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n-POWER-POSINORMAL OPERATORS

EL MOCTAR OULD BEIBA

Abstract. \scrB (\scrH ) will denote the algebra of all bounded linear operators on a complex
Hilbert space \scrH . In [6], the authors proved that natural power of a posinormal operator
is not in general posinormal. Precisely, they constructed an example of a posinormal
operator with square not being posinormal. Given a positive integer n, the aim of this
article is to study a class of operators in \scrB (\scrH ) called n-power-posinormal. This class
is invariant under natural power and contains any natural power of any posinormal
operator and all n-power normal operators.

Позначимо через \scrB (\scrH ) алгебру всiх обмежених лiнiйних операторiв у комплекс-
ному гiльбертовiм просторi \scrH . У [6] доведено, що цiлий степiнь позiнормального
оператора не обов’язково є позiнормальним. Зокрема, був наведений приклад
позiнормального оператора, квадрат якого не є позiнормальним. Метою цiєї статтi
є дослiдження класу n-степенево позiнормальних операторiв з \scrB (\scrH ), iнварiантного
вiдносно натуральних степенiв, який мiстить натуральнi степенi позiнормальних
операторiв та n-степенево нормальнi оператори.

1. Introduction

Let \scrH be a complex Hilbert space and let \scrB (\scrH ) be the algebra of all bounded linear
operators on \scrH . Let S, T \in \scrB (\scrH ). We will let T \ast denote the adjoint of T , \scrN (T ) denote
the null space of T and \scrR (T ) denote the range of T . Moreover, T is self-adjoint if T \ast = T ,
T is positive (T \geq 0) if it is self-adjoint and \langle Tx, x\rangle \geq 0, for all x \in \scrH , T \geq S if S and T
are self-adjoint and T  - S \geq 0 and T ts hyponormal if T \ast T \geq TT \ast . [S, T ] = ST  - TS is
the commutator of S, T .

Adnan Jibril [4] generalized the concept of a normal operator to the concept of the
n-power normal operator (n \in \BbbN ), T is n-power normal if TnT \ast = T \ast Tn. He showed that
T is n-power normal if and only if Tn is normal.

Let T \in \scrB (\scrH ). P is said to be an interrupter for T if it satisfies the equation

TT \ast = T \ast PT.

From the last equation, if T is not the zero operator, we get that the operator norm of the
interrupter P satisfies

\bigm\| \bigm\| P\bigm\| \bigm\| \geq 1. Rhaly [8] introduced a class of posinormal operators. An
operator T \in \scrB (\scrH ) is said to be posinormal if it has a positive interrupter or equivalently
if there exists a positive operator P such that the self commutator [T \ast , T ] of T verifies
the equation

[T \ast , T ] = T \ast (I  - P )T,

where I stands for the identity operator. T is called coposinormal if its adjoint is
posinormal.

Normal operators are obviously posinornormal. Rhaly proved (see [8], Corollary 2.1)
that hyponormal operators are posinormal. From the last statement, using the fact that
a hyponormal operator needs not to be normal, we get that a posinormal operator is not
necessarily normal.
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It is easy to verify that if V is an isometry and T is posinormal with interrupter P ,
then V \ast TV is posinormal with interrupter V \ast PV. Consequently, two unitarily equivalent
operators are both posinormal or both nonposinormal.

A natural power of a posinormal operator is not in general posinormal. Indeed,
Kubrusly et al. (see [6], Example 1) proved that there is a posinormal operator with
square not posinormal.

The class what we introduce in the present paper, namely the class of n-power-posinomal
operator, contains posinormal operators as a subclass and is invariant under positive
integer power.

2. Fundamental Properties of n-power-Posinormal Operators

We start with a definition of what we call an n-interrupter.

Definition 2.1. Let n be a positive integer, T and S be operators in \scrB (\scrH ). S is said to
be an n-interrupter for T if

TnT \ast n = T \ast ST. (2.1)

Note that a 1-interrupter is an interrupter as described above.

Remark 2.2. It is easy to check from (2.1) that if S serves as an n-interrupter for a
nonzero operator, then \| S\| \geq \| Tn\| 2

\| T\| 2 , where \| S\| is the operator norm of S. In particular
if n = 1, we have \| S\| \geq 1.

