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DIFFEOMORPHISMS OF FOLIATED MANIFOLDS

G.M. ABDISHUKUROVA AND A.YA. NARMANOV

Abstract. The set Diff(M) of all diffeomorphisms of a manifold M onto itself is
the group related to composition and inverse mapping. The group of diffeomorphisms
of smooth manifolds is of great importance in differential geometry and in analysis. It
is known that the group Diff(M) is a topological group in compact open topology. In
this paper we investigate the group DiffF (M) of diffeomorphisms foliated manifold
(M,F ) with foliated compact open topology. It is proven that foliated compact open
topology of the group DiffF (M) has a countable base. It is also proven that the
group DiffF (M) is a topological group with foliated compact open topology. Also
some one-parameter subgroups of the group DiffF (M) are found and studied for the
foliations generated by special submersions.

Множина Diff(M) всiх дифеоморфiзмiв многовиду M є групою вiдносно
композицiї та взяття оберненого i топологiчною групою в компактно-вiдкритiй
топологiї. Групи дифеоморфiзмiв гладких многовидiв мають велике значення
в диференцiальнiй геометрiї та аналiзi. У цiй роботi дослiджується група
дифеоморфiзмiв шаруватого многовиду з розшарованою компактно-вiдкритою
топологiєю. Показано, що ця топологiя має злiченну базу. Знайденi деякi
однопараметричнi пiдгрупи групи Diff(M) i дослiдженi для шарувань, породже-
них спецiальними субмерсiями.

1. Introduction

In this paper the group of diffeomorphisms of a foliated manifold with foliated compact
open topology are studied. The foliated compact open topology was introduced in the
paper [7] and studied in [9].

Let M be a smooth connected manifold of dimension n. Smoothness in this paper
means the class C\infty -smoothness.

Let us recall the definition of a foliation.

Definition 1.1. A foliation F on M of dimension k (codimension n - k ) is a partition
of M into arcwise connected subsets L\alpha with the following properties:

1. M =
\bigcup 
L\alpha ,

2. L\alpha 

\bigcap 
L\beta = \emptyset if \alpha \not = \beta ,

3. For every point p \in M there is an open neighborhood U of p and a chart x =
(x1, x2, \cdot \cdot \cdot , xk, y1, y2, \cdot \cdot \cdot , yn - k) such that for each leaf L\alpha the connected components of
L\alpha \cap U are defined by the equations y1 = const, y2 = const, \cdot \cdot \cdot , yn - k = const. Such a
chart is a distinguished chart.

The connected components of the sets y1 = const, y2 = const, \cdot \cdot \cdot , yn - k = const
in a distinguished chart are called plaques (plates) of F . Fixing y1 = const, y2 =
const, \cdot \cdot \cdot , yn - k = const, the map x \rightarrow (x, y)) is a smooth embedding, therefore the
plaques are connected k-dimensional submanifolds of M . This shows that each leaf L\alpha is
a union of plaques and there exists a differential structure \sigma \alpha on L\alpha such that (L\alpha , \sigma \alpha ) is
a k-dimensional connected manifold. Note that the canonical injection i : (L\alpha , \sigma \alpha ) \rightarrow M
is an immersion, but it is not necessarily an embedding [3].

An example of a foliation is given by a smooth submersions. Let us recall definition of
a submersion.
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Definition 1.2. Differentiable mapping of maximal rank \pi : M \rightarrow B, where M and B
are manifolds of dimensions n, m respectively, is called a submersion if n > m.

By the rank theorem of a differentiable function the full inverse image Lp = \pi  - 1(p) of
every point p \in B is a submanifold of dimension k = n - m. So the connected components
of the inverse images of points p \in B define a k = n - m-dimensional foliation of M .

For a point q \in Lp we denote by TqF the tangent space of the leaf Lp at the point
q, by H(q) the orthogonal complement of the tangent space TqF of the leaf Lp, i.e.
TqM = TqF \oplus H(q). We have two distributions TF : q \rightarrow TqF , H : q \rightarrow H(q). The
distribution TF : q \rightarrow TqF is a completely integrable distribution whose maximum
integral submanifolds are leaves of the foliation F, the distribution of H : q \rightarrow H(q),
which is the orthogonal complement of TF , is not necessarily completely integrable.

