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DIFFEOMORPHISMS OF FOLIATED MANIFOLDS

G.M. ABDISHUKUROVA AND A.YA. NARMANOV

ABsTRACT. The set Dif f(M) of all difftomorphisms of a manifold M onto itself is
the group related to composition and inverse mapping. The group of diffeomorphisms
of smooth manifolds is of great importance in differential geometry and in analysis. It
is known that the group Dif f(M) is a topological group in compact open topology. In
this paper we investigate the group Dif fr(M) of diffeomorphisms foliated manifold
(M, F) with foliated compact open topology. It is proven that foliated compact open
topology of the group Dif fr(M) has a countable base. It is also proven that the
group Dif fr(M) is a topological group with foliated compact open topology. Also
some one-parameter subgroups of the group Dif fr(M) are found and studied for the
foliations generated by special submersions.

Muoxkuna Dif f(M) Bcix nudeomopdismis muOroBusy M € rpymoo BigHOCHO
KOMITO3HUII] Ta B3ATTs OOEPHEHOIO 1 TOMOJIOTIYHOIO IPYIIOI0 B KOMIIAKTHO-BIIKPUTii
Tonostorii. I'pynu gudeomopdiamiB 1y1aKux MHOTOBUJIB MAIOTh BEJIMKE 3HAYEHHS
B JaudepeHiiagbHiil reoMeTpil Ta aHawmizi. VY it poboOTi JOCITIIKYETHCS Tpyna
nudeomopdizMiB MIAPYBATOr0 MHOTOBULY 3 PO3IIAPOBAHOI KOMIIAKTHO-BIIKPUTOIO
Tonosioriero. IlokazaHo, 10 I TOMOJIOTISI Ma€ 3JiYeHHY 0a3y. 3HaiigeHi neski
onuonapamerpuuti miarpynu rpymu Dif f(M) i nocaimzkeni s mapyBaHb, TOPOJIZKe-
HHX CIeliajJbHUMHI CyOMepCisiMH.

1. INTRODUCTION

In this paper the group of diffeomorphisms of a foliated manifold with foliated compact
open topology are studied. The foliated compact open topology was introduced in the
paper [7] and studied in [9].

Let M be a smooth connected manifold of dimension n. Smoothness in this paper
means the class C'°°-smoothness.

Let us recall the definition of a foliation.

Definition 1.1. A foliation F on M of dimension & (codimension n — k ) is a partition
of M into arcwise connected subsets L, with the following properties:

1. M =JLa,

2. Lo Lg=0if a # B,

3. For every point p € M there is an open neighborhood U of p and a chart x =
(x1,Z2, s Ty Y1, Y2, * * *, Yn—k) such that for each leaf L, the connected components of
L, NU are defined by the equations y; = const,yo = const,- - -, y,_r = const. Such a
chart is a distinguished chart.

The connected components of the sets y; = const,ys = const,: - -, yp_r = const
in a distinguished chart are called plaques (plates) of F. Fixing y; = const,ys =
const,- - -, yp—r = const, the map =z — (z,y)) is a smooth embedding, therefore the

plaques are connected k-dimensional submanifolds of M. This shows that each leaf L,, is
a union of plaques and there exists a differential structure o, on L, such that (L, 04 ) is
a k-dimensional connected manifold. Note that the canonical injection i : (Lo, 04) = M
is an immersion, but it is not necessarily an embedding [3].

An example of a foliation is given by a smooth submersions. Let us recall definition of
a submersion.
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Definition 1.2. Differentiable mapping of maximal rank 7 : M — B, where M and B
are manifolds of dimensions n, m respectively, is called a submersion if n > m.

By the rank theorem of a differentiable function the full inverse image L, = 7~ !(p) of
every point p € B is a submanifold of dimension £ = n—m. So the connected components
of the inverse images of points p € B define a k = n — m-dimensional foliation of M.

For a point ¢ € L, we denote by T,F the tangent space of the leaf L, at the point
g, by H(q) the orthogonal complement of the tangent space T,F of the leaf L,, i.e.
TyM = T,F @ H(q). We have two distributions TF : ¢ — T, F, H : ¢ — H(g). The
distribution TF : ¢ — T,F is a completely integrable distribution whose maximum
integral submanifolds are leaves of the foliation F, the distribution of H : ¢ — H(q),
which is the orthogonal complement of T'F', is not necessarily completely integrable.