Proposition 2.3. If S is n-interrupter for T , then\bigl\langle 
Sy, y

\bigr\rangle 
\geq 0, \forall y \in \scrR (T ).

Proof. From Definition 2.1, we obtain
\bigm\| \bigm\| T \ast nx

\bigm\| \bigm\| 2 = \langle ST (x), Tx\rangle , for allx \in \scrH . Thus,\bigl\langle 
Sy, y

\bigr\rangle 
\geq 0, for all y \in \scrR (T ). Therefore,

\bigl\langle 
Sy, y

\bigr\rangle 
\geq 0, for all y \in \scrR (T ). \square 

As a direct consequence of Proposition 2.3, we have the following corollary.

Corollary 2.4. If T has dense range, then any n-interrupter for T is positive.

Proof. Since \scrR (T ) = \scrH , the corollary follows from Proposition 2.3. \square 

Proposition 2.5. If T has dense range, then T has at most one n-interrupter.

Proof. Let S1 and S2 be n-interrupters for T . We have T \ast S2T = T \ast S1T which gives
T \ast (S2  - S1)T = 0. Since the range of T is dense, we obtain T \ast (S2  - S1) = 0. Applying
again the fact that T has dense range, we get that T \ast is one to one. Thus, we obtain
from the later identity S2  - S1 = 0. Therefore, S2 = S1. \square 

We need the two following results:

Theorem 2.6. [[1], Theorem 1] Let A and B be bounded operators on a Hilbert space \scrH .
The following statements are equivalent:

(1) \scrR (A) \subseteq \scrR (B);
(2) AA\ast \leq \mu 2BB\ast for some \mu \geq 0;
(3) There exists a bounded operator C so that A = BC.
Moreover, if (1), (2) and (3) hold, then there is a unique operator T such that
(a) \| T\| 2 = \mathrm{i}\mathrm{n}\mathrm{f}\{ \mu ,AA\ast \leq \mu 2BB\ast \} ;
(b) \scrN (A) = \scrN (T ) ;
(c) \scrR (T ) \subseteq \scrR (B\ast ).
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Theorem 2.7. [[8], Theorem 2.1] For T \in \scrB (\scrH ) the following statements are equivalent:
(1) T is posinormal;
(2) \scrR (T ) \subseteq \scrR (T \ast );
(3) TT \ast \leq \lambda 2T \ast T or equivalently \| T \ast x\| \leq \lambda \| Tx\| , x \in \scrH for some \lambda \geq 0;
(4) There exists a bounded operator C so that T = T \ast C.
Moreover, if (1), (2), (3) and (4) hold, then there is a unique operator S such that
(i) \| S\| 2 = \mathrm{i}\mathrm{n}\mathrm{f}\{ \lambda , TT \ast \leq \lambda 2T \ast T\} ;
(ii) \scrN (T ) = \scrN (S) ;
(iii) \scrR (S) \subseteq \scrR (T ).

We observe from (2) in Theorem 2.7 that if T is posinormal then \scrR (Tn) \subseteq \scrR (T \ast ) for
any positive integer n. Starting from this observation, and since our goal is to introduce a
new class of operators containing posinormal operators, we take this necessary condition
for posinormality as a definition of the new concept. This leads to the following definition:

Definition 2.8. Let n be a positive integer and T \in \scrB (\scrH ). T is n-power-posinormal if
\scrR (Tn) \subseteq \scrR (T \ast ), and T is n-power-coposinormal if T \ast is n-power-posinormal.

Remark 2.9. The class of 1-power-posinormal operators is the well known class of
posinormal operators introduced by Rhaly in [8].

Remark 2.10. If \scrN (T ) = \{ 0\} , then T \ast is surjective. Consequently, T is n-power-
posinormal for any positive integer n.

Remark 2.11. Let n be a positive integer. It is easy to check that the following
statements hold:

(a) If T is n-power-posinormal, then T is m-power-posinormal for any integer m \geq n;
(b) If T is n-power-posinormal, then \scrN (T ) \subseteq \scrN (T \ast n);
(c) If T is n-power-posinormal, then \scrN (Tn+1) = \scrN (Tn);
(d) If T is n-power-posinormal, then \scrN (T k+1) = \scrN (T k) for k \geq n;
(e) If T is n-power-posinormal, then T is n+ 1-power-posinormal ;
(f) If T is posinormal, then T k is n-power-posinormal for any positive integer k.

