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ON THE RITT CONDITION ON LOCALLY CONVEX VECTOR
SPACES

ABDELLAH AKRYM, ABDESLAM EL BAKKALI, AND ABDELKHALEK FAOUZI

Abstract. In this paper, we show that the Ritt condition in the case of locally
convex spaces can be related to the power boundedness of a universally bounded
operator. We will characterize this condition by two geometric properties of the
powers and we prove that the Ritt condition will be shown to be equivalent to the
Tadmor condition. We study the Ritt condition for a quasinilpotent operator acting on
locally convex spaces. Also, an upper bound for the norm of the powers of operators
acting on locally convex spaces under Ritt condition was given.

Показано, що у випадку локально опуклих просторiв умова Рiтта пов’язана з
обмеженiстю степенiв унiверсально обмеженого оператора. Ця умова характери-
зується в термiнах геометричних властивостей степенiв. Доведено, що умова Рiтта
еквiвалентна умовi Тедмора. Дослiджена умова Рiтта для вирадку квазiнiль-
потентних операторiв у локально опуклих просторах. Знайдена також верхня
оцiнка норм степенiв операторiв, якi задовольняють умову Рiтта.

1. Introduction

During the last decades, there has been huge interest in the study of power boundedness
under various resolvent conditions of operators acting on Banach spaces at first and lately,
more generally, on locally convex spaces. In the present paper, we study the Ritt condition
of universally bounded operators acting on locally convex spaces, for more information
on this class we refer to [3, 4]. This condition extends the Banach spaces one [14].

The principal difficulty is that there are many non-equivalent definitions of bounded
operators on locally convex spaces. The concept of bounded element of a locally convex
algebra was introduced by Allan [1].

In [10], it was shown that if Ritt resolvent condition holds for an operator T acting on
a Banach space, then \| Tn\| =| O(\mathrm{l}\mathrm{o}\mathrm{g} n) as n  - \rightarrow \infty , and

\bigm\| \bigm\| Tn  - Tn+1
\bigm\| \bigm\| \rightarrow 0 as n  - \rightarrow \infty .

This result was generalized by Pater for operators acting on locally convex spaces [13,
Theorem 3]. The first aim of the present article is to improve this result by giving a
characterization of the Ritt resolvent condition by two geometric properties of the powers.
In particular, the geometric characterization in terms of the behavior of the powers gives
easily that the product of two commuting Tadmor operators is Tadmor operator [16].
Next, We prove that the Ritt condition will be shown to be equivalent to the Tadmor
condition. We study the Ritt condition for a quasinilpotent operator on the real line.

It was proved independently by Yu. Lyubich [6], B. Nagy and J. Zemánek [10], and
O. Nevanlinna [11] that if Ritt condition holds, outside the unit ball, for an operator T
then it is power bounded. An upper bound was given by N. Borovykh, D. Drissi and
M. N. Spijker, see [2]. Recently the authors have broadened the Known Banach setting
to the locally convex spaces one, bringing upfront similar yet more general results and
adapted proofs (see, e. g., [5]). In connecting with this, we will conclude this work by
given an upper bound of the powers of universally bounded operators satisfying Ritt’s
condition.
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2. Preliminaries

Let \scrX be a Hausdorff locally convex vector space over the complex field \BbbC . A calibration
for \scrX is a family \scrP of seminorms generating its topology (in the sense that the topology
of \scrX is the coarsest with respect to which all seminorms of \scrP are continuous). Such
family of seminorms was used in [9]. We denote by (\scrX ,\scrP ) a locally convex space \scrX with
a calibration \scrP .

Recall that a linear operator T on a locally convex space \scrX is quotient-bounded with
respect to a calibration \scrP if for every seminorm p \in \scrP there exists some cp > 0 such that

p(Tx) \leq cpp(x), \forall x \in \scrX .