Each vector field X can be represented as X = Xv + Xh, where Xv, Xh are the
orthogonal projections of X onto P , H respectively. Here for convenience P,H are
considered as subbundles of the tangent bundle TM. If Xh = 0, then X is called a vertical
field (it is tangent to the foliation), and if Xv = 0 the vector field X is called a horizontal
field.

Definition 1.3. A submersion of \pi : M \rightarrow B is called Riemannian if its differential d\pi 
preserves the length of horizontal vectors.

Many studies deal with geometry of Riemannian submersions, i.g., [12], [4],[5],[11]. In
particular, in [10], fundamental equations of Riemannian submersion were obtained.

Now we construct an example of a Riemannian submersion using Killing vector fields.
Denote by V (M) the set of all smooth vector fields defined on the manifold M, by

[X,Y ] the Lie bracket vector field X,Y \in V (M). With respect to the Lee bracket, the
set V (M) is a Lie algebra.

For a point x \in M by t \rightarrow Xt(x) we denote the integral curve of the vector field X
passing through the point x at t = 0. The map t \rightarrow Xt(x) is defined in some region
I(x) \subset R which generally depends on the field X and the starting point x. In what
follows, everywhere in formulas of the form Xt(x) we will assume that t \in I(x).

Recall that the vector field X on M is called a Killing vector field if the one-parameter
group of local transformations x \rightarrow Xt(x) generated by the field X consists of isometries
[8], [1], [6].

Consider the following vector fields on the plane R2(x1, x2) with the Cartesian coordi-
nates (x1, x2):

X1 =
\partial 

\partial x1
, X2 =

\partial 

\partial x2
, X3 =  - x2

\partial 

\partial x1
+ x1

\partial 

\partial x2
. (1.1)

We can define a submersion
\pi : R3 \rightarrow R2 (1.2)

using the vector fields X1, X2, X3 by putting

\pi (t1, t2, t3) = Xt3
3 (Xt2

2 ((Xt1
1 (O)...))),

where O is the origin of the coordinate system (x1, x2). As follows from [8], for every
point (x1, x2) \in R2 there exist points (t1, t2, t3) \in R3 such that \pi (t1, t2, t3) = (x1, x2).
The submersion \pi in the coordinate system has following form:

\pi (t1, t2, t3) = \{ \pi 1(t1, t2, t3), \pi 2(t1, t2, t3)\} ,

where
\pi 1(t1, t2, t3) = t1 \mathrm{c}\mathrm{o}\mathrm{s} t3  - t2 \mathrm{s}\mathrm{i}\mathrm{n} t3,
\pi 2(t1, t2, t3) = t1 \mathrm{s}\mathrm{i}\mathrm{n} t3 + t2 \mathrm{c}\mathrm{o}\mathrm{s} t3.

Jacobi matrix of the map \pi is following matrix

J(\pi ) =

\biggl( 
\mathrm{c}\mathrm{o}\mathrm{s} t3  - \mathrm{s}\mathrm{i}\mathrm{n} t3  - t1 \mathrm{s}\mathrm{i}\mathrm{n} t3  - t2 \mathrm{c}\mathrm{o}\mathrm{s} t3
\mathrm{s}\mathrm{i}\mathrm{n} t3 \mathrm{c}\mathrm{o}\mathrm{s} t3 t1 \mathrm{c}\mathrm{o}\mathrm{s} t3  - t2 \mathrm{s}\mathrm{i}\mathrm{n} t3

