in [8℄.

Bak to general G. For any C∗
-algebra A and B with ontinuous G-ation we have

the equivariant KK-theory group KK

G
∗ (A,B) as in [8, De�nition 2.3℄.

The Baum-Connes onjeture an be formulated as follows. Let G be almost onneted

and U be its maximal ompat subgroup and S := G/U be the quotient spae. We have

the assemble map [6℄

µG : KKG
∗ (C0(S),C)→ K

∗
G(C).

The Baum-Connes onjeture laims that the assemble map µG is an isomorphism. In

2003, J. Chabert, S. Ehterho�, R. Nest [4℄ proved this onjeture for almost onneted

Lie groups and for linear p-adi groups.
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Reall that a topologial group G is alled almost onneted if G/G0 is ompat, where

G0 denotes the identity omponent of G. For a Lie group G, almost onneted simply

means that G has �nitely many onneted omponents.

Remark 1.2. Baum-Connes onjeture is still open for ertain disrete groups, for ex-

ample G = SL(3,Z). Notie that in this ase G is not almost onneted and the spae

S = G/U should be replaed by the universal proper G-spae EG. See [2℄ for more

details. For an introdution of Baum-Connes onjeture for disrete groups we refer to

[16℄.

Moreover, for a C∗
-algebra A with ontinuous G-ation, we have the Baum-Connes

onjeture onjeture with oe�ients in A, whih laims that the map

µG,A : KKG
∗ (C0(S), A)→ K

∗
G(A)

is an isomorphism. There are ounter examples for some ertain G and A as in [5℄. For

general G and A Baum-Connes onjeture with oe�ients is still open.

In this paper we fous on the ase that G is a real semisimple Lie group and A is the

C∗
-algebra of ontinuous funtions on the omplexi�ed �ag variety of G. In more details

let GC be the omplexi�ation of G, We have the �ag variety B of GC. The group GC

(hene G and U) ats on B, so we also have the assemble map

µG,B : KKG
∗ (C0(S), C(B))→ K

∗
G(C(B)). (1.1)

The main result of this paper is the following theorem:

Theorem 1.3. For any real semisimple Lie group G, the assemble map

µG,B : KKG
∗ (C0(S), C(B))→ K

∗
G(C(B))

is an isomorphism.

Remark 1.4. The signi�ane of K

∗
G(C(B)) has been disussed in [3, Setion 4.4℄.

The proof of Theorem 1.3 in this paper relies on a areful study of the orbits of the

real group ation on the �ag variety: We �rst proof the isomorphism on one single orbit

of the G-ation by reduing to solvable subgroups, and then we piee together assemble

maps on di�erent orbits. The proof does not require the hard tehniques in funtional

analysis and representation theory so it an be onsidered as an geometri proof.

This paper is organized as follows: In Setion 2 and 3 we onstrut the assemble map.

In Setion 4 we study the assemble map on one single G-orbit of the �ag variety. In

Setion 5 we study the G-orbits on B and in Setion 6 we prove the Theorem 1.3. In

Setion 7 we give an example to illustrate the idea of the onstrution.

This work is inspired by the study of equivariant K-theory in [3℄ and Matsuki orre-

spondene in [11℄.

2. Real Semisimple Lie Groups and Flag Varieties

We will use the following notations in this paper. Let G be a onneted linear real

semisimple Lie group, U be the identity omponent of a maximal ompat subgroup of

G. In the sequel we �x suh a U and all it the maximal ompat subgroup of G. We

denote the spae G/U by S.
Let GC be the omplexi�ation of G, BC be the Borel subgroup of GC and B = GC/BC

be the �ag variety.

Obviously G ats on the �ag variety B. Unlike GC, the G-ation is not transitive, see

Setion 5 below or [11℄.
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Example 2.1. If G = SL(2,R) then U = SO(2) and S = G/U = H the upper half

plane.

On the other hand GC = SL(2,C). Hene

BC =

{(

a b
0 a−1

)∣

∣

∣

∣

a ∈ C
∗, B ∈ C

}

and

B = GC/BC = CP 1 ∼= S2.

GC (hene G) ats on B = CP 1
by frational linear transform. In projetive oordinates

we have

(

a b
c d

)

·

(

u
v

)

:=

(

au+ bv
cu+ dv

)

.

If we set z = u/v, then
(

a b
c d

)

· z :=
az + b

cz + d
.

We will study G-orbits of B in more details in Setion 7.

3. KK-theory and the Assemble Map

In this setion we quikly review KK-theory and onstrut the assemble map

µG,T : KKG
∗ (S, T )→ K

∗
G(T ) (3.2)

for any G-spae T . We work in the framework of Kasparov as in [8℄.

In this paper we use KK-theory as a blak box and most results in this setion are

given without proof.