Each vector field X can be represented as X = XV + X", where X?, X" are the
orthogonal projections of X onto P, H respectively. Here for convenience P, H are
considered as subbundles of the tangent bundle TM. If X" = 0, then X is called a vertical
field (it is tangent to the foliation), and if X¥ = 0 the vector field X is called a horizontal
field.

Definition 1.3. A submersion of w : M — B is called Riemannian if its differential dmr
preserves the length of horizontal vectors.

Many studies deal with geometry of Riemannian submersions, i.g., [12], [4],[5],[11]. In
particular, in [10], fundamental equations of Riemannian submersion were obtained.

Now we construct an example of a Riemannian submersion using Killing vector fields.

Denote by V(M) the set of all smooth vector fields defined on the manifold M, by
[X,Y] the Lie bracket vector field X,Y € V(M). With respect to the Lee bracket, the
set V(M) is a Lie algebra.

For a point z € M by t — X'(z) we denote the integral curve of the vector field X
passing through the point x at ¢ = 0. The map ¢ — X!(z) is defined in some region
I(z) C R which generally depends on the field X and the starting point z. In what
follows, everywhere in formulas of the form X*(z) we will assume that ¢ € I(z).

Recall that the vector field X on M is called a Killing vector field if the one-parameter
group of local transformations z — X*(z) generated by the field X consists of isometries
81, {11, [6]:

Consider the following vector fields on the plane R?(x1,z2) with the Cartesian coordi-
nates (z1,22):

0 0 0 0
_871717 XQ—T@, X3——l‘267xl+$187x2. (11)

We can define a submersion

X1

7: R — R? (1.2)
using the vector fields X, X5, X3 by putting
m(t1, 2, t3) = X3* (X5* ((X71(0)--))),

where O is the origin of the coordinate system (z1,z2). As follows from (8], for every
point (x1,72) € R? there exist points (t1,t2,t3) € R? such that 7(t1,ta,t3) = (71, 22).
The submersion 7 in the coordinate system has following form:

m(t1,ta, t3) = {m1(t1, ta, t3), ma(te, t2,t3)},
where
ﬂ'l(tl, tQ, tg) = tl COStg — tg Sintg,
7T2(t1, t2, tg) = tl Sintg + tz COStg.
Jacobi matrix of the map 7 is following matrix

J(7r) . costs —sinty —tysintz —tycosts
“ \ sints costs t1 costs — tysints ‘
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It is easy to check that the rank of the Jacobi matrix of the map 7 equal to 2, i.e., ™
is a submersion. This submersion generates a one-dimensional foliation leaves of that
are one-dimensional manifolds. For every point p € R? the leaf 7~ !(p) is given by the
equations

t1 = x1cosu + xosinu,ty = —x1 Sinu + xo cosu, t3 = u (1.3)

The leaf is a curve of constant curvature and constant torsion, which is verified by a direct
calculation,

_ V@l +a23)(1 +af +a3)
(2+ a2 +22)3
1
0= ——>3.
1+a2? + a3

)

The tangent vector of the curve (1.3), i.e., the vertical vector field has following form:

V=t 0 t 0 + 0
C ot oty oty
The distribution orthogonal to this one-dimensional foliation is generated by the
following horizontal vector fields:

0 0
Hli(’)itl_hﬁitg
0 0
H2_67152+t187t3

This distribution is not completely integrable, since it is not involutive due to the fact
that the Lie bracket [Hy, Ha] = 26%3 is not expressed linearly in terms of the vector fields
Hy, Hs.

Now we introduce a Riemannian metric ¢ on R2, with respect to which the submer-
sion (1.2) is a Riemannian submersion.

Let p € R?, u,v € Rf) be tangent vectors at p, and X,Y be such vector fields that
X(p) = u,Y (p) = v. Since the Euclidean space R? is a complete manifold, there exist
horizontal vector fields X, Y such that dm(X) = X, dr(Y) = Y (They are called horizontal
lifts of the vector fields X,Y") [11].