The class of quotient-bounded operators with respect to a calibration \scrP , which was
introduced in [4, 8, 9], will be denoted by \scrQ \scrP (\scrX ). For each p \in \scrP and T \in \scrQ \scrP (\scrX ) we
define

\^p(T ) = \mathrm{i}\mathrm{n}\mathrm{f}\{ r > 0 : p(Tx) \leq rp(x), \forall x \in \scrX \} .
For each p \in \scrP , \^p is then a sub-multiplicative seminorm on \scrQ \scrP (\scrX ) satisfying \^p(I) = 1.

The space \scrQ \scrP (\scrX ) will be endowed with a topology \tau \^\scrP generated by \^\scrP = \{ \^p : p \in \scrP \} . We
note that \scrQ \scrP (\scrX ) becomes a Hausdorff local multiplicative convex (l.m.c.) algebra with
respect to the topology determined by \^\scrP , for more information see [5].

In [15], S. M. Stoian proved the following lemma.

Lemma 2.1. [15] If \scrX is a sequentially complete convex space, then \scrQ \scrP (\scrX ) is a sequen-
tially complete m-convex algebra for all calibration \scrP .

An operator T \in Q\scrP (X) is a bounded element of the algebra Q\scrP (X) if it is a bounded
element in the sense of G. R. Allan [1], i.e some scalar multiple of it generates a bounded
semigroup. By (\scrQ \scrP (\scrX ))0 we denote the algebra of all bounded elements in \scrQ \scrP (\scrX ). One
can show (by [1], see also [5]) that

(\scrQ \scrP (\scrX ))0 = \{ T \in \scrQ \scrP (\scrX ) : r\scrP (T ) < \infty \} .
Let T \in \scrQ \scrP (\scrX ), the \scrP -spectral radius of T , denoted by r\scrP (T ), is defined as the bound-
edness radius in the sense of Allan [1]

r\scrP (T ) = \mathrm{i}\mathrm{n}\mathrm{f}\{ \lambda > 0 : the sequence
\Bigl( \bigl( 

\lambda  - 1T
\bigr) n\Bigr) 

n\in \BbbN 
is bounded in \scrQ \scrP (\scrX )\} .

If T \in (\scrQ \scrP (\scrX ))0, we said that \lambda \in \BbbC is in the Waelbroeck resolvent set if there exists
(\lambda I  - T ) - 1 \in (\scrQ \scrP (\scrX ))0. We denote the Waelbroeck resolvent set of T \in (\scrQ \scrP (\scrX ))0 by
\rho W (T ), the resolvent function of T by R(T, \lambda ) := (\lambda I  - T )

 - 1 \in (\scrQ \scrP (\scrX ))0, \lambda \in \rho W (T )
and the Waelbroeck spectrum of T will be denoted by \sigma W (T ) (see, [18, 19]). It is
well-known that for | \lambda | > r\scrP (T ), we have

R(T, \lambda ) =

\infty \sum 
n=0

Tn

\lambda n+1
.

Let \scrP be a calibration on \scrX . Recall [9], that a linear operator T : \scrX \rightarrow \scrX is universally
bounded on (\scrX ,\scrP ) if there exists r > 0 such that

p(Tx) \leq rp(x), for all x \in \scrX and p \in \scrP .

We will denote by \scrB \scrP (\scrX ) the collection of all universally bounded operators on (\scrX ,\scrP ).
First, we have \scrB \scrP (\scrX ) \subset \scrQ \scrP (\scrX ) (see [4]).

Next, \scrB \scrP (\scrX ) is an unital normed algebra with respect to the norm

\| T\| \scrP = \mathrm{i}\mathrm{n}\mathrm{f}\{ r > 0 : p(Tx) \leq rp(x) for all p \in \scrP and all x \in \scrX \} .
Furthermore

\| T\| \scrP = \mathrm{s}\mathrm{u}\mathrm{p}\{ \^p(T ) , p \in \scrP \} , for all T \in \scrB \scrP (\scrX ).
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Recall [4, Definition 1.2], that two families \scrP and \scrP \prime of seminorms on a linear space
are called \scrB -equivalent (denoted \scrP \simeq \scrP \prime ) provided each seminorm in each is a positive
number multiple of a seminorm in the other.