Remark 2.12. In ([6], Example 1), the authors constructed a posinormal operator T
for which the square T 2 is not posinormal. From (f) in Remark 2.11 (take k = 1), T is
2-power-posinormal. This example shows that n-power-posinormality of T does not imply
that Tn is posinormal.

Theorem 2.13. For T \in \scrB (\scrH ), the following statements are equivalent:
(1) T has positive n-interrupter;
(2) TnT \ast n \leq \lambda 2T \ast T or equivalently \| T \ast nx\| \leq \lambda \| Tx\| , x \in \scrH for some \lambda > 0;
(3) T is n-power-posinormal : \scrR (Tn) \subseteq \scrR (T \ast );
(4) There exists C \in \scrB (\scrH ) such that Tn = T \ast C.
Moreover, if (1), (2), (3) and (4) hold, then there is a unique operator S such that
(i) \| S\| 2 = \mathrm{i}\mathrm{n}\mathrm{f}\{ \lambda , TnTn\ast \leq \lambda 2T \ast T\} ;
(ii) \scrN (Tn) = \scrN (S) ;
(iii) \scrR (S) \subseteq \scrR (Tn).

Proof. (1) =\Rightarrow (2) : If TnT \ast n = T \ast PT with P positive, we get\bigl\langle 
TnT \ast nx, x

\bigr\rangle 
=

\bigl\langle \surd 
PTx,

\surd 
PTx

\bigr\rangle 
= \| 

\surd 
PTx\| 2 \leq \| 

\surd 
P\| 2\| Tx\| 2 = \| 

\surd 
P\| 2

\bigl\langle 
T \ast Tx, x

\bigr\rangle 
.

Thus (2) holds with \lambda > \| 
\surd 
P\| .

Applying Theorem 2.6, by taking A = Tn and B = T \ast , we obtain the equivalences
(2) \Leftarrow \Rightarrow (3) \Leftarrow \Rightarrow (4). If (4) holds then (1) holds by taking P = C""C.

To get (i), (ii) and (iii), take A = Tn and B = T \ast in (a), (b) and (c), respectively, in
Theorem 2.6. \square 



n-POWER-POSINORMAL OPERATORS 21

The following example shows that a 3-power-posinormal weighted shift is not necessarily
posinormal.

Example 2.14. Let (ek)k\in \BbbN be an orthonormal basis of a Hilbert space \scrH . Define an
operator T on \scrH by

Te1 = e2, T e2 = 2e3, T e3 = 0, T ek = ek+1, k \geq 4.

A simple calculation yields

T \ast e1 = 0, T \ast e2 = 2e1, T
\ast e3 = 2e2, T

\ast e4 = 0, T \ast ek = ek - 1, k \geq 5. (2.2)

Observe that e3 \in \scrN (T ) but e3 /\in \scrN (T \ast ) . Thus, T is not posinormal.
Iterating, we obtain

T 3ek = 0, k = 1, 2, 3 \mathrm{a}\mathrm{n}\mathrm{d} T 3ek = ek+3, k \geq 4. (2.3)

From (2.2) and (2.3), we obtain T 3ek \in \scrR (T \ast ) for k \geq 1. Thus \scrR (T 3) \subseteq \scrR (T \ast ).
Therefore, by Theorem 2.13, T is 3-power-posinormal.

Theorem 2.15. Let T \in \scrB (\scrH ). If T has dense range and an n-interrupter, then T is
n-power-posinormal.

Proof. This follows from (1) in Theorem 2.13 and Corollary 2.4. \square 

Remark 2.16. We observe from (1) in Theorem 2.13 that if T is n-power-posinormal
with P as an n-interrupter and V is an isometry, then V TV \ast is n-power-posinormal with
V PV \ast as n-interrupter. Consequently, n-power-posinotmality is a unitary invariant.

Theorem 2.17. Tn is k-power-posinormal if and only if T is nk-power-posinormal.