3.1. A quik review of equivariant K-theory. Let G be a loally ompat group.

We all a C∗
-algebra with ontinuous G ation a G-C∗

-algebra. For a G-C∗
-algebra A,

we de�ne the redued ross produt C∗
-algebra C∗

r (G,A) as the ompletion of the twisted

onvolution algebra of ompatly supported and ontinuous funtions from G into A.
The onvolution produt is

f1 ⋆ f2(g) =

∫

G

f1(h)αh(f2(h
−1g))dh

where α denotes the ation of G on A. If A is represented faithfully and isometrially

on a Hilbert spae H, then the ompletion is under the operator norm on L2(G,H). In
partiular, C∗

r (G,C) = C∗
r (G). See [12, Chapter 7℄ for details.

Let T be a topologial spae with ontinuous G-ation. Let C0(T ) be the spae of

ontinuous funtions on T whih vanishes at in�nity. If T is ompat, then C0(T ) = C(T )
is the spae of all ontinuous funtions on X . We de�ne

K

∗
G(T ) := K

∗(C∗
r (G,C0(T ))). (3.3)

• K

∗
G(pt) re�ets the tempered unitary dual when G is a redutive Lie group, see

[2℄.

• When G is ompat and X is a ompat G-topologial spae, let C(X ) denote
the C∗

-algebra of omplex value ontinuous funtions on X . Then our K

∗
G(X )

oinides with the equivariant K-theory of X , see [7℄.
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3.2. A quik review of equivariant KK-theory. For two G-C∗
-algebras A and B,

Kasparov introdued the equivariant KK-theory KK

G
i (A,B) for i = 0, 1 in [8℄. In this

paper we do not go to details of the onstrution but we list some properties of KK-theory

here.

Proposition 3.1. KK

G
i (A,B) is an abelian group for i = 0, 1, and it is ontravariant

for A and ovariant for B.

Reall that a C∗
-algebra is alled σ-unital if it possesses a ountable approximate

unit.

Theorem 3.2. [[8, Theorem 2.11, De�nition 2.12, and Theorem 2.14℄℄ If A is separable,

then we have the r Kasparov produt

KK

G
i (A,B1)⊗ KK

G
j (B1, B2)→ KKG

i+j(A,B2).

More generally if A1 and A2 are separable, then we have the Kasparov produt

KK

G
i (A1, B1⊗̂D)⊗KK

G
j (D⊗̂A2, B2)→ KKG

i+j(A1⊗̂A2, B1⊗̂B2). (3.4)

denoted by x1 ⊗D x2. Moreover, the Kasparov produt has the following properties

(1) It is bilinear;

(2) It is ontravariant in A1 and A2 and ovariant in B1 and B2;

(3) It is funtorial in D;

(4) It is assoiative;

(5) For any σ-unital G-C∗
-algebra A, there exists a two side multipliative unit 1A ∈

KK

G
0 (A,A).

Proposition 3.3. For a σ-unital G-C∗
-algebra D, we have a homomorphism

σD : KKG
i (A,B)→ KK

G
i (A⊗̂D,B⊗̂D), (3.5)

where ⊗̂ denotes the tensor produt ompleted under the minimal norm. The map σD is

ompatible with the Kasparov produt in the sense that if A1, A2, and D1 are separable,

then

σD1
(x1 ⊗D x2) = σD1

(x1)⊗D⊗̂D1
σD1

(x2)

for x1 ∈ KK

G
∗ (A1, B1⊗̂D) and x2 ∈ KK

G
∗ (D⊗̂A2, B2).

Proposition 3.4. Let f : G1 → G2 be a homomorphism between groups, we have the

natural restrition homomorphism

rG2,G1 : KKG2

∗ (A,B) −→ KK

G1

∗ (A,B)

whih is ompatible with the Kasparov produt.

Proposition 3.5. [[8, Theorem 3.11℄℄ There is a natural homomorphism

jGr : KKG
∗ (A,B) −→ KK∗(C

∗
r (G,A), C∗

r (G,B))

whih is ompatible with the Kasparov produt. Here KK∗(−,−) denotes the ordinary

(non-equivariant) KK-theory. Moreover, for 1A ∈ KK

G
0 (A,A) we have

jGr (1A) = 1C∗
r (G,A) ∈ KK0(C

∗
r (G,A), C∗

r (G,A)).

As before, if A = C0(X ) and B = C0(Y) for topologial spaes X and Y, then we

denote KK

G
i (C0(X ), C0(Y)) simply by KK

G
i (X ,Y).

We have the Poinare duality isomorphism in KK-theory.