Proposition 2.2. [4] Let (\scrX ,\scrP ) be a locally convex space. Then
(1) For each calibration \scrP \prime with the property \scrP \simeq \scrP \prime , we have \scrB \scrP (\scrX ) = \scrB \scrP \prime (\scrX ) and

\| T\| \scrP = \| T\| \scrP \prime .
(2) An operator T \in \scrQ \scrP (\scrX ) is bounded in the algebra \scrQ \scrP (\scrX ) if and only if there

exists some calibration \scrP \prime such that \scrP \simeq \scrP \prime and T \in \scrB \scrP \prime (\scrX ).

In view of the previous Proposition, for each bounded operator T of \scrQ \scrP \prime (\scrX ), we
are able to choose an equivalent family of seminorms \scrP such that T \in \scrB \scrP (\scrX ). In the
following, we consider a family of seminorms \scrP such that T \in \scrB \scrP (\scrX ).

An operator T \in (\scrQ \scrP (\scrX ))0 is called power bounded, if

\mathrm{s}\mathrm{u}\mathrm{p}
\^p\in \^\scrP 

\^p (Tn) \leq C, for all n \in \BbbN . (2.1)

In the present article, we prove that the Ritt condition of a bounded operator T \in \scrB \scrP (\scrX )
on a locally convex space

\sigma W (T ) \subset \BbbD \cup \{ 1\} , and (2.2)

\mathrm{s}\mathrm{u}\mathrm{p}
\^p\in \^\scrP 

\^p [R (T, \lambda )] \leq M

| \lambda  - 1| 
for all | \lambda | \geq 1, 0 < | \lambda  - 1| \leq \eta ,

is equivalent to the Tadmor condition [16]

\sigma W (T ) \subset \{ z \in \BbbC : | z| \leq 1\} , and (2.3)

\mathrm{s}\mathrm{u}\mathrm{p}
\^p\in \^\scrP 

\^p [R (T, \lambda )] \leq L

| \lambda  - 1| 
for all | \lambda | > 1.

This characterization in the case of bounded linear operators acting on Banach spaces
was presented in [2]. In [13], F. Pater has noted that if (2.3) hold, then

\mathrm{s}\mathrm{u}\mathrm{p}
\^p\in \^\scrP 

\^p
\bigl( 
Tn  - Tn+1

\bigr) 
 - \rightarrow 0, n  - \rightarrow \infty . (2.4)

On the other hand, the obviously necessary condition \sigma W (T ) \subset \BbbD \cup \{ 1\} is not sufficient
for (2.4).

We need to formulate a simple lemma, which we shall use to prove that (2.3) imply
(2.2), (see [1, Theorem 3.8, ii.]).

Lemma 2.3. [1] Let T \in \scrB \scrP (\scrX ). If \mu \in \rho W (T ) and \alpha = | \lambda  - \mu | \| R (T, \mu ) \| \scrP < 1, then
also \lambda \in \rho W (T ) and

\| R (T, \lambda ) \| \scrP \leq \| R (T, \mu ) \| \scrP 
1 - \alpha 

.

3. Main results

Consider the family of semi-norms \scrP such that T \in \scrB \scrP (\scrX ). Let \delta > 0 and consider
the set

K\delta =
\Bigl\{ 
\lambda = 1 + rei\theta , r > 0, | \theta | < \pi 

2
+ \delta 
\Bigr\} 
.

