

ON ONE PROBLEM OF YU. M. BEREZANSKY

YURI BOGDANSKII

ABSTRACT. In this article we prove the maximum principle for L-harmonic functions on a Hilbert space, where (Lu)(x) = j(x)(u''(x)) with j(x) being a nonnegative functional on the space of self-adjoint bounded operators. The proposed method is then applied to a study of parabolic equations for functions on a Hilbert space.

Доведено принцип максимума для L-гармонічних функцій на гільбертовім просторі, де (Lu)(x) = j(x)(u''(x)), j(x)-невід'ємний функціонал на просторі самоспряжених обмежених операторів. Запропонований метод застосовується також до дослідження параболічних рівнянь відносно функцій на гільбертовім просторі.

Let $B_s(H)$ be the Banach space (equipped with the operator norm) of self-adjoint bounded linear operators on a real Hilbert space H, J the cone of nonnegative linear functionals on $B_s(H)$, D a bounded domain in H.

For a twice Fréchet differentiable at $x \in H$ scalar function u, the value u''(x) lies in $B_s(H)$.

Given a function $u \in C^2(D) \cap C(\overline{D})$, let us consider a second order elliptic differential expression of the form

$$(Lu)(x) = j(x)(u''(x)), \tag{1}$$

where $j: D \to J$.

It is natural then to ask the question about the validity of the infinite-dimensional analog of the weak maximum principle for L-harmonic functions on D.

By convention, functionals $\alpha \in J$ of the form $C \mapsto Tr(AC)$, where A is a nonnegative nuclear operator in H, are called regular. In the case where H is infinite-dimensional, there also exist singular functionals, whose kernel contains all operators of finite rank in $B_s(H)$.

It is also known that every functional $\alpha \in J$ admits a unique decomposition $\alpha = \alpha_1 + \alpha_2$ into a sum of regular and singular functionals.

In the case where all functionals j(x) in (1) are regular, the corresponding maximum principle can be obtained by applying the method of finite-dimensional approximations.

In the case where all functionals j(x) in (1) are singular, the maximum principle was proved in [1, 4].

The last result more that 40 years ago was presented by the author at a seminar organized by Yu. M. Berezansky. And instantly the question from Yu. M. Berezansky followed: does a maximum principle holds in the case where the functionals j(x) in (1) are of the general form?

I did not succeed in answering this question at that time. Afterwards, the statement was proved for a smaller class of functions (see [2]). And only after many years, having approached the original problem again, I managed to obtain the desired result. The summary of the proof was published in [3].

Theorem 1. Let H be a real Hilbert space, D a bounded domain in H, $f: \overline{D} \to \mathbb{R}$ a function of class $C(\overline{D})$ such that $\inf_{D} f > -\infty$, $\varepsilon > 0$.

 $^{2020\} Mathematics\ Subject\ Classification.\ 35J99;\ 35J25.$

Keywords. Hilbert space, maximum principle, infinite-dimensional elliptic operator, boundary problem, heat equation.

Then there exists a function $h(x) = a||x||^2 + (b,x) + c$ $(a,c \in \mathbb{R}; a > 0; b \in H)$ for which

$$\sup_{D} \|h^{(k)}(\cdot)\| \le \varepsilon, \ k = 0, 1, 2 \tag{2}$$

and such that for the function g(x) = f(x) + h(x) there exists a point $x_0 \in \overline{D}$ such that $g(x) > g(x_0)$ for all $x \in \overline{D} \setminus \{x_0\}$. If additionally $\inf_D f < \inf_{\partial D} f$, then one can choose a sufficiently small $\varepsilon > 0$ such that $x_0 \in D$.

Proof. Denote $a = \inf_{D} f$ and

$$\delta = \min \left\{ \frac{\varepsilon}{2}, \frac{\varepsilon}{2 \operatorname{diam} D}, \frac{\varepsilon}{(\operatorname{diam} D)^2} \right\}. \tag{3}$$

In the case where $f(x) \equiv a$, we can take $g(x) = a + \delta ||x - x_0||^2$ $(x_0 \in D)$. Thus, in the following we can assume that f is non-constant.