Theorem 3.6. [[8, Theorem 4.10℄, see also [3, Setion 4.3℄℄ For a G-manifold X , let
Cτ (X ) denote the algebra of ontinuous setions of the Cli�ord bundle over X vanishing

at in�nity. Then we have the following isomorphism

KK

G
∗ (X , T )

∼= K

∗
G(C0(T )⊗ Cτ (X )). (3.6)
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3.3. The Dira Element. For G, X and Cτ (X ) as in Theorem 3.6, Kasparov de�ned

the Dira element [8, Setion 4.2℄:

dG,X ∈ KK

G
0 (Cτ (X ),C) (3.7)

Remark 3.7. In the de�nition of dG,X we do not require that X is spin. We will disuss

the spin ase in Setion 3.4 below.

Now we want to �nd the relation between equivariant KK-theory and the K-theory of

rossed-produt algebras.

First remember that for any G-spae T we have the map as in (3.3)

σT : KKG
∗ (A,B) −→ KK

G
∗ (A⊗ C0(T ), B ⊗ C0(T )).

Apply σT to dG,S ∈ KK

G
0 (Cτ (S),C) we get

σT (dG,S) ∈ KK

G
0 (Cτ (S) ⊗ C0(T ), C0(T )).

Then apply the map jGr in Proposition 3.5 to σT (dG,S) we get

jGr (σT (dG,S)) ∈ KK0(C
∗
r (G,Cτ (S)⊗ C0(T )), C

∗
r (G,C0(T ))).

We denote jGr (σT (dG,S)) by DG,S or simply by D if G is lear.

De�nition 3.8 (The assemble map). Let S = G/U , for any T , the Poinare duality and
the Kasparov produt with D give us the desired map

· ⊗D : KKG
∗ (S, T )

∼= K

∗
G(C0(T )⊗ Cτ (S))→ K

∗
G(T ). (3.8)

Remark 3.9. As pointed out in Remark 3.7, we do not require S to be spin to de�ne

the assemble map.

3.4. The Spin Case. Let us study the assemble map in the spin ase to get more

intuition.

When S is spin and even dimensional, it is well known that Cτ (S) is strongly Morita

equivalent to C0(S). Hene the Poinare duality gives us

KK

G
∗ (S, T )

∼= K

∗
G(T × S). (3.9)

In this ase, the Dira element dG,S is exatly the index map of the Dira operator

in the S diretion ([1℄) and this justi�ed the name "Dira element". In this ase the

assemble map is given by the index map

D : K∗
G(T × S)→ K

∗
G(T ) (3.10)

We an look at K

∗
G(T × S) from another viewpoint. Remember that S = G/U . We

have the following obvious result

Lemma 3.10. Let T be a G-spae in the above setting and H be a subgroup of G. Then

G×H T is G-isomorphi to G/H×T , where G ats on G/H ×T by the diagonal ation.

Hene

K

∗
G(G/H × T ) ∼= K

∗
G(G×H T ).

Proof. The map

G×H T →G/H × T

(g, t) 7→(g, gt)

gives the G-isomorphism �

We also have the following isomorphism, see [14℄
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Lemma 3.11 (The indution map). Consider a group G and a losed subgroup H ⊂ G.

For an H-spae T , there is an indution map

K

∗
H(T )→ K

∗
G(G×H T )

whih is a natural isomorphism. Here the G-ation on G×H T is the left multipliation

on the �rst omponent.

Proof. Just notie that C∗
r (H,C0(T )) and C∗

r (G,C0(G×H T )) are strongly Morita equiv-

alent. �

Remark 3.12. Although simple, the idea of Lemma 3.10 and 3.11 will appear later in

Lemma 4.4.

Corollary 3.13. Let G be an almost onneted Lie group and U be its maximal ompat

subgroup. If S = G/U is spin and even dimensional, then for any G-spae T we have a

natural isomorphism

KK

G
∗ (S, T )

∼= K

∗
G(T × S)

∼= K∗
U (T ). (3.11)

Aording to Corollary 3.13, the assemble map in De�nition 3.8 has the following form

D : K∗
U (T )→ K

∗
G(T ). (3.12)

The Connes-Kasparov onjeture, whih is a speial ase of the Baum-Connes onjeture,

laims that the above map is an isomorphism.

Remark 3.14. The original Connes-Kasparov onjeture does not require G/U to be

spin but it is stated in a slightly di�erent way, see [13℄.

3.5. The Dual Dira Element. We are looking for an inverse element of dG,X ∈

KK

G
0 (Cτ (X ),C). For this purpose Kasparov introdued the onept ofG-speial manifold

in [8, Setion 5.1℄.

De�nition 3.15. A G- manifold X is alled G-speial if there exists an element ηG,X ∈

KK

G
0 (C, Cτ (X )) alled the dual Dira element, suh that

dG,X ⊗C ηG,X = 1Cτ(X )

under the Kasparov produt KK

G
0 (Cτ (X ),C)⊗KK

G
0 (C, Cτ (X ))→ KK

G
0 (Cτ (X ), Cτ (X )).