If T satisfies (2.3), then the resolvent condition

\| R (T, \lambda ) \| \scrP \leq M

| \lambda  - 1| 
, \lambda \in K\delta , (3.5)

holds for some \delta > 0 and M > 0, see [12, Lemma 1].
It was shown, in [13, Theorem 3], that condition (2.3) implies \mathrm{l}\mathrm{i}\mathrm{m}n \| Tn\| \scrP = O(\mathrm{l}\mathrm{o}\mathrm{g} n)

as well as \mathrm{l}\mathrm{i}\mathrm{m}n \| Tn  - Tn+1\| \scrP  - \rightarrow 0. In the following, we get strengthening of this result.
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Theorem 3.1. Let T \in \scrB \scrP (\scrX ). The operator T satisfy (2.3) if and only if

\mathrm{s}\mathrm{u}\mathrm{p}
n\in \BbbN 

\| Tn\| \scrP < \infty , (3.6)

and

\mathrm{s}\mathrm{u}\mathrm{p}
n\in \BbbN 

n\| Tn  - Tn+1\| \scrP < \infty . (3.7)

Proof. Assume that (2.3) holds, then by the above discussion we get (3.5). Thus, in the
second part of [12, Theorem 2], it suffices to assume Ritt’s condition outside the unit disc
only. Then, we obtain (3.6) as well as (3.7). The converse follows from [13, Theorem
4]. \square 

It was shown in [17, Proposition 1] that in the case of Banach spaces, the product of
two commuting Ritt operators is a Ritt operator. In the following, we extend this result
to the case of locally convex spaces.

Proposition 3.2. Let the operators T, S \in \scrB \scrP (\scrX ) be two commuting operators on a
locally convex space satisfying (2.3). Then their product TS satisfies also the condition
(2.3).

Proof. Indeed, it is easy to see that the product of two commuting power bounded
operators is a power pounded operator. On the other hand, one can show that

n\| (TS)n  - (TS)n+1\| \scrP \leq \| Tn\| \scrP (n\| Sn  - Sn+1\| \scrP )\| Sn\| \scrP \| I  - T\| \scrP , for all n \in \BbbN .

Since T and S are power bounded and n\| Sn  - Sn+1\| \scrP < \infty . Hence, n\| (TS)n  - 
(TS)n+1\| \scrP < \infty . Then the result follows from Theorem 3.1. \square 

In the following theorem, we prove that condition (2.2) and condition (2.3) can be
regarded to be equivalent.

Theorem 3.3. Let T \in \scrB \scrP (\scrX ). There exist constants M and \eta > 0 such that (2.2)
holds, if and only if there is constant L such that (2.3) is valid.

Proof. Suppose that T satisfies condition (2.2). Since the function F (\lambda ) = | \lambda  - 1| \| R (T, \lambda ) \| \scrP 
is continuous on \rho W (T ), and F (\lambda )  - \rightarrow 1 for all | \lambda |  - \rightarrow \infty , there is a finite constant C
such that

F (\lambda ) \leq C for all \lambda \in \BbbC with | \lambda | \geq 1, | \lambda  - 1| \geq \eta .

Now by applying (2.2), we arrive at (2.3) with L = \mathrm{m}\mathrm{a}\mathrm{x}\{ C, M\} .
Conversely, Suppose that T satisfies (2.3). Let \mu be a complex number such that

| \mu | = 1, \mu \not = 1. By choosing | \lambda | > 1, sufficiently close to \mu we obtain by using the notation
of Lemma 2.3

\alpha = | \lambda  - \mu | \| R (T, \lambda ) \| \scrP \leq | \mu  - \lambda | . L

| \lambda  - 1| 
< 1.

From the lemma, we conclude that \lambda \in \rho W (T ) with

| \lambda  - 1| (1 - \alpha )\| R (T, \mu ) \| \scrP \leq L.

By letting \lambda  - \rightarrow \mu , it follows that | \mu  - 1| \| R (T, \mu ) \| \scrP \leq L. Thus, condition (2.2) holds
with M = L and any \eta > 0. \square 

Next, our goal is to obtain a similar result of [17, Propositions 2]. A simple computation
gives:

Proposition 3.4. Let the operators T, S \in \scrB \scrP (\scrX ) be two commuting power bounded
operators on a locally convex space, 0 \leq t \leq 1. Then the convex combination tT +(1 - t)S
is a power bounded operator.
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Proposition 3.5. Let \scrX be a locally convex space and Q \in \scrB \scrP (\scrX ) such that \sigma (Q) =
\{ 0\} . If I  - Q satisfies condition (2.3), then so does I  - tQ for t \geq 0. Consequently,
(1 - t)I + t(I  - Q)2 satisfies also the condition (2.3) for t \geq 0.