\biggr) 
.
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It is easy to check that the rank of the Jacobi matrix of the map \pi equal to 2, i.e., \pi 
is a submersion. This submersion generates a one-dimensional foliation leaves of that
are one-dimensional manifolds. For every point p \in R2 the leaf \pi  - 1(p) is given by the
equations

t1 = x1 \mathrm{c}\mathrm{o}\mathrm{s}u+ x2 \mathrm{s}\mathrm{i}\mathrm{n}u, t2 =  - x1 \mathrm{s}\mathrm{i}\mathrm{n}u+ x2 \mathrm{c}\mathrm{o}\mathrm{s}u, t3 = u (1.3)

The leaf is a curve of constant curvature and constant torsion, which is verified by a direct
calculation,

k =

\sqrt{} 
(x2

1 + x2
2)(1 + x2

1 + x2
2)

(2 + x2
1 + x2

2)
3
2

,

\sigma =
1

1 + x2
1 + x2

2

.

The tangent vector of the curve (1.3), i.e., the vertical vector field has following form:

V = t2
\partial 

\partial t1
 - t1

\partial 

\partial t2
+

\partial 

\partial t3
.

The distribution orthogonal to this one-dimensional foliation is generated by the
following horizontal vector fields:

H1 =
\partial 

\partial t1
 - t2

\partial 

\partial t3

H2 =
\partial 

\partial t2
+ t1

\partial 

\partial t3
.

This distribution is not completely integrable, since it is not involutive due to the fact
that the Lie bracket [H1, H2] = 2 \partial 

\partial t3
is not expressed linearly in terms of the vector fields

H1, H2.
Now we introduce a Riemannian metric g on R2, with respect to which the submer-

sion (1.2) is a Riemannian submersion.
Let p \in R2, u, v \in R2

p be tangent vectors at p, and X,Y be such vector fields that
X(p) = u, Y (p) = v. Since the Euclidean space R3 is a complete manifold, there exist
horizontal vector fields \widetilde X, \widetilde Y such that d\pi ( \widetilde X) = X, d\pi (\widetilde Y ) = Y (They are called horizontal
lifts of the vector fields X,Y ) [11].

The vertical vector field V is a Killing field. Therefore, it satisfies the equality [8]

V \langle Z1, Z2\rangle = \langle [V,Z1], Z2\rangle + \langle Z1, [V,Z2]\rangle , (1.4)

where Z1, Z2 are arbitrary vector fields, [\cdot , \cdot ] is the Lie bracket, < \cdot , \cdot > is the inner product.
From the equality (1.4) we have V \langle \widetilde X, \widetilde Y \rangle = 0. This means that the scalar product \langle \widetilde X, \widetilde Y \rangle 
is constant at the points q of the leaf \pi  - 1(p). Therefore, by putting g(u, v)q = \langle \widetilde X, \widetilde Y \rangle q
we define a new Riemannian metric g on R2. With respect this Riemannian metric, the
submersion

\pi : R3 \rightarrow (R2, g)

is Riemannian.

2. Diffeomorphisms of foliated manifolds

Denote by (M,F ) a manifold M with a foliation F of dimension k and call it a foliated
manifold.

Definition 2.1. A diffeomorphism \varphi : M \rightarrow M is called a diffeomorphism of the foliated
manifold (M,F ), if the image \varphi (L\alpha ) of each leaf L\alpha is a leaf of the foliation F .
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The diffeomorphism \varphi : M \rightarrow M of the foliated manifold (M,F ), is denoted by
\varphi : (M,F ) \rightarrow (M,F ). The set of all diffeomorphisms of a foliated manifold is denoted by
DiffF (M). The set DiffF (M) is a group with respect to the superposition of mappings
and is a subgroup of the group Diff(M) of diffeomorphisms of the manifold M.

The group DiffF (M) was studied in the papers [7], [9], and, in particular, in [9] it
was proved that this group is a closed subgroup of the group Diff(M) with respect to
the compact open topology.

Let IsoF (M) denote the subset of the set DiffF (M) consisting of isometries of the
Riemannian manifold (M, g). This set is a subgroup of the group DiffF (M). In [9] it
was proved that the group IsoF (M) is a Lie group with respect to the compact open
topology.