Proof. Since \scrR (Tnk) = \scrR ((Tn)
k
), we have

\scrR (Tnk) \subseteq \scrR (T \ast ) \Leftarrow \Rightarrow \scrR ((Tn)
k
) \subseteq \scrR (T \ast ).

This yields the desired equivalence. \square 

Corollary 2.18. T is n-power-posinormal if one of the following statements holds:
(1) Tn is hyponormal;
(2) T is n-power normal.

Proof. (1) The statement follows from Corollary 2.1 [8] and Theorem 2.17.
(2) If T is n-power normal then Tn is normal (see [4]) and thus Tn is posinormal.

Applying Theorem 2.17, we obtain that T is n-power-posinormal. \square 

Proposition 2.19. If T is n-power-posinormal and \scrR (T ) = \scrR (Tn), then T is posinormal.

Proof. If T is n-power-posinormal, we have \scrR (Tn) \subseteq \scrR (T \ast ). Since \scrR (T ) = \scrR (Tn) we
obtain \scrR (T ) \subseteq \scrR (T \ast ). Thus, from (2) in Theorem 2.7, T is posinormal. \square 

Proposition 2.20. If T is k + n-power-posinormal such that T \ast n is an isometry, then
T is k-power-posinormal.

Proof. Let P be a positive n+ k-interrupter for T . We have

T k+nT \ast n+k = T \ast PT.

Since TnT \ast n = I, we have T k+nT \ast n+k = T kT \ast k. Thus

T kT \ast k = T \ast PT.

Therefore, T is k-power-posinormal. \square 

Corollary 2.21. If Tn is posinormal and T \ast n - 1 is an isometry, then T is posinormal.
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Proof. Straightforward from Theorem 2.17 and Proposition 2.20. \square 

Proposition 2.22. If T is 2-power-posinormal and T \ast is an isometry, then T is unitary.

Proof. From Proposition 2.20, we obtain that T is posinormal. Let P be an interrupter
for T . We have,

TT \ast = T \ast PT.

Since T \ast is an isometry, we have TT \ast = I. This gives

I = T \ast PT

Multiplying the later identity from the left by T and from the right by T \ast , we obtain

I = TT \ast = P

Thus, we have I = TT \ast = T \ast T . This achieves the proof. \square 

3. Other Characterization of n-power-Posinormal Operators

Masuo Ito obtained the following characterization of posinormal operators:

Theorem 3.1. [[3] , Theorem 2] T is posinormal if and only if , there exists \lambda > 0 such
that \bigm| \bigm| \bigl\langle T | T | x, y\bigr\rangle \bigm| \bigm| \leq \lambda \| | T | x\| \| | T | y\| , x, y \in \scrH . (3.4)

We give a generalization of Theorem 3.1 to the class of n-power-posinormal operators.
For that we need the following result due to Fuji et al. (see [2]).

Theorem 3.2. [2] Let A \geq 0 and B \geq 0. If T \ast T \leq A2 and TT \ast \leq B2 the inequality\bigm| \bigm| \bigl\langle T | T | p+q - 1x, y
\bigr\rangle \bigm| \bigm| \leq \lambda \| | Ap| x\| \| | Bq| y\| (3.5)

holds for all x, y \in \scrH , 0 \leq p, q \leq 1 with p+ q \geq 1

Proposition 3.3. If T is n-power-posinormal operator, then there exists \lambda > 0 such that\bigm| \bigm| \bigl\langle Tn| Tn| p+q - 1x, y
\bigr\rangle \bigm| \bigm| \leq \lambda \| | Tn| px\| \| \lambda q| T | qy\| (3.6)

holds for all x, y \in \scrH , 0 \leq p, q \leq 1 with p+ q \geq 1

Proof. Taking in (3.5), A = | Tn| and B = \lambda | T | and \lambda > 0 as in the statement (2) of
Theorem (2.13), we obtain\bigm| \bigm| \bigl\langle Tn| Tn| p+q - 1x, y

\bigr\rangle \bigm| \bigm| \leq \lambda \| | Tn| px\| \| \lambda q| T | qy\| 
for all x, y \in \scrH , 0 \leq p, q \leq 1 with p+ q \geq 1. \square 

Corollary 3.4. T is n-power-posinormal if and only if, there exists \lambda > 0 such that\bigm| \bigm| \bigl\langle Tn| Tn| x, y
\bigr\rangle \bigm| \bigm| \leq \lambda \| | Tn| x\| \| | T | y\| , \forall x, y \in \scrH . (3.7)

Proof. The direct statement follows immediately from Proposition 3.3 by putting p = q = 1
in (3.6).