Take a point $x_1 \in D$ for which $\varepsilon_1 = f(x_1) - a \in (0, \frac{\delta}{8})$ and, given $\delta_1 > 0$, define the function f_1 on \overline{D} by $f_1(x) = f(x) + \delta_1 ||x - x_1||^2$.

Then for all $x \in \overline{D}$ which satisfy the inequality $||x-x_1||^2 > \frac{\varepsilon_1}{\delta_1}$, one has $f_1(x) > f(x) + \varepsilon_1$. We also have that $f_1(x_1) = f(x_1)$, $\inf_{D} f_1 \ge \inf_{D} f$ and

$$\inf_{\overline{D}} f_1 = \inf \left\{ f_1(x) : x \in \overline{D}, \ \|x - x_1\|^2 \le \frac{\varepsilon_1}{\delta_1} \right\}. \tag{4}$$

Let us construct a sequences $\{\varepsilon_n\}, \{\delta_n\}, \{x_n\}, \{f_n\}$ for $n \ge 1$ as follows: $\varepsilon_{n+1} \in (0, \varepsilon_n)$; $x_{n+1} \in \overline{D}$ has to satisfy the following two (compatible) conditions

$$\begin{cases} f_n(x_{n+1}) \le f_n(x_n) = f_{n-1}(x_n), \\ f_n(x_{n+1}) < \inf_{D} f_n + \varepsilon_{n+1} \end{cases}$$
 (5)

 $(let f_0 := f).$

For $\delta_{n+1} > 0$, we define the function f_{n+1} as follows:

$$f_{n+1}(x) = f_n(x) + \delta_{n+1} ||x - x_{n+1}||^2.$$

Then for all $x \in \overline{D}$ satisfying $||x - x_{n+1}||^2 > \frac{\varepsilon_{n+1}}{\delta_{n+1}}$, we have $f_{n+1}(x) > f_n(x) + \varepsilon_{n+1}$ and therefore, similarly to (4), one has that

$$\inf_{\overline{D}} f_{n+1} = \inf \left\{ f_{n+1}(x) : x \in \overline{D}, \ \|x - x_{n+1}\|^2 \le \frac{\varepsilon_{n+1}}{\delta_{n+1}} \right\}. \tag{6}$$

It follows from (4)–(6) that $||x_{n+1} - x_n||^2 \le \frac{\varepsilon_n}{\delta_n}$ for $n \ge 1$.

If $r_n = \left(\frac{\varepsilon_n}{\delta_n}\right)^{\frac{1}{2}} \leq 2^{-n}$, then there exists $x_0 = \lim_{n \to \infty} x_n \in \overline{D}$. Let $\gamma \geq 0$ be a solution of the equation $\varepsilon_1 = \frac{\delta}{8^{1+\gamma}}$. Let $\varepsilon_n = \frac{\delta}{8^{n+\gamma}}$ and $\delta_n = \frac{\delta}{2^{n+\gamma}}$.

Then $r_n = \left(\frac{\varepsilon_n}{\delta_n}\right)^{\frac{1}{2}} = 2^{-n-\gamma} \le 2^{-n}$; $r_{n+1} = \frac{1}{2}r_n$, $n \ge 1$; the series $\sum_{k=1}^{\infty} \delta_k$ converges and

its sum does not exceed δ .

Since $f_n(x) = f(x) + \sum \delta_k ||x - x_k||^2$, the sequence of functions f_n converges uniformly

on \overline{D} to the function g(x) = f(x) + h(x), where $h(x) = \sum_{k=1}^{\infty} \delta_k ||x - x_k||^2 = a||x||^2 + (b, x) + c$.

Additionally, we have

$$0 \le h(x) \le \delta \cdot (\operatorname{diam} D)^2$$
,

$$\|\operatorname{grad} h(x)\| = 2 \left\| \sum_{k=1}^{\infty} \delta_k(x - x_k) \right\| \le 2\delta \operatorname{diam} D,$$
$$\|h''(x)\| = 2 \sum_{k=1}^{\infty} \delta_k \le 2\delta,$$

from which inequality (2) follows.