Example 2.2. Let M = R2(x1, x2) be a Euclidean plane with the Cartesian coordinates
(x1, x2). The foliation F is given by the submersion f(x1, x2) = x2  - x2

1. Diffeomorphism
of the plane \varphi \lambda : R

2 \rightarrow R2 determined by the formula

\varphi (x, y) = (x1, x2 + \lambda f(x1, x2))

is a diffeomorphism of the foliated plane (R2, F ) for every \lambda \in R, \lambda \not =  - 1. Diffeomorphisms
(x1, x2) \rightarrow (x1, x2 + h) and (x1, x2) \rightarrow ( - x1, x2 + h) are elements of the group IsoF (M)
for h \in R.

We will consider the group DiffF (M) with foliated compact open topology that
depends on the foliation F and coincides with the compact open topology when F is an
n-dimensional foliation. Foliated compact open topology was introduced in [7].

We recall the notion of the foliated compact open topology. Let \{ K\lambda \} be a family of
all compact sets where each K\lambda is a subset of some leaf L\lambda of the foliation F , and let
\{ U\beta \} be the family of all open sets in M . We consider, for each pair K\lambda and U\beta , the set
of all mappings f \in DiffF (M) for which f(K\lambda ) \subset U\beta . This set of mappings is denoted
by [K\lambda , U\beta ] = \{ f : M \rightarrow M | f(K\lambda ) \subset U\beta \} .

It is not difficult to show that every possible finite intersections of sets of the form
[K\lambda , U\beta ] forms a base for some topology. This topology will be called a foliated compact
open topology or in brief an F -compact open topology. The space DiffF (M) with the
F -compact open topology is a Hausdorff topological space [7]. Since K runs only over all
compact subsets of leaves, the F -compact open topology on DiffF (M) is weaker than
the usual compact open topology induced from Diff(M). It can be proved as follows.

Lemma 2.3. The space DiffF (M) with an F -compact open topology is a topological
space with countable base.

Proof. Since M is a smooth manifold there exists a countable base O1, O2, \cdot \cdot \cdot , for the
topology of M [14]. Since the smooth manifold M is locally compact we can assume that
the closure Oi of every Oi is a compact set. Let f \in [K,U ] = \{ f : M \rightarrow M | f(K) \subset U\} ,
where K is a subset of some leaf L, and U is an open subset of M . For every point x \in K
there exist Oi and Oj such that x \in Oi and f(Oi) \subset OJ . Since K, f(K) are compact sets
we can find finite coverings Oi1 , Oi2 , \cdot \cdot \cdot , Oim of K and Oj1 , Oj2 , \cdot \cdot \cdot , Ojm of f(K) such
that f(Oil) \subset Ojl for l = 1, 2, ...,m. Hence,

f \in 
m\bigcap 
l=1

[Kl, Ojl ] \subset [K,U ],

where Kl = K
\bigcap 
Oil . It follows that the set OF all finite intersections of the sets\bigcap m

l=1[Kl, Ojl ] forms a base for the F -compact open topology. \square 

Theorem 2.4. Let (M,F ) be a smooth foliated manifold.Then the group DiffF (M) is
a topological group with respect to the F -compact open topology.
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Proof. Let g be complete Riemannian metric on M . It is known that smooth manifold
M possesses a complete Riemannian metric [2, p. 186], [13].

We will show that the mapping \chi : f \rightarrow f - 1 is continuous. Since by Lemma 2.3 the
space DiffF (M) with the F -compact open topology is a space with a countable base, we
can use consequences.

Assume that fi \rightarrow g as i \rightarrow \infty in the F -compact open topology. We have to show that
f - 1
i \rightarrow g - 1 as i \rightarrow \infty in the F -compact open topology.

Let A be a neighborhood of g - 1 in the F -compact open topology. Actually, it is
sufficient to show this fact if A is an element of a prebase, i. e., A = [K,V ] = \{ f \in 
DiffF (M) : f(K) \subset V \} , where K is a compact subset of a leaf L, and V is an open
subset of M .