Remark 3.16. It is lear that the element ηG,X is unique if exists.

De�nition 3.17. We onsider ηG,X ⊗Cτ (X ) dG,X ∈ KK

G
0 (C,C) as the Kasparov produt

in the other way and we denote it by γG,X .

Remark 3.18. Even for a G-speial manifold X , the element γG,X ∈ KK

G
0 (C,C) need

not to be 1C. If γG,X = 1C, then dG,X and ηG,X are inverse to eah other under the

Kasparov produt.

In [8℄ Kasparov gave several examples of G-speial manifolds, in partiular he gave

the following result.

Lemma 3.19. [[8, Theorem 5.7℄℄ Let G be an almost onneted group and U the max-

imal ompat subgroup, then the homogeneous spae S = G/U is a G-speial manifold.

Moreover the element γG,S is independent of the hoie of U .
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3.6. When γG,X = 1? Kasparov proved that γG,X = 1 in some speial ases, whih is

su�ient for our purpose. First we reall the onept of amenable group.

De�nition 3.20. A group G is alled amenable if there exists a left invariant mean µ
on the spae L∞(G). Here we all µ : L∞(G) → R a mean if it is a non-negative linear

funtional suh that µ(1) = 1. A mean µ is alled left invariant if µ(f) = µ(lg(f)) for
any f ∈ L∞(G) and g ∈ G, where lgf(g

′) := f(gg′).

Example 3.21. • An abelian group is amenable;

• A solvable group is amenable;

• A ompat group is amenable;

• Every (losed) subgroup of an amenable group is amenable;

• A non-ompat real (or omplex) semisimple Lie group is never amenable.

Lemma 3.22. If X is a G2-speial manifold and f : G1 → G2 be a homomorphism of

groups. Then X is also G1-speial and we have rG2,G1(dG2,X ) = dG1,X , r
G2,G1(ηG2,X ) =

ηG1,X , and

rG2,G1(γG2,X ) = γG1,X ,

where rG2,G1
is the restrition homomorphism as in Proposition 3.4.

Proof. It is lear sine rG2,G1
is ompatible with the Kasparov produt. �

Kasparov proved the following result for amenable groups.

Theorem 3.23. [[8, Theorem 5.9℄℄ Let f : G1 → G2 be a homomorphism between

almost onneted groups with the kernel ker f amenable and the image losed. Let Ui be

the maximal subgroup of Gi and Si = Gi/Ui for i = 1, 2. Without loss of generality we

assume f(U1) ⊂ U2. Then the restrition homomorphism gives us

rG2,G1(γG2,S2
) = γG1,S1

. (3.13)

Corollary 3.24. For an almost onneted group G, let H < G be a losed subgroup.

Without loss of generality we hoose the maximal ompat subgroup U of G suh that

U ∩H is the maximal subgroup of H. Let S = G/U and SH = H/U ∩H.Then we have

rG,H(γG,S) = γH,SH
. (3.14)

Corollary 3.25. Let P be an amenable almost onneted group and L be the maximal

ompat subgroup of P . Then γP,P/L = 1 hene dP,P/L and ηP,P/L are inverse to eah

other in the KK-groups.

Now we an immediately get an isomorphi result in the almost onneted amenable

ase. The following result is impliitly given in [8, Setion 5.10℄.

Corollary 3.26. If P is an almost onneted amenable group, L is the maximal ompat

subgroup of P . Then for any P -spae T , the assemble map

µP,T : KKP
∗ (P/L, T )→ K

∗
P (T ) (3.15)

is an isomorphism.

Proof. By De�nition 3.8, the assembly map is given by right multipliation with the

element D = jPr (σT (dP,P/L)). Corollary 3.25 tells us that dP,P/L is invertible, and by

Proposition 3.3 and Proposition 3.5, both jPr and σT are ompatible with the Kasparov

produt. So µP,T is an isomorphism. �

Remark 3.27. The results of Corollary 3.25 and Corollary 3.26 do not hold for a general

group G. So we annot apply the Dira-dual Dira method to prove Baum-Connes

onjeture with oe�ients in general. Nevertheless in this paper we onsider the ase

that G is a real semisimple Lie group and T = B is the �ag variety of GC. Although in

this ase G is not amenable, we an use geometri trik to redue to the amenable ase.
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4. The Assemble Map on a Single G-Orbit of the Flag Variety

As in Setion 2 let G be a onneted real semisimple Lie group and U be its maximal

ompat subgroup. Let S = G/U and B be the �ag variety of GC. It is lear that the

G-ation on B is not transitive and let us denote O+
α to be one of the G-orbits.

Remark 4.1. This notation will be justi�ed in Setion 5.