Let us prove that x_0 is a strict minimum point of g.

Let $x \neq x_0$ and $r_n = \left(\frac{\varepsilon_n}{\delta_n}\right)^{\frac{1}{2}} < \frac{1}{6}||x - x_0||$. Then for $m \geq n$, the following inequalities hold:

$$||x_m - x_0|| \le 2r_m < \frac{1}{3} ||x - x_0||, ||x - x_m|| \ge ||x - x_0|| - ||x_m - x_0|| > 2r_m.$$

$$(7)$$

From (4)–(6) and inequalities (7) we obtain the inequalities

$$f_n(x_{n+1}) \le f_n(x_n) < f_n(x).$$

Suppose now that m > n. Then, by (7), we have

$$||x_m - x_{n+1}|| \le ||x_m - x_0|| + ||x_{n+1} - x_0|| \le 2r_m + 2r_{n+1} < 2r_n$$

$$< \frac{1}{3}||x - x_0|| \le \frac{1}{3}(||x - x_m|| + ||x_m - x_0||) < ||x - x_m||.$$

Therefore, one has the inequality

$$f_m(x) - f_m(x_{n+1}) = (f_{m-1}(x) + \delta_m ||x - x_m||^2) - (f_{m-1}(x_{n+1}) + \delta_m ||x_{n+1} - x_m||^2)$$

> $f_{m-1}(x) - f_{m-1}(x_{n+1})$.

Thus, there exist $\alpha > 0$ and $n \in \mathbb{N}$ such that for any $m \geq n$, the following inequality holds:

$$f_m(x_{n+1}) < f_m(x) - \alpha.$$

Passing to the limit as $m \to \infty$ we get

$$g(x_{n+1}) \le g(x) - \alpha.$$

Passing now to the limit as $n \to \infty$ we obtain

$$g(x_0) < g(x)$$
.

In the case where $\inf_{\partial D} f - \inf_{D} f = \beta > 0$ with $\varepsilon \in (0, \frac{1}{2}\beta)$, the minimum point x_0 lies in D.

Remark 2. In conditions of Theorem 1, with a minor modification of the proof, one can also guarantee existence of the corresponding function h(x) of the form $h(x) = a||x||^2 + (b,x)$, where $0 < a < \varepsilon$ and $||b|| < \varepsilon$, for which the function g(x) = f(x) + h(x) has the required property.

Corollary 3. Let H be a real Hilbert space, D a bounded domain in H, $f: \overline{D} \to \mathbb{R}$ a function of class $C^m(D) \cap C(\overline{D})$ such that $\inf_{\overline{D}} f > -\infty$, $\varepsilon > 0$.

Then there exists a function $g \in C^m(D) \cap C(\overline{D})$ such that

$$\sup_{D} \|f^{(k)}(\cdot) - g^{(k)}(\cdot)\| \le \varepsilon, \ k = 0, 1, 2$$

and

$$f^{(k)}(x) = g^{(k)}(x) \text{ in } D \text{ for } k > 2$$

and there exists $x_0 \in \overline{D}$ such that $g(x) > g(x_0)$ for all $x \in \overline{D} \setminus \{x_0\}$.

In the case $\inf_{D} f < \inf_{\partial D} f$, one can choose a sufficiently small $\varepsilon > 0$ such that $x_0 \in D$.

Theorem 4. Let D be a bounded domain in a Hilbert space H, $f: \overline{D} \to \mathbb{R}$ a function of class $C^2(D) \cap C(\overline{D})$ such that $\inf_{D} f > -\infty$, $j: D \to J$ such that $\inf_{D} ||j(\cdot)|| > 0$. Suppose that for all $x \in D$, the following inequality holds:

$$(Lf)(x) = j(x)(f''(x)) \le 0.$$

Then $\inf_{D} f = \inf_{\partial D} f$.