Let U be a neighborhood of g - 1(K) in M with compact closure U such that U \subset V .
We put

U\varepsilon (g) = \{ f \in DiffF (M) : d(g(x), f(x)) <
\varepsilon 

2
, \forall x \in U\} ,

where \varepsilon = d(K,M\setminus g(U)) = \mathrm{i}\mathrm{n}\mathrm{f}\{ d(x, y) : x \in K, y \in (M\setminus g(U))\} .
Let us show that, if h \in U\varepsilon (g), then h - 1(K) \subset V , i.e., h - 1 \in A. We will show that

h - 1(K) \subset U .
Let us assume that this is not true. Let for the some h \in U\varepsilon (g) there exist a point

y \in K such that h - 1(y) \in M\setminus U,, i.e., y \in M\setminus h(U). Then, since g - 1(y) \in U , we have
d(y = g(g - 1(y)), h(g - 1(y))) < \varepsilon 

2 .
Let \gamma be a shortest geodesics in M (in virtue of completeness of (M, g) there exists a

shortest geodesics between any two points) going from the point y to the point h(g - 1(y)).
If z \in \gamma \cap \partial (h(U)) then h - 1(z) \in U , and besides d(g(h - 1(z)), h(h - 1(z)))) < \varepsilon 

2 . In
addition, since the length of the geodesics \gamma is less than \varepsilon 

2 , we have d(y, z) < \varepsilon 
2 . It follows

then that d(y, g(h - 1(z))) \leq d(y, z) + d(z, g(h - 1(z))) < \varepsilon .
But on the other hand, since z /\in h(U), we have g(h - 1(z)) \in M\setminus g(U). Since y \in 

K \subset g(U), g(h - 1(z)) /\in g(U) and \varepsilon = d(K,M\setminus g(U)) we have d(y, g(h - 1(z))) \geq \varepsilon . This
contradiction shows that h - 1(K) \subset U . Hence, h - 1 \in A.

Since fi \rightarrow g as i \rightarrow \infty in the F -compact open topology, for a point x \in U there exists
an integer nx such that d(g(x), fi(x)) <

\varepsilon 
2 for i \geq nx. Since d(g(x), fi(x)) is a continuos

function there exists a neighborhood Ux of x in M such that d(g(y), fi(y)) < \varepsilon 
2 for y \in Ux

and i \geq nx.
We can find a finite covering Ux1

, Ux2
, \cdot \cdot \cdot , Uxm

of U, such that d(g(y), fi(y)) <
\varepsilon 
2 for

y \in Uxi
as i \geq nxi

, where i = 1, 2, ...,m. It follows that d(g(y), fi(y)) <
\varepsilon 
2 for y \in U if

i \geq p where p = \mathrm{m}\mathrm{a}\mathrm{x}\{ nx1
, nx2

, \cdot \cdot \cdot , nxm
\} .

This implies that f - 1
i (K) \in U for i \geq p. Thus f - 1

i \rightarrow g - 1 as i \rightarrow \infty in the F -compact
open topology. Hence the map \chi : f \rightarrow f - 1 is continuous.

Let us now show that the mapping (g, h) \rightarrow g \circ h is continuous for g, h \in DiffF (M)
with respect to the F -compact topology, where g \circ h(x) = g(h(x)). Since the space
DiffF (M) has a countable base in the F -compact open topology, we use consequences.
Assume that hi \rightarrow h, gi \rightarrow g as i \rightarrow \infty with respect to the F -compact open topology. We
have to show that gi \circ hi \rightarrow g \circ h as i \rightarrow \infty in the F -compact open topology.

Let g \circ h \in [K,G], where K is a compact subset of some leaf L of the foliation F , and
G be a open subset of M .