The following proposition is the main result of this setion.

Proposition 4.2. Let G be a onneted real semisimple Lie group and U be its maximal

ompat subgroup. Let S = G/U and B be the �ag variety of GC. Let O+
α be a G-orbit

in B. Then the assemble map

µG,O+
α
: KKG

∗ (S,O
+
α )→ K

∗
G(O

+
α ). (4.16)

is an isomorphism.

Remark 4.3. Proposition 4.2, whih fouses on a single G-orbit, is the building blok

of Theorem 1.3. We will piee together di�erent orbits in Setion 6.

The proof of Proposition 4.2 onsists of several steps. First we prove the following

lemma:

Lemma 4.4 (Interhange subgroups). Let G, S, and O+
α be as in Proposition 4.2. Let

H be the isotropy group of G at a point point x ∈ O+
α . Then there is an isomorphism:

KK

G
∗ (S,O

+
α )

∼
−→ KK

H
∗ (S, pt).

Proof. First by Poinare duality

KK

G
∗ (S,O

+
α )
∼= K

∗
G(C0(O

+
α )⊗ Cτ (S)).

Then notie that O+
α an by identi�ed with G/H . By a strong Morita equivalene

argument similar to Lemma 3.11 we have

K

∗
G(C0(O

+
α )⊗ Cτ (S)) ∼= K

∗
H(Cτ (S)).

Finally by Poinare duality again we have

K

∗
H(Cτ (S)) ∼= KK

H
∗ (S, pt).

We �nish the proof. �

Next we proof the following result.

Proposition 4.5. Let G, S, O+
α , and H be as in Proposition 4.2 and Lemma 4.4. We

have the following ommutative diagram:

KK

G
∗ (S,O

+
α )

∼
−−−−→ KK

H
∗ (S, pt)





y

µ
G,O

+
α





y

µH,pt

K

∗
G(O

+
α )

∼
−−−−→ K

∗
H(pt)

(4.17)

where the vertial maps are the assemble maps and the horizontal isomorphisms are given

in Lemma 3.11 and Proposition 4.5.

Proof. To prove the proposition we need to have a loser look at the maps. First we look

at the right vertial map. At the beginning we have the Dira element

dG,S ∈ KK

G
0 (Cτ (S),C)

and apply the restrition homomorphism rG,H
in Proposition 3.4 we get

rG,H(dG,S) ∈ KK

H
0 (Cτ (S),C)
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whih by de�nition equals to dH,S ∈ KK

H
0 (Cτ (S),C), the Dira element of H .

Then we apply the map

jHr : KKH
∗ (Cτ (S),C) −→ KK∗(C

∗
r (H,Cτ (S)), C

∗
r (H))

in Proposition 3.5 and get

jHr (rG,H
dG,S) ∈ KK0(C

∗
r (H,Cτ (S)), C

∗
r (H))

and we denote it by DH . Right multipliation of DH gives the vertial map on the right

in the diagram

KK

H
∗ (S, pt)

µH,pt

−→ K

∗
H(pt).

On the other hand we have the map in Proposition 3.3

σ
O

+
α
: KKG

∗ (Cτ (S),C) −→ KK

G
∗ (Cτ (S)⊗ C0(O

+
α ), C0(O

+
α ))

so we get

σ
O

+
α
(dG,S) ∈ KK

G
0 (Cτ (S)⊗ C0(O

+
α ), C0(O

+
α ))

then via jGr we get

jGr (σ
O

+
α
(dG,S)) ∈ KK(C∗

r (G,Cτ (S) ⊗ C0(O
+
α )), C

∗
r (G,C0(O

+
α )))

whih we denote by DG,O+
α
. Right multipliation of DG,O+

α
gives the left vertial map

KK

G
∗ (S,O

+
α )

µ
G,O

+
α−→ K

∗
G(O

+
α ).

The horizontal maps in the diagram are given by strong Morita equivalene. We also

notie that under strong Morita equivalene, DG,O+
α

∼= DH , so the diagram ommutes.

�

Lemma 4.6. Let G be a onneted real semisimple Lie group and B be the �ag variety

of GC. Let H be the isotropy group of G at any point point x ∈ B is amenable and almost

onneted.

Proof. It is lear sine H is a losed subgroup of a Borel subgroup of GC. �

Aording to Proposition 4.5, in order to prove the laim of Proposition 4.2, it is

su�ient to prove the following proposition.

Proposition 4.7.

µH,pt : KK
H
∗ (S, pt)→ K

∗
H(pt) (4.18)

is an isomorphism.

Proof. It is su�ient to prove

DH = jHr (dH,S) ∈ KK0(C
∗
r (H,Cτ (S)), C

∗
r (H))

is invertible. In fat, we an prove that dH,S ∈ KK

H
0 (Cτ (S),C) is invertible. This follows

from the fat that H is almost onneted amenable together with some formal arguments

as follows.