Proof. Assume that $\inf_{\partial D} f - \inf_{D} f = \varepsilon > 0$. Pick any point $x_1 \in D$ and consider the

function $h(x) = f(x) - \delta ||x - x_1||^2$. If $\delta < \frac{\varepsilon}{2(\operatorname{diam} D)^2}$, then $\inf_{\partial D} h - \inf_{D} h > \frac{\varepsilon}{2}$. In this case one has $h''(x) = f''(x) - 2\delta I$ and $(Lh)(x) = (Lf)(x) - 2\delta ||j(x)||$, where $I: H \to H$ is the identity operator.

Denoting $\inf_{D} ||j(\cdot)|| = \alpha > 0$, we get the inequality

$$(Lh)(x) < -2\alpha\delta$$

that holds for all $x \in D$.

By Corollary 3, there exists a function $g \in C^2(D) \cap C(\overline{D})$ such that for all $x \in D$, the following inequalities hold:

$$|g(x) - h(x)| < \frac{\varepsilon}{4}, \ ||g''(x) - h''(x)|| < 2\alpha\delta,$$

and which attains a strict minimum at some point $x_0 \in D$.

On one hand, for all $x \in D$, we have (Lg)(x) < 0, and on the other hand, $g''(x_0) \ge 0$ and thus, $(Lg)(x_0) \geq 0$, which is a contradiction.

Corollary 5 (Maximum principle for L-harmonic functions). Let D be a bounded domain in $H, f: \overline{D} \to \mathbb{R}$ a function of class $C^2(D) \cap C(\overline{D})$ which is bounded in $D, j: D \to J$ such that $\inf_{D} ||j(\cdot)|| > 0$. Suppose that (Lf)(x) = j(x)(f''(x)) = 0 for all $x \in D$.

Then $\sup_{\partial D} f = \sup_{D} f$ and $\inf_{\partial D} f = \inf_{D} f$.

Then
$$\sup_{\partial D} f = \sup_{D} f$$
 and $\inf_{\partial D} f = \inf_{D} f$

The following statement is a modification of Corollary 3 and also follows directly from Theorem 1.

Let $H = H_1 \oplus H_2$ and $D = D_1 \times D_2$, where D_k is a domain in H_k (k = 1, 2). Let $\Gamma \subset \partial D$. Denote by $C^{p,q}(D;\Gamma)$ the set of all continuous on $D \cup \Gamma$ functions f, for which the partial Fréchet derivatives $\frac{\partial^k}{\partial x_1^k} f$ and $\frac{\partial^l}{\partial x_2^l} f$ exist and are continuous on D for all $k \in \{1, \dots, p\}$ and $l \in \{1, \dots, q\}$.

Lemma 6. Suppose that the domains D_k are bounded in H_k . Let $f \in C^{p,q}(D;\Gamma)$ be such that $\inf_{D} f > -\infty$ and $\inf_{\Gamma} f - \inf_{D} f = 2\varepsilon > 0$.

Then there exists a function $g \in C^{p,q}(D;\Gamma)$ that attains a strict minimum in D, for which the following inequalities hold:

$$\begin{split} \sup_{D} |f(\cdot) - g(\cdot)| &\leq \varepsilon, \\ \sup_{D} \left\| \frac{\partial^k}{\partial x_1^k} f - \frac{\partial^k}{\partial x_1^k} g \right\| &\leq \varepsilon, \\ \sup_{D} \left\| \frac{\partial^l}{\partial x_2^l} f - \frac{\partial^l}{\partial x_2^l} g \right\| &\leq \varepsilon \end{split}$$

for $1 \le k \le \min\{p, 2\}$, $1 \le l \le \min\{q, 2\}$; and for $3 \le k \le p$, $3 \le l \le q$ one has

$$\frac{\partial^k}{\partial x_1^k} f = \frac{\partial^k}{\partial x_1^k} g, \ \frac{\partial^l}{\partial x_2^l} f = \frac{\partial^l}{\partial x_2^l} g$$

everywhere in D.