Proof. Suppose that I  - Q satisfies (2.3). In view of Theorem 3.3, it suffices to show the
result for any \lambda \in \BbbC such that | \lambda | \geq 1 and | \lambda  - 1| \leq \eta with \eta = 1

t .
Case 1: If 0 \leq t \leq 1, then\bigm| \bigm| \bigm| \bigm| \lambda t  - 1

t
+ 1

\bigm| \bigm| \bigm| \bigm| \geq \bigm| \bigm| \bigm| \bigm| \lambda t
\bigm| \bigm| \bigm| \bigm|  - \bigm| \bigm| \bigm| \bigm| 1 - 1

t

\bigm| \bigm| \bigm| \bigm| = | \lambda | 
t

 - 1

t
+ 1 \geq 1.

Since

\| R(I  - tQ, \lambda )\| \scrP =
1

t

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( \biggl( 

\lambda 

t
 - 1

t
+ 1

\biggr) 
 - I +Q

\biggr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\scrP 

.

Hence, by (2.2), we have

\| R(I  - tQ, \lambda )\| \scrP \leq 1

t

M

| \lambda  - 1| 
, for all 0 \leq t \leq 1, | \lambda | \geq 1 and | \lambda  - 1| \leq \eta . (3.8)

Case 2: If t > 1, the resolvent (\lambda I  - I + tQ) - 1 can be expressed by the integral

(\lambda I  - I + tQ) - 1 =
1

2\pi i

\int 
\Gamma 

(\lambda  - z) - 1(zI  - I + tQ) - 1dz (3.9)

=
1

2\pi ti

\int 
\Gamma 

(\lambda  - z) - 1

\biggl( \biggl( 
z  - 1

t
+ 1

\biggr) 
I  - I + tQ

\biggr)  - 1

dz, (3.10)

where \Gamma is any contour enclosing the spectrum of I - tQ. By choosing \Gamma =
\bigl\{ 
z \in \BbbC : | z| = 2 + 1

t

\bigr\} 
and by (3.10), we have\bigm\| \bigm\| \bigm\| (\lambda I  - I + tQ)

 - 1
\bigm\| \bigm\| \bigm\| 
\scrP 
\leq 1

2\pi t

\int 
\Gamma 

1

| \lambda  - z| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( \biggl( 

z  - 1

t
+ 1

\biggr) 
I  - I + tQ

\biggr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\scrP 

dz,

using (2.2), we have the estimate\bigm\| \bigm\| \bigm\| (\lambda I  - I + tQ)
 - 1
\bigm\| \bigm\| \bigm\| 
\scrP 
\leq 1

2\pi 

\int 
\Gamma 

1

| \lambda  - z| 
.

L

| z  - 1| 
dz. (3.11)

Since | z  - 1| \geq | z|  - 1 = 2 + 1
t  - 1 = 1 + 1

t , and | \lambda  - 1| \leq 1
t , thus | z  - 1| \geq | \lambda  - 1| , hence

1

| z  - 1| 
\leq 1

| \lambda  - 1| 
.

On the other hand
| \lambda  - z| \geq | z|  - | \lambda | = 2 +

1

t
 - 1 - 1

t
= 1.

By (3.11) and the last two estimates, we get\bigm\| \bigm\| \bigm\| (\lambda I  - I + tQ)
 - 1
\bigm\| \bigm\| \bigm\| 
\scrP 
\leq L

| \lambda  - 1| 
, for all t > 1, | \lambda | \geq 1 and | \lambda  - 1| \leq \eta . (3.12)

To conclude that I  - tQ satisfies condition (2.3), it remains to combine (3.8), (3.12) and
using Theorem 3.3. For the consequence, it suffices to use Propositions 3.2, 3.4 and
Theorem 3.1. \square 

In the following theorem, our goal is to get an upper bound for \| T\| \scrP under condition
(2.3) in the case of universally bounded operators acting on a locally convex space X.
Related to this, F. Pater [13] showed that if condition (2.3) holds, then \| Tn\| \scrP = O(n).