The vertical vector field V' is a Killing field. Therefore, it satisfies the equality [8]

V{(Z1,Z2) = [V, Z1], Z2) + (Z1, ]V, Za]), (1.4)

where Z7, Z, are arbitrary vector fields, [-, -] is the Lie bracket, < -, - > is the inner product.
From the equality (1.4) we have V(X,Y) = 0. This means that the scalar product (X,Y)

is constant at the points ¢ of the leaf 7=*(p). Therefore, by putting g(u,v), = ()2'7 Y,
we define a new Riemannian metric g on R?. With respect this Riemannian metric, the
submersion

7: R — (R 9)

is Riemannian.

2. DIFFEOMORPHISMS OF FOLIATED MANIFOLDS

Denote by (M, F') a manifold M with a foliation F' of dimension k and call it a foliated
manifold.

Definition 2.1. A diffeomorphism ¢ : M — M is called a diffeomorphism of the foliated
manifold (M, F), if the image ¢(L,,) of each leaf L, is a leaf of the foliation F'.
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The diffeomorphism ¢ : M — M of the foliated manifold (M, F), is denoted by
¢:(M,F)— (M, F). The set of all diffeomorphisms of a foliated manifold is denoted by
Dif fr(M). The set Dif fr(M) is a group with respect to the superposition of mappings
and is a subgroup of the group Dif f(M) of diffeomorphisms of the manifold M.

The group Dif fr(M) was studied in the papers [7], [9], and, in particular, in [9] it
was proved that this group is a closed subgroup of the group Dif f(M) with respect to
the compact open topology.

Let Isop(M) denote the subset of the set Dif fr(M) consisting of isometries of the
Riemannian manifold (M, g). This set is a subgroup of the group Dif fr(M). In [9] it
was proved that the group Isor(M) is a Lie group with respect to the compact open
topology.

Example 2.2. Let M = R?(x1,x2) be a Euclidean plane with the Cartesian coordinates
(21, 72). The foliation F is given by the submersion f(z1,22) = z2 — 22. Diffeomorphism
of the plane @y : R? — R? determined by the formula

o(x,y) = (v1,22 + A f(21,72))
is a diffeomorphism of the foliated plane (R?, F') for every A € R, A # —1. Diffeomorphisms
(x1,22) = (21,22 + h) and (z1,22) = (—2x1, 22 + h) are elements of the group Isor(M)
for h € R.

We will consider the group Dif fr(M) with foliated compact open topology that
depends on the foliation F' and coincides with the compact open topology when F' is an
n-dimensional foliation. Foliated compact open topology was introduced in [7].

We recall the notion of the foliated compact open topology. Let { K} be a family of
all compact sets where each K is a subset of some leaf Ly of the foliation F', and let
{Us} be the family of all open sets in M. We consider, for each pair K and Ug, the set
of all mappings f € Dif fp(M) for which f(K) C Ug. This set of mappings is denoted
by [Kx, Us] = {f : M — M|f(K)) C Us}.

It is not difficult to show that every possible finite intersections of sets of the form
[K 5, Ug] forms a base for some topology. This topology will be called a foliated compact
open topology or in brief an F-compact open topology. The space Dif fr(M) with the
F-compact open topology is a Hausdorff topological space [7]. Since K runs only over all
compact subsets of leaves, the F-compact open topology on Dif fr(M) is weaker than
the usual compact open topology induced from Dif f(M). It can be proved as follows.

Lemma 2.3. The space Dif fr(M) with an F-compact open topology is a topological
space with countable base.

Proof. Since M is a smooth manifold there exists a countable base Oy, O3, - - -, for the
topology of M [14]. Since the smooth manifold M is locally compact we can assume that
the closure O; of every O; is a compact set. Let f € [K,U] ={f: M — M|f(K) C U},
where K is a subset of some leaf L, and U is an open subset of M. For every point x € K
there exist O; and O, such that x € O; and f(O;) C O;. Since K, f(K) are compact sets
we can find finite coverings O;,,O;,,- -+, 0;,, of K and O;,,0y,,---,0;, of f(K) such
that f(0;,) C Oy, for I =1,2,...,m. Hence,

m

fe m[Klvsz] - [Kv U]v

I1=1
where K; = K ﬂbil. It follows that the set Op all finite intersections of the sets
N1 [Ki, O;,] forms a base for the F-compact open topology. O

Theorem 2.4. Let (M, F) be a smooth foliated manifold. Then the group Dif fr(M) is
a topological group with respect to the F-compact open topology.

im
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Proof. Let g be complete Riemannian metric on M. It is known that smooth manifold
M possesses a complete Riemannian metric [2, p. 186], [13].