Then h(K) \subset g - 1(G) and, since h(K) is a compact set, there exists a neighborhood U
of h(K) in M with compact closure U such that g(U) \subset G. Since hi \rightarrow h as i \rightarrow \infty in the
F -compact open topology and h(K) \subset U, there is an integer n1 such that hi(K) \subset U for
i \geq n1. Also, since gi \rightarrow g as i \rightarrow \infty in the F -compact open topology and g(h(K)) \subset G
there is an integer n2 such that gi(h(K)) \subset G for i \geq n2. It follows that gi(hi(K)) \subset G
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for i \geq m, where m = \mathrm{m}\mathrm{a}\mathrm{x}\{ n1, n2\} . Hence gi \circ hi \in [K,G] for i \geq m. Therefore, the map
(g, h) \rightarrow g \circ h is continuous. \square 

3. Some subgroups of the group of diffeomorphisms of foliated manifolds

In this section we study some diffeomorphisms of foliated manifolds when foliations
generated by special submersions.

Let us consider a submersion \pi : Rn+1 \rightarrow R1,

\pi (x1, x2, \cdot \cdot \cdot , xn, xn+1) = xn+1  - f(x1, x2, \cdot \cdot \cdot , xn), (3.5)

where f(x1, x2, \cdot \cdot \cdot , xn) is a differentiable function.
The submersion (3.5) generates a foliation F of Rn+1 as pointed out in Introduction.

Leaves of the foliation F of Rn+1 defined by the submersion (3.5) are level surfaces of
this submersion.

In this section we will study some subgroups of the group DiffF (R
n+1) of diffeomor-

phisms of the foliated manifold (Rn+1, F ).

Definition 3.1. A diffeomorphism \varphi : (M,F ) \rightarrow (M,F ) is called an isometry of the
foliated manifold (M,F ) if the restriction of the mapping \varphi to each leaf of the foliation F
is an isometry, that is, for each leaf L\alpha the map \varphi : L\alpha \rightarrow f(L\alpha ) is an isometry between
the manifolds L\alpha and \varphi (L\alpha ).

Theorem 3.2. A diffeomorphism \varphi : Rn+1 \rightarrow Rn+1 defined by the formula

\varphi \lambda (x1, x2, \cdot \cdot \cdot xn, xn+1) = (x1, x2, \cdot \cdot \cdot , xn, xn+1 + \lambda \pi ) (3.6)

is an isometry of the foliated manifold (Rn+1, F ) for \lambda \not =  - 1.

Proof. First of all we note that each leaf Lc = \pi  - 1(c), c \in R1 of the foliation F generated
by submersion (3.5) is a graph of the function

xn+1 = f(x, x, \cdot \cdot \cdot , xn) + c. (3.7)

The diffeomorphism \varphi : Rn+1 \rightarrow Rn+1 maps each leaf Lc to the leaf L(1 - \lambda )c of this
foliation. Indeed, if a point x = (x1, x2, \cdot \cdot \cdot , xn, xn+1) belongs to the leaf Lc, then its
coordinates satisfy equation (3.11). Then it is easy to verify that the coordinates of the
point \varphi (x1, x2, \cdot \cdot \cdot xn, xn+1) satisfy the equation

xn+1 = f(x, x, \cdot \cdot \cdot , xn) + (1 + \lambda )c. (3.8)

We show that the differential d\varphi q of the map \varphi at the point q preserves the inner
product on the tangent space TqF of the leaf Lc at the point q.

Let A = (\partial \varphi i

\partial xj
) be the Jacobi matrix of the map \varphi at the point q, i, j = 1, 2, ..., n+ 1.

Then the matrix A has the following form:

A(t) =

\left(       
1 0 \cdot \cdot \cdot 0 0
0 1 \cdot \cdot \cdot 0 0
...

...
. . .

...
0 0 1 0

\lambda \partial \pi 
\partial x1

\lambda \partial \pi 
\partial x2

\cdot \cdot \cdot \lambda \partial \pi 
\partial xn

1 + \lambda 

\right)       .

The vector fields

ri =
\partial 

\partial xi
 - \partial f

\partial xi

\partial 

\partial xn+1
, i = 1, 2, \cdot \cdot \cdot , n, (3.9)

form a basis of the tangent space TqF of the leaf Lc at the point q. Here the ith component
of the vector ri is 1, the last component is  - \partial f

\partial xi
, where i = 1, 2, \cdot \cdot \cdot , n.