Theorem 3.6. Let T \in \scrB \scrP (\scrX ) satisfy (2.3). Then

\| Tn\| \scrP \leq e

2
L2, n = 1, 2, . . . . (3.13)



ON THE RITT CONDITION ON LOCALLY CONVEX VECTOR SPACES 15

Proof. Suppose that (2.3) is true. By choosing the integration path \Gamma = \{ \lambda \in \BbbC : | \lambda | = r, r > 1\} ,
with the aid of the functional calculus from the algebra \scrB \scrP (\scrX ), we have

Tn =
1

2\pi i

\int 
\Gamma 

\lambda n(\lambda I  - T ) - 1d\lambda .

By partially integrating, we have

Tn =
1

2\pi i(n+ 1)

\int 
\Gamma 

\lambda n+1(\lambda I  - T ) - 2d\lambda .

Appliqueing (2.3), we get

\| Tn\| \scrP \leq rn+1L2

2\pi (n+ 1)
.J, (3.14)

where
J =

\int \pi 

 - \pi 

r

| reit  - 1| 2
dt.

Since \bigm| \bigm| \bigm| \bigm| 1

reit  - 1
 - 1

r2  - 1

\bigm| \bigm| \bigm| \bigm| = r

r2  - 1
,

then J is the length of the curve z = (reit  - 1) - 1,  - \pi \leq t \leq \pi . We see that this curve is
the circle with center 1

r2 - 1 and radius r
r2 - 1 . Hence

J =
2\pi r

r2  - 1
. (3.15)

Using (3.14) and (3.15), we have

\| Tn\| \scrP \leq L2.F (n, r), (3.16)

where

F (x, r) =
rx+2

(x+ 1)(r2  - 1)
, x \geq 1, r > 1.

Then a simple computation gives that

\mathrm{m}\mathrm{i}\mathrm{n}
r>1

F (x, r) = F

\Biggl( 
x,

\sqrt{} 
1 +

2

x

\Biggr) 
and \mathrm{s}\mathrm{u}\mathrm{p}

x\geq 1
F

\Biggl( 
x,

\sqrt{} 
1 +

2

x

\Biggr) 
=

e

2
.

Consequently, if we choose r =
\sqrt{} 
1 + 2

n , then by (3.16), we obtain (3.13). \square 

Example 3.7. Let \scrX = \ell 2(\BbbN ). Let \scrP be the calibration \{ p0, p1, \cdot \cdot \cdot \} defined by pi (x) =
| xi| for all i \in \BbbN and all x = (x0, x1, x2, \cdot \cdot \cdot ) \in \scrX . The family \scrQ \scrP (\scrX ) will be endowed
with the family of seminorms \^\scrP = \{ \^pi : i \in \BbbN \} , where

\^pi(T ) = \mathrm{s}\mathrm{u}\mathrm{p} \{ pi (Tx) : pi (x) \leq 1, x \in \scrX \} , i \in \BbbN , T \in \scrQ \scrP (\scrX ).

\scrB \scrP (\scrX ) is unital normed algebra with respect to the norm

\| T\| \scrP = \mathrm{s}\mathrm{u}\mathrm{p}\{ \^pi(T ) , i \in \BbbN \} , for all T \in \scrB \scrP (\scrX ).

Let \alpha = (\alpha k)k\in \BbbN be a sequence in (\alpha k)k\in \BbbN \in \ell \infty (\BbbN ). The sequence \alpha = (\alpha k)k\in \BbbN will be
suitably chosen later. Define the operator T\alpha on \scrX by

T\alpha : \scrX  - \rightarrow \scrX 
(xk)k\in \BbbN \mapsto  - \rightarrow (\alpha 0x0, \alpha 1x1, \alpha 2x2, . . .) .