We will show that the mapping x : f — f~! is continuous. Since by Lemma 2.3 the
space Dif fp(M) with the F-compact open topology is a space with a countable base, we
can use consequences.

Assume that f; — g as ¢ — oo in the F-compact open topology. We have to show that
fi_1 — g~ ! as i — oo in the F-compact open topology.

Let A be a neighborhood of ¢g~! in the F-compact open topology. Actually, it is
sufficient to show this fact if A is an element of a prebase, i. e., A = [K,V] = {f €
Diffrp(M) : f(K) C V}, where K is a compact subset of a leaf L, and V is an open
subset of M.

Let U be a neighborhood of g~ !(K) in M with compact closure U such that U C V.

We put

Ue(g) = {f € Diffr(M) : d(g(), f(2)) < 5, Yz € U},

where e = d(K, M\g(U)) = inf{d(z,y) : x € K,y € (M\g(U))}.

Let us show that, if h € U.(g), then h=*(K) C V, i.e., h~! € A. We will show that
h~1(K)cU.

Let us assume that this is not true. Let for the some h € U.(g) there exist a point
y € K such that h=1(y) € M\U,, i.e., y € M\h(U). Then, since g~!(y) € U, we have
dly =99~ (), k(g™ (v)) < 5.

Let v be a shortest geodesics in M (in virtue of completeness of (M, g) there exists a
shortest geodesics between any two points) going from the point y to the point h(g~1(y)).
If z € yNO(h(U)) then h™'(z) € U, and besides d(g(h~*(z)),h(h"'(2)))) < §. In
addition, since the length of the geodesics v is less than §, we have d(y, z) < 5. It follows
then that d(y, g(h=1(2))) < d(y,2) + d(z,9(h71(2))) < e.

But on the other hand, since z ¢ h(U), we have g(h~!(z)) € M\g(U). Since y €
K cg(U), g(h™'(2)) ¢ g(U) and € = d(K, M\g(U)) we have d(y,g(h~*(z))) > e. This
contradiction shows that h=!(K) C U. Hence, h=! € A.

Since f; — g as 1 — oo in the F-compact open topology, for a point 2 € U there exists
an integer n, such that d(g(z), fi(x)) < § for i > n,. Since d(g(x), fi(x)) is a continuos
function there exists a neighborhood U, of x in M such that d(g(y), fi(y)) < § fory € U,
and i > ng.

We can find a finite covering Uy, , Uy, - -, Uy, of U, such that d(g(y), f;(y)) < 5 for
y € Uy, as i > n,,, where i = 1,2,...,m. It follows that d(g(y), fi(y)) < § for y € U if
i > p where p = max{ny,, Mgy, ", Nz, }-

This implies that f; ' (K) € U for i > p. Thus f; ' — g~ as i — oo in the F-compact
open topology. Hence the map x : f — f~! is continuous.

Let us now show that the mapping (g, h) — g o h is continuous for g,h € Dif fr(M)
with respect to the F-compact topology, where g o h(z) = g(h(z)). Since the space
Dif fr(M) has a countable base in the F-compact open topology, we use consequences.
Assume that h; — h, g; — g as i — oo with respect to the F-compact open topology. We
have to show that g; o h; — go h as i — oo in the F-compact open topology.

Let go h € [K, G|, where K is a compact subset of some leaf L of the foliation F', and
G be a open subset of M.

Then h(K) C g~ 1(G) and, since h(K) is a compact set, there exists a neighborhood U
of h(K) in M with compact closure U such that g(U) C G. Since h; — h as i — oo in the
F-compact open topology and h(K) C U, there is an integer n; such that h;(K) C U for
i > ny. Also, since g; — g as i — oo in the F-compact open topology and g(h(K)) C G
there is an integer ny such that g;(h(K)) C G for ¢ > ny. It follows that g;(h;(K)) C G

£
5
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for ¢ > m, where m = max{ny,n2}. Hence g; o h; € [K,G] for i > m. Therefore, the map
(g,h) — g o h is continuous. O

3. SOME SUBGROUPS OF THE GROUP OF DIFFEOMORPHISMS OF FOLIATED MANIFOLDS

In this section we study some diffeomorphisms of foliated manifolds when foliations
generated by special submersions.
Let us consider a submersion 7 : R"*! — R!,

71'(371,3}2, o 'axnzxn—i-l) = Tn+1 — f(mla T, '7:1;71)? (35)
where f(z1, 22, -, x,) is a differentiable function.
The submersion (3.5) generates a foliation F of R"*! as pointed out in Introduction.
Leaves of the foliation F' of R"™! defined by the submersion (3.5) are level surfaces of
this submersion.