As in the onstrution in Setion 3.5, we have the dual Dira element

ηH,S ∈ KK

H
0 (C, Cτ (S))

and

dH,S⊗CηH,S = 1 ∈ KK

H
0 (Cτ (S), Cτ (S)),

ηH,S⊗Cτ (H)dH,S = γH,S ∈ KK

H
0 (C,C).

It is lear that H is an almost onneted amenable group therefore Corollary 3.25 tells

us that

γH,SH
= 1
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where SH = H/U ∩H . By Lemma 3.22 and Corollary 3.24 we know that γH,SH
= γH,S

hene

γH,S = 1. (4.19)

Now we proved that dH,S hene DH is invertible. As a result we have

µH,pt : KK
H
∗ (S, pt)→ K

∗
H(pt)

is an isomorphism. �

Proof of Proposition 4.2. Now it is a orollary of Proposition 4.5 and Proposition 4.7. �

5. The G-orbits on the Flag Variety

We have proved that the assemble map

µG,O+
α
: KKG

∗ (S,O
+
α )→ K

∗
G(O

+
α )

is an isomorphism on one G-orbit O+
α . In this setion we study the geometry of G-orbits

on B and in the next setion we will piee together orbits.

The result on the G-orbits in [11℄ is important to our purpose, so we summarize their

result here

Theorem 5.1. [[11, 1.2, 3.8℄℄ Let G be a onneted real semisimple Lie group and B =
GC/BC as before. Let U be the maximal ompat subgroup of G. On the �ag variety B
there exists a real value funtion f suh that

(1) f is a Morse-Bott funtion on B.
(2) f is U invariant, hene the gradient �ow φ : R× B → B is also U invariant.

(3) The ritial point set C of f onsists of �nitely many U -orbits Oα. The �ow

preserves the orbits of G.

(4) The limits limt→±∞ φt(x) := π±(x) exist for any x ∈ B. For Oα a ritial

U -orbit, the stable set

O+
α = (π+)−1(Oα)

is an G-orbit, and the unstable set

O−
α = (π−)−1(Oα)

is an UC-orbit, where UC is the omplexi�ation of U in GC.

(5) O+
α ∩O

−
α = Oα.

Corollary 5.2. Let G be a onneted real semisimple Lie group and B = GC/BC as

before. Then the total number of G-orbits in B is �nite.

We will also use the following orollary in [11℄:

Corollary 5.3. [[11, 1.4℄℄ Let Oα and Oβ be two ritial U -orbits. Then the losure

O+
α ⊃ O

+
β if and only if

O+
α ∩ O

−
β 6= ∅.

From this we an get

Corollary 5.4. Let Oα and Oβ be two di�erent ritial U -orbits, i.e. Oα 6= Oβ. Then

O+
α ⊃ O

+
β implies that the Morse-Bott funtion f has values

f(Oα) > f(Oβ)
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Proof. By Corollary 5.3,

O+
α ∩ O

−

β 6= ∅.

so there exists an x ∈ O+
α ∩O

−
β .

Sine limt→+∞ φt(x) ∈ Oα, we have

f(Oα) > f(x),

similarly

f(x) > f(Oβ).

On the other hand sine Oα and Oβ are ritial and Oα 6= Oβ we get

x 6∈ Oα, x 6∈ Oβ

hene

f(x) 6= f(Oα), f(x) 6= f(Oβ).

Therefore we have

f(Oα) > f(Oβ).

�

De�nition 5.5. We give a partial order on the set of G-orbits of B whih satis�es the

following onditions

(1) If f(Oα) > f(Oβ), we require that Oα+ > Oβ+;
(2) If f(Oα) = f(Oβ), we hoose and �x an arbitrary partial order on them.

Now let us list all G-orbits in B in asending order, keep in mind that there are �nitely

many of them:

O+
α1

< O+
α2

< . . .O+
αk

. (5.20)

From the de�nition we an easily get

Corollary 5.6. For any G-orbits O+
αi
, the union

Zi :=
⋃

O
+
αj

6O
+
αi

O+
αj

is a losed subset of B. Notie that O+
αi
⊂ Zi

Proof. It is su�ient to prove that Zi ontains all its limit points, whih is a diret

orollary of De�nition 5.5 and Corollary 5.4. �

Remark 5.7. Corollary 5.4, De�nition 5.5 and Corollary 5.6 are not expliitly given in

[11℄.

6. The Baum-Connes Conjeture on Flag Varieties

With the onstrution in Setion 5, we an piee together assemble maps on di�erent

orbits.