The tangent vector fields ri are orthogonal to the gradient grad\pi of the function
\pi : Rn+1 \rightarrow R1, i.e, < ri, grad\pi >= 0 for every i, where < \cdot , \cdot > is the inner product.



DIFFEOMORPHISMS OF FOLIATED MANIFOLDS 7

Using these equalities we obtain that

< Ari, Arj >=< ri, rj > (3.10)

for all i, j. In particular, we have

| Ari| 2 = | ri| 2. (3.11)

It follows that the differential d\varphi q of the map \varphi at the point q preserves the scalar
product on the tangent space TqF of the fiber Lc at the point q. Therefore, a map of the
form (3.10) is an isometry of the foliated manifold (Rn+1, F ) for \lambda \not =  - 1. \square 

Theorem 3.3. Let F be a foliation of Rn+1 defined by the submersion (3.5). Then the
set of diffeomorphisms

G\Lambda = \{ \varphi \lambda : \lambda \in R1, \lambda \not =  - 1\} , (3.12)

is a subgroup of the group DiffF (R
n+1).

Proof. The multiplication of the diffeomorphisms \varphi \lambda 1 , \varphi \lambda 2 in the group GF (M) is their
composition,

\varphi \lambda 1
\cdot \varphi \lambda 2

(x) = \varphi \lambda 1
(\varphi \lambda 2

(x)). (3.13)

It is easy to verify that
\varphi \lambda 1 \cdot \varphi \lambda 2 = \varphi \mu , (3.14)

where \mu = \lambda 1 + \lambda 2 + \lambda 1\lambda 2. It is easily seen that \mu \not =  - 1. Indeed, if \mu =  - 1, then
1 + \lambda 1 + \lambda 2 + \lambda 1\lambda 2 = 0. This is equivalent to the identity (1 + \lambda 1)(1 + \lambda 2) = 0, which is
impossible due to the fact that \lambda i \not =  - 1. Thus \varphi \mu \in G\Lambda .

An inverse element to \varphi \lambda is the element \varphi \mu , where \mu =  - \lambda 
1+\lambda . The number  - \lambda 

1+\lambda 

is also not equal to  - 1. Therefore \varphi \mu \in G\Lambda for \mu =  - \lambda 
1+\lambda . The single element is the

diffeomorphism \varphi \lambda for \lambda = 0. Thus the set G\Lambda is a subgroup of the group GF (R
n+1). \square 

The following interesting example of a Lie group follows from the proof of Theorem 3.3.

Lemma 3.4. The set G\Lambda is a one-dimensional Lie group.

Proof. Using the mapping \varphi \lambda \rightarrow \lambda we identify the set G\Lambda with the set R1 \setminus \{  - 1\} of real
numbers other than  - 1.

On the set R1 \setminus \{  - 1\} we define a multiplication as follows:

\lambda 1 \cdot \lambda 2 = \lambda 1 + \lambda 2 + \lambda 1\lambda 2, (3.15)

The inverse element is determined by the formula

\lambda  - 1 =  - \lambda 

1 + \lambda 
(3.16)

and it is obvious that the maps

(\lambda 1, \lambda 2) \rightarrow \lambda 1 \cdot \lambda 2, \lambda \rightarrow \lambda  - 1

are differentiable maps. Therefore with these group operations the one-dimensional
manifold R1 \setminus \{  - 1\} is a Lee group. \square 

Remark 3.5. Although the subgroup G\Lambda is a one-parameter group, due to the fact that
\varphi \lambda 1

\cdot \varphi \lambda 2
\not = \varphi \lambda 1+\lambda 2

, it is not a flow of a vector field. In the following example, we show a
subgroup of the group of diffeomorhisms of the foliated manifold which is generated by a
flow of a vector field.
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Example 3.6. Consider the submersion \pi : R3 \rightarrow R1,

\pi (x1, x2, x3) = x3  - f(x1, x2), (3.17)

where f(x1, x2) = x2
1 + x2

2. This submersion generates a two-dimensional foliation F. The
gradient of this function has the form grad\pi = \{ 2x1, 2x2, - 1\} . The following vector fields

V1 =
\partial 

\partial x1
+ 2x1

\partial 

\partial x3
, V2 =

\partial 

\partial x2
+ 2x2

\partial 

\partial x3

are vertical vector fields.
Recall that a vector field X is called foliated if for each vertical vector field Y the Lie

bracket [X,Y ] is also vertical. It is known that the flow of a foliated vector field consists
of diffeomorphisms of a foliated manifold (M,F ) [3].