In this section we will study some subgroups of the group Dif fr(R"*1) of diffeomor-
phisms of the foliated manifold (R"*1, F').

Definition 3.1. A diffeomorphism ¢ : (M, F) — (M, F) is called an isometry of the
foliated manifold (M, F) if the restriction of the mapping ¢ to each leaf of the foliation F
is an isometry, that is, for each leaf L, the map ¢ : L, — f(Ly) is an isometry between
the manifolds L, and ¢(L,).

Theorem 3.2. A diffeomorphism o : R"!1 — R defined by the formula

on(mlvx% o 'ITL?xn-‘rl) = (1’1, T2, Tn,y T4l + >‘7T) (36)
is an isometry of the foliated manifold (R" 1, F) for X # —1.

Proof. First of all we note that each leaf L. = m71(c),c € R! of the foliation F' generated
by submersion (3.5) is a graph of the function

Tnt1 = f(z,x, - xy) + c (3.7)
The diffeomorphism ¢ : R"t! — R"™*! maps each leaf L. to the leaf L1-»)c of this
foliation. Indeed, if a point = (21,2, -+, Zn, Tnt1) belongs to the leaf L., then its

coordinates satisfy equation (3.11). Then it is easy to verify that the coordinates of the
point (21, X9,  + Tp, Tni1) satisfy the equation

Tni1 = flz, 2, xn) + (14 Ae (3.8)

We show that the differential dy, of the map ¢ at the point ¢ preserves the inner
product on the tangent space T, F' of the leaf L. at the point g.

Let A = (gf;) be the Jacobi matrix of the map ¢ at the point ¢, 4,7 =1,2,....n + 1.
Then the matrix A has the following form:

1 0 0 0
0 1 0 0
A(t) = :
0 0 1 0
on or o
Aoer Aows 7 Aae, LA
The vector fields
0 0 0
ri = 7— f i:1727"'7n7 (39)

8xi B 87‘%1 8xn+1 ’
form a basis of the tangent space T, F' of the leaf L at the point ¢q. Here the ith component
of the vector r; is 1, the last component is fg—g{i, where i =1,2,-- -, n.
The tangent vector fields r; are orthogonal to the gradient gradm of the function

7: R 5 R e, <7y, gradm >= 0 for every i, where < -,- > is the inner product.
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Using these equalities we obtain that
< Arg, Ary >=<r,15 > (3.10)
for all 7, j. In particular, we have
|Ari|* = | (3.11)

It follows that the differential dy, of the map ¢ at the point g preserves the scalar
product on the tangent space Ty F of the fiber L. at the point g. Therefore, a map of the
form (3.10) is an isometry of the foliated manifold (R"*!, F) for A # —1. O

Theorem 3.3. Let F' be a foliation of R"1 defined by the submersion (3.5). Then the
set of diffeomorphisms

Gr={ox: NER'\\N# -1}, (3.12)
is a subgroup of the group Dif frp(R"1).

Proof. The multiplication of the diffeomorphisms ¢y,, ¢y, in the group Gg(M) is their
composition,
PA1 Pz ('T) = ¥ (%0/\2 (.1?)) (313)
It is easy to verify that
Pr1 " Pre = Pus (314)
where g = Ay + A2 + A Ao, It is easily seen that u # —1. Indeed, if 4 = —1, then
14 A1 + A2 + A A2 = 0. This is equivalent to the identity (1 + A1)(1 + A2) = 0, which is
impossible due to the fact that A; # —1. Thus ¢, € Ga.
An inverse element to ¢, is the element ¢, where p = — 5. 1%\
71%\. The single element is the
diffeomorphism ¢y for A = 0. Thus the set G5 is a subgroup of the group Gr(R"1). O

A The number —

is also not equal to —1. Therefore ¢, € G for p =

The following interesting example of a Lie group follows from the proof of Theorem 3.3.
Lemma 3.4. The set G is a one-dimensional Lie group.