Conversely, suppose that (3.7) holds. Let Tn = U | Tn| be the polar decomposition of
Tn. Let x \in \scrH . Applying (3.7) to vectors U\ast x and x , we obtain\bigm| \bigm| \bigl\langle Tn| Tn| U\ast x, x

\bigr\rangle \bigm| \bigm| \leq \lambda \| | Tn| U\ast x\| \| | T | x\| 
which can be written \bigm| \bigm| \bigl\langle TnT \ast nx, x

\bigr\rangle \bigm| \bigm| \leq \lambda \| T \ast nx\| \| | T | x\| .
Thus, \| T \ast nx\| 2 \leq \lambda \| T \ast nx\| \| | T | x\| . This yields \| T \ast nx\| 2 \leq \lambda \| | T | x\| 2. Since \| | T | x\| 2 =
\| Tx\| 2 for x \in \scrH , we have then proved that there exists \lambda > 0 such that

\| T \ast nx\| 2 \leq \lambda 2\| Tx\| 2, x \in \scrH .

Therefore, by Theorem 2.13, T is n-power-posinormal. This completes the proof. \square 
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4. Examples

This section is devoted to give examples which illustrate various aspects of n-power-
posinormality. The following proposition allows to calculate an n-interrupter for the
power of posinormal operator.

Proposition 4.1. If T is posinormal and P is an interrupter for T then (PT )n - 1P (T \ast P )n - 1

is an n-interrupter for T .

Proof. By induction : It is obvious that the statement is true for n = 1. Suppose that is
true for n. We have

Tn+1T \ast n+1 = TTnT \ast T \ast = TT \ast (PT )n - 1P (T \ast P )n - 1TT \ast .

Since TT \ast = T \ast PT , we obtain

Tn+1T \ast n+1 = TTnT \ast T \ast = T \ast PT (PT )n - 1P (T \ast P )n - 1T \ast PT = T \ast (PT )nP (T \ast P )nT.

Thus the property is true for n+ 1. \square 

Example 4.2. Let \scrH = \ell 2 and \{ en, n = 0, 1, . . . \} its standard basis. The Cesàro
operator on \scrH is defined by

Cen =

\infty \sum 
k=n

1

k + 1
ek, n = 0, 1, . . .

By routine computation, one gets

C\ast en =
1

n+ 1

n\sum 
k=0

ek, n = 0, 1, . . .

C is posinormal (see [8]) with interrupter the diagonal operator P with diagonal entries
ann = (n+ 1)/(n+ 2) for n = 0, 1, \cdot \cdot \cdot Applying the statement (f) of Remark 2.11 (take
k = 1) and the Proposition 4.1, we obtain that C is n-power-posinormal for any n with
n-interrupter (PC)n - 1P (C\ast P )n - 1.

Example 4.3. Unilateral weighted shifts are posinormal (see Proposition 1.1 [8]). Thus
these operators are n-power-posinormal operator for any positive integer n.

Let T \in \scrB (\scrH ). The hereditary functional calculus defines p(T ) =
\sum 

m,n\geq 0 cm,nT
\ast nTm

for a polynomial p(x, y) =
\sum 

m,n\geq 0 cm,nx
myn \in \BbbC [x, y],

where cm,n is the coefficient of xmyn in p (see [7, 9]).

Proposition 4.4. Let T be a root of p(x, y) = xn+yq(x, y), then T is n-power-posinormal.

Proof. If T is a root of p, we get, from p(T ) = 0, that Tn = TC, where C = q(T ).
Therefore, by the statement (4) of Theorem 2.13, T is n-power-posinormal. \square 

As a consequences of Proposotion 4.4, we get that If T is (m,n)-isosymetry (T is a
root of p(x, y) = (yx - 1)m(y  - x)n), then T is n-power-posinormal. In particular, if T is
n-symetry (T is a root of p(x, y) = (y  - x)n ), then T is n-power-posinormal.
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