The vector field
X =  - x2

\partial 

\partial x1
+ x1

\partial 

\partial x2
+

\partial 

\partial x3

is a foliated vector field for the foliation F, as shown by the following identities:

[V1, X] = V2, [V2, X] =  - V1.

The vector field X is a Killing vector field. Therefore, the flow of the vector field X
consists of isometries of a foliated manifold. Indeed, the flow of the vector field X consists
of the diffeomorphisms

x \rightarrow A(t)x+ bt,

where t \in R, b = \{ 0, 0, 1\} T , x = (x1, x2, x3)
T ,

A(t) =

\left(  \mathrm{c}\mathrm{o}\mathrm{s} t  - \mathrm{s}\mathrm{i}\mathrm{n} t 0
\mathrm{s}\mathrm{i}\mathrm{n} t \mathrm{c}\mathrm{o}\mathrm{s} t 0

0 0 1

\right)  ,

which are isometries of the foliated manifold (R3, F ).

Theorem 3.7. Suppose for a vector field

V =

n\sum 
i=1

\xi i
\partial 

\partial xi

we have that V (f) = 0. Then the flow of the vector field

X = V +
\partial 

\partial xn+1

consists of diffeomorphisms of the foliated manifold (F,Rn+1) generated by submer-
sion (3.5). If the field V is a Killing field then the flow of the vector field X consists of
isometries of the foliated manifold (Rn+1, F ).

Proof. Let a point x = (x1, x2, \cdot \cdot \cdot , xn, xn+1) belong to the leaf Lc. Then its coordinates
satisfy equation (3.11).

Let t \rightarrow Xt(x) be an integral curve of the vector field X passing through the point x
at t = 0 and

Xt(x) = (Xt
1(x), X

t
2(x), \cdot \cdot \cdot , Xt

n(x), X
t
n+1(x)).

An integral curve of the vector field X satisfies the following system of differential
identities:

dXt
i (x)

dt
= \xi i(X

t(x)),
dXt

n+1(x)

dt
= 1, (3.18)

where i = 1, 2, \cdot \cdot \cdot , n.
Due to the fact that V (f) = 0, the value of the function f remains constant along the

trajectory of the vector field V .
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Therefore we have

f(Xt
1(x), X

t
2(x), \cdot \cdot \cdot , Xt

n(x)) = f(x1, x2, \cdot \cdot \cdot , xn).

It follows from last the equation in system (3.18) we have the equality Xt
n+1(x) = xn+1+t.

It means that the flow of the vector field \partial 
\partial xn+1

consists of parallel translations.
Therefore, the coordinates of the point Xt(x) satisfy the equation

xn+1 = f(x1, x2, \cdot \cdot \cdot , xn) + c - t. (3.19)

Hence, the flow of the vector field X consists of diffeomorphisms of the foliated manifold
(Rn+1, F ) that maps each leaf Lc to the leaf Lc - t of this foliation.

Suppose that the vector field V is a Killing field. The vector field \partial 
\partial xn+1

is also a
Killing vector field, since its flow consists of parallel translations.

Note that a linear combination of Killing fields over a field of real numbers is also a
Killing field [8]. Then the vector field X as linear combination of Killing fields V and

\partial 
\partial xn+1

is also a Killing field.
Therefore the flow

t \rightarrow (Xt
1(x), X

t
2(x), \cdot \cdot \cdot , Xt

n(x), X
t
n+1(x))

consists of isometries of the foliated manifold (Rn+1, F ). \square 
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