Proposition 6.1. Let O+
αi

and Zi be as in Theorem 5.1 and Corollary 5.6. Then for

1 6 i 6 k − 1 we have a short exat sequene of rossed produt algebras:

0→ C∗
r (G,C0(O

+
αi+1

))→ C∗
r (G,C(Zi+1))→ C∗

r (G,C(Zi))→ 0.

Proof. From the onstrution we also get

Zi ⊂ Zi+1, O
+
αi+1

⊂ Zi+1,

Zi ∪ O
+
αi+1

= Zi+1, Zi ∩ O
+
αi+1

= ∅,

and Zi is losed in Zi+1, O+
αi+1

is open in Zi+1.

Sine B is a ompat manifold, we get that Zi and Zi+1 are both ompat.
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The inlusion gives a short exat sequene of C∗
-algebras whih is ompatible with

the G-ations:

0→ C0(O
+
αi+1

)→ C(Zi+1)→ C(Zi)→ 0. (6.21)

Now we need to go to the redued rossed-produt C∗
-algebras for whih we need the

following onept.

De�nition 6.2. [[9℄℄ A groupG is alled C∗
-exat if for anyG-equivariant exat sequene

of C∗
-algebras

0→ A→ B → C → 0

the sequene of redued ross produt C∗
-algebras

0→ C∗
r (G,A)→ C∗

r (G,B)→ C∗
r (G,C)→ 0

is also exat.

We use the following result on C∗
-exat groups.

Lemma 6.3. [[10, Proposition 6.6 and Corollary 6.9℄℄ Any almost-onneted group is

C∗
-exat. In partiular any onneted real semisimple Lie group is C∗

-exat.

Apply Lemma 6.3 to (6.21) we get the short exat sequene

0→ C∗
r (G,C0(O

+
αi+1

))→ C∗
r (G,C(Zi+1))→ C∗

r (G,C(Zi))→ 0. (6.22)

This �nishes the proof of Proposition 6.1. �

From Proposition 6.1 we have the well-known six-term long exat sequene

K

∗(C∗

r (G,C0(O
+
αi+1

))) −−−−−→ K

∗(C∗

r (G,C(Zi+1))) −−−−−→ K

∗(C∗

r (G,C(Zi)))

x









y

K

∗+1(C∗

r (G,C(Zi))) ←−−−−− K

∗+1(C∗

r (G,C(Zi+1))) ←−−−−− K

∗+1(C∗

r (G,C0(O
+
αi+1

))).

i.e.

K

∗

G(O
+
αi+1

) −−−−−→ K

∗

G(Zi+1) −−−−−→ K

∗

G(Zi)
x









y

K

∗+1

G
(Zi) ←−−−−− K

∗+1

G
(Zi+1) ←−−−−− K

∗+1

G
(O+

αi+1
).

(6.23)

Similarly we have

K

∗

G
(C0(O

+
αi+1

)⊗ Cτ (S)) −−−−−→ K

∗

G
(C(Zi+1)⊗ Cτ (S)) −−−−−→ K

∗

G
(C(Zi) ⊗ Cτ (S))

x









y

K

∗+1

G
(C(Zi) ⊗ Cτ (S)) ←−−−−− K

∗+1

G
(C(Zi+1)⊗ Cτ (S)) ←−−−−− K

∗+1

G
(C0(O

+
αi+1

)⊗ Cτ (S)).

(6.24)

The following proposition laims that (6.23) and (6.24) together form a ommutative

diagram.
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Proposition 6.4. We have the following ommutative diagram:

(6.25)

where the top and bottom are the six-term exat sequenes and the vertial arrows are

assemble maps µ.

Proof. The diagram ommutes beause all the vertial maps µ ome from the same

element

dG,S ∈ KK

G
0 (Cτ (S),C)

as in Setion 4. �

After all these work we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We use indution on the Zi's. First, for Z1 = O+
α1
, by Proposition

4.2,

K

∗
G(C(Z1)⊗ Cτ (S))

µ
−→ K

∗
G(Z1) (6.26)

is an isomorphism.

Assume that for Zi,

K

∗
G(C(Zi)⊗ Cτ (S))

µ
−→ K

∗
G(Zi) (6.27)

is an isomorphism.

By Proposition 4.2, the vertial maps on the left fae of (6.25) are isomorphisms.

Moreover by indution assumption the vertial maps on the right fae are isomorphism

too, hene by a 5-lemma-argument we get the middle vertial maps are also isomorphisms,

i.e. for Zi+1,

K

∗
G(C(Zi+1)⊗ Cτ (S))

µ
−→ K

∗
G(Zi+1) (6.28)

is an isomorphism.

There are �nitely many orbits in B so the indution stops at the largest Zk whih is

B, hene
µG,B : KKG

∗ (S,B)→ K

∗
G(B) (6.29)

is an isomorphism. we �nish the proof Theorem 1.3. �

7. An Example: SL(2,R)

Reall Example 2.1. If G = SL(2,R) then GC = SL(2,C). We have S = G/U = H

and

B = GC/BC = CP 1 ∼= S2.