Proof. Using the mapping ¢ — A we identify the set G5 with the set R' \ {—1} of real
numbers other than —1.
On the set R'\ {—1} we define a multiplication as follows:

AL A2 = A1+ Ao+ Ao, (315)

The inverse element is determined by the formula
A= —— (3.16)

and it is obvious that the maps
()\1,)\2) —>>\1'>\2, )\—>>\71

are differentiable maps. Therefore with these group operations the one-dimensional
manifold R\ {—1} is a Lee group. O

Remark 3.5. Although the subgroup G, is a one-parameter group, due to the fact that
Oy " Prs F Prr+rg, it i not a flow of a vector field. In the following example, we show a
subgroup of the group of diffeomorhisms of the foliated manifold which is generated by a
flow of a vector field.
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Example 3.6. Consider the submersion 7 : R — R,
7T(.’£1,£L'2,1’3) = T3 _f(m1;x2)3 (317)

where f(z1,22) = 22 + 23. This submersion generates a two-dimensional foliation F. The
gradient of this function has the form gradm = {21, 222, —1}. The following vector fields

0 0 0 0
%—87%+2$187%7‘/2—87x2+21‘237m3

are vertical vector fields.

Recall that a vector field X is called foliated if for each vertical vector field Y the Lie
bracket [X, Y] is also vertical. It is known that the flow of a foliated vector field consists
of diffeomorphisms of a foliated manifold (M, F) [3].

The vector field

X = — i‘f‘ £+i
- 61'1 o 8:52 8953

is a foliated vector field for the foliation F), as shown by the following identities:
[V17X]:‘/27 [‘/vQ;X]:_Vl

The vector field X is a Killing vector field. Therefore, the flow of the vector field X
consists of isometries of a foliated manifold. Indeed, the flow of the vector field X consists
of the diffeomorphisms

x — A(t)x + bt,

where t € R, b= {0,0,1}T, z = (21,22, 23)7,

cost —sint 0
A(t) = sint cost 0 |,
0 0 1

which are isometries of the foliated manifold (R3, F).

Theorem 3.7. Suppose for a vector field

- 0
V= Z;fzaixl

we have that V(f) = 0. Then the flow of the vector field
0

X=V
* axn+1

consists of diffeomorphisms of the foliated manifold (F, R**') generated by submer-
sion (3.5). If the field V is a Killing field then the flow of the vector field X consists of
isometries of the foliated manifold (R, F).

Proof. Let a point © = (x1, 2, - -, Zn, Tn4+1) belong to the leaf L.. Then its coordinates
satisfy equation (3.11).
Let t — X'(x) be an integral curve of the vector field X passing through the point =
at t =0 and
X! () = (X!(2), Xy(@), -+, XE (1), XEoy (2)):
An integral curve of the vector field X satisfies the following system of differential
identities:
dX;(x)

deH-l(x) -1
dt

dt ’

= &i(X'(2)), (3.18)

where i =1,2,-- -, n.
Due to the fact that V(f) = 0, the value of the function f remains constant along the
trajectory of the vector field V.
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Therefore we have
f(X{('rLXé(m)? o ’X’fl(x)) = f(‘rla L2, '7$n)'

It follows from last the equation in system (3.18) we have the equality X! (z) = 2,41+t
It means that the flow of the vector field .

Therefore, the coordinates of the point X*(x) satisfy the equation

Tny1 = f(X1,29, -, xp) +c—t. (3.19)

Hence, the flow of the vector field X consists of diffeomorphisms of the foliated manifold
(R™*1 F) that maps each leaf L. to the leaf L._; of this foliation.

Suppose that the vector field V is a Killing field. The vector field
Killing vector field, since its flow consists of parallel translations.

Note that a linear combination of Killing fields over a field of real numbers is also a
Killing field [8]. Then the vector field X as linear combination of Killing fields V' and
. is also a Killing field.

Therefore the flow

consists of parallel translations.

is also a

el
OTp 41

t— (Xf(x),Xé(x), o .’X:L($)7X’fl+1($))

consists of isometries of the foliated manifold (R"*1, F). O
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