First, we prove that T\alpha is universally bounded.

pi (T\alpha x) = | \alpha ixi| \leq d.| xi| = d.pi(x),

for all x = (x0, x1, x2, \cdot \cdot \cdot ) \in \scrX and i \in \BbbN , with d = \| x\| \infty .
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Now, we choose \alpha = (\alpha k)k\in \BbbN to be a sequence in (0, 1) such that \alpha k \nearrow 1, as k \rightarrow \infty .
Then

\sigma (T\alpha ) = \{ \alpha k\} \cup \{ 1\} .
It is easy to show that

Tn
\alpha x = (\alpha n

0x0, \alpha 
n
1x1, \alpha 

n
2x2, . . .) .

and

Tn
\alpha (I  - T )x = (\alpha n

0 (1 - \alpha 0)x0, \alpha 
n
1 (1 - \alpha 1)x1, \alpha 

n
2 (1 - \alpha 2)x2, . . .) .

Thus, by [10, Formula (3)], we get

(\lambda  - 1)(T\alpha  - \lambda I) - 1x =

 - x+

\Biggl( \infty \sum 
n=1

\alpha n - 1
0 (1 - \alpha 0)\lambda 

 - nx0,

\infty \sum 
n=1

\alpha n - 1
1 (1 - \alpha 1)\lambda 

 - nx1,

\infty \sum 
n=1

\alpha n - 1
2 (1 - \alpha 2)\lambda 

 - nx2, \cdot \cdot \cdot 

\Biggr) 
,

for all \lambda \in \BbbC such that | \lambda | > 1. Hence,

(\lambda  - 1)(T\alpha  - \lambda I) - 1x =  - x+

\biggl( 
1 - \alpha 0

\lambda  - \alpha 0
x0,

1 - \alpha 1

\lambda  - \alpha 1
x1,

1 - \alpha 2

\lambda  - \alpha 2
x2, \cdot \cdot \cdot 

\biggr) 
,

for all \lambda \in \BbbC such that | \lambda | > 1.
Since | 1  - \alpha i| < | 1  - \lambda | for all i \in \BbbN and | \lambda | > 1. Thus, for all i \in \BbbN and x =

(x0, x1, x2, \cdot \cdot \cdot ) \in \scrX such that pi(x) \leq 1, we obtain

pi
\bigl( 
(\lambda  - 1)(T\alpha  - \lambda I) - 1x

\bigr) 
\leq 1 +

\bigm| \bigm| \bigm| \bigm| 1 - \alpha i

\lambda  - \alpha i
xi

\bigm| \bigm| \bigm| \bigm| \leq 2.

Hence,

\| (\lambda  - 1)(T\alpha  - \lambda I)\| \scrP \leq 2.

This means that T\alpha satisfies condition (2.3). Therefore, by Theorem 3.6,

\| Tn
\alpha \| \scrP \leq 2e, n = 1, 2, . . . .

Remark 3.8. The power boundedness does not imply Ritt’s condition, even in Banach
spaces. For example, let

V f(t) :=

\int t

0

f(s)ds

be the Volterra operator on L2 [0; 1]. Then, the operator I  - V is power bounded [17,
Theorem 5], but does not Ritt operator [7, Remark 2.7].
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8(2) 31 (1960) no.7, 142 p.

Abdellah Akrym: akrym.maths@gmail.com
Department of Mathematics, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco.

Abdeslam El Bakkali: abdeslamelbakkalii@gmail.com
Department of Mathematics, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco.

Abdelkhalek Faouzi: faouzi.a@ucd.ac.ma
Department of Mathematics, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco.

Received 03/05/2020; Revised 04/01/2021

mailto:akrym.maths@gmail.com
mailto:abdeslamelbakkalii@gmail.com
mailto:faouzi.a@ucd.ac.ma

	1. Introduction
	2. Preliminaries
	3. Main results
	Acknowledgements
	References