GC (hene G) ats on B = CP 1
by frational linear transform

(

a b
c d

)

·

(

u
v

)

:=

(

au+ bv
cu+ dv

)

.
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If we set z = u/v, then
(

a b
c d

)

· z :=
az + b

cz + d
. (7.30)

From (7.30) we an see that the ation of G on B is not transitive. In fat, it has three

orbits

O+
α1

=R ∪∞ ∼= S1
the equator,

O+
α2

={x+ iy|y > 0} ∼= C the upper hemisphere,

O+
α3

={x+ iy|y < 0} ∼= C the lower hemisphere.

O+
α1

is a losed orbit with dimension 1; O+
α2

and O+
α3

are open orbits with dimension 2.

We look at O+
α1

�rst. Take the point 1 ∈ O+
α1
. The isotropy group at 1 is the upper

triangular group B in SL(2,R). So

K

∗
G(O

+
α1
) = K

∗
B(pt).

B is solvable hene amenable and Z/2Z is the maximal ompat group of B. By

Theorem 3.26

K

0
B(pt) = R(Z/2Z)

is the representation ring of the group with two elements and

K

1
B(pt) = 0.

So

K

0
G(O

+
α1
) = R(Z/2Z)

and

K

1
G(O

+
α1
) = 0.

For O+
α2

and O+
α3
, the isotropy groups are both

T =

{(

cos θ sin θ
− sin θ cos θ

)}

hene by the similar reason to O+
α1

we have

K

0
G(O

+
α2
) = K

0
G(O

+
α3
) = K

0
T (pt) = R(T )

is the representation ring of T and

K

1
G(O

+
α2
) = K

1
G(O

+
α3
) = K

1
T (pt) = 0.

Now O+
α2
∪O+

α3
is open in B so as in the last setion we have the short exat sequene

0 −→ C0(O
+
α2
∪ O+

α3
) −→ C(B) −→ C(O+

α1
) −→ 0 (7.31)

and further

0 −→ C∗
r (G,O+

α2
∪ O+

α3
) −→ C∗

r (G,B) −→ C∗
r (G,O+

α1
) −→ 0.

i.e.

0 −→ C∗
r (G,O+

α2
)⊕ C∗

r (G,O+
α3
) −→ C∗

r (G,B) −→ C∗
r (G,O+

α1
) −→ 0. (7.32)

We get the six-term exat sequene

K

0
G(O

+
α2
)⊕K

0
G(O

+
α3
) −−−−→ K

0
G(B) −−−−→ K

0
G(O

+
α1
)

x









y

K

1
G(O

+
α1
) ←−−−− K

1
G(B) ←−−−− K

1
G(O

+
α2
)⊕K

1
G(O

+
α3
).

(7.33)

Combine with the previous alulation we get

0 −→ R(T )⊕R(T ) −→ K

0
G(B) −→ R(Z/2Z) −→ 0 (7.34)
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and K

1
G(B) = 0.

In onlusion we have

K

0
G(B) ≈R(T )⊕R(T )⊕R(Z/2Z),

K

1
G(B) =0.

(7.35)

Next we look at KK

G
∗ (S,B). By Corollary 3.13 we have KK

G
∗ (S,B)

∼= K

∗
U (B). We

know that for G = SL(2,R) the maximal ompat subgroup U = T . By Bott periodiity

we have

K

0
U (O

+
α2
) = K

0
U (O

+
α3
) ∼= K

0
U (C)

∼= K

0
U (pt) = R(U) = R(T ) (7.36)

and

K

1
U (O

+
α2
) = K

1
U (O

+
α3
) ∼= K

1
U (C)

∼= K

1
U (pt) = 0. (7.37)

As for O+
α1
, we notie that U ats on O+

α1

∼= S1
by "square", so the isotropy group is

Z/2Z. Hene

K

0
U (O

+
α1
) = R(Z/2Z) and K

1
U (O

+
α1
) = 0.

By the six-term long exat sequene we have

K

0
U (B) ≈R(T )⊕R(T )⊕R(Z/2Z),

K

1
U (B) =0.

(7.38)

(7.35) and (7.38) is ompatible with the Baum-Connes onjeture (in fat, Connes-

Kasparov onjeture as in Setion 3.4) whih states that

K

∗
U (B) ∼= K

∗
G(B). (7.39)

Remark 7.1. Using Bott periodiity theorem we an obtain preisely the algebra stru-

ture of K

∗
U (B) as in [15℄. Therefore Baum-Connes onjeture will be a powerful tool to

investigate KG(B) and to study the representation theory of G.
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