Let D be a bounded domain in a Hilbert space $H, T \in (0, +\infty), P = D \times (0, T) \subset H \times \mathbb{R}$, $\widehat{P} = \overline{D} \times [0, T), \Gamma = \widehat{P} \setminus P = (\overline{D} \times \{0\}) \cup (\partial D \times [0, T)) \subset \partial P$.

Theorem 7. Let $j: P \to J$ and suppose that a function $u \in C^{2,1}(P; \Gamma)$ satisfies the inequality

$$\frac{\partial u}{\partial t} \ge L_x u = j(x, t)(u_x'')$$

everywhere in the cylinder P. Suppose also that $a = \sup_{P} ||j(\cdot)|| < +\infty$ and $\inf_{P} u > -\infty$.

Then $\inf_{P} u = \inf_{\Gamma} u$.

Proof. Suppose that $\inf_{\Gamma} u - \inf_{P} u > 2\alpha > 0$. Let $\delta = \frac{\alpha}{T}$. Consider the function $v(x,t) = u(x,t) + \delta t$.

The inequality $\frac{\partial v}{\partial t} - L_x v \geq \delta > 0$ holds everywhere in P. Moreover, we have that $\inf_{\Gamma} v \geq \inf_{\Gamma} u$ and $\inf_{P} v \leq \inf_{P} u + \delta T$, and thus

$$\inf_{\Gamma} v - \inf_{P} v \ge 2\alpha - \delta T = \alpha.$$

Let w be a function that is ε -close to v in the sense of Lemma 6 and that attains a strict minimum in P at a point (x_0, t_0) . Then $L_x w = j(x, t)(w_x'') \le j(x, t)(v_x'') + a\varepsilon$ and

$$\frac{\partial w}{\partial t} - L_x w \ge \frac{\partial v}{\partial t} - \varepsilon - L_x v - a\varepsilon \ge \delta - \varepsilon (a+1).$$

Take $\varepsilon < \min\{\frac{\delta}{a+1}, \frac{\alpha}{2}\}$. Then everywhere in P one has

$$\frac{\partial w}{\partial t} - L_x w > 0,$$

while the minimum point $(x_0, t_0) \in P$ and thus, one has

$$\frac{\partial w}{\partial t}(x_0, t_0) - L_x w(x_0, t_0) \le 0,$$

which is a contradiction.

Corollary 8 (Maximum principle for the first boundary value problem for the heat equation). Let $j: P \to J$ be such that $\sup_P \|j(\cdot)\| < +\infty$. Suppose that a function $u \in C^{2,1}(P;\Gamma)$ is bounded on P and satisfies in P the equation

$$\frac{\partial u}{\partial t} = L_x u = j(x, t)(u_x'').$$

Then $\inf_{P} u = \inf_{\Gamma} u$ and $\sup_{P} u = \sup_{\Gamma} u$.

Theorem 9. Let $W=H\times (0,T)$, where $T\in (0,+\infty]$, and $\Gamma=H\times \{0\}$. Let $u\in C^{2,1}(W;\Gamma)$ be bounded on $W,\ j:W\to J$. Suppose that $a=\sup_{W}\|j(\cdot)\|<+\infty$ and everywhere in W the following inequality holds:

$$\frac{\partial u}{\partial t}(x,t) \ge (L_x u)(x,t) = j(x,t)(u_x''(x,t)).$$

Then $\inf_{W} u = \inf_{\Gamma} u = \inf_{H} u(\cdot, 0).$

Proof. Pick a point $(x_0, t_0) \in W$. Define the function w by $w(x, t) = 2a(t - t_0) + ||x - x_0||^2$. Then w satisfies in W the inequality

$$\frac{\partial w}{\partial t} = 2a \ge L_x w.$$

Take $\varepsilon > 0$. For the function $v = u + \varepsilon w$, one has

$$v(x_0, t_0) = u(x_0, t_0), \ \frac{\partial v}{\partial t} \ge L_x v \text{ (in } W).$$

Given R > 0, consider the cylinder $P_R = \{(x,t) : ||x - x_0|| < R, t \in (0,T)\}$. By Theorem 7, the following inequality holds:

$$v(x_0, t_0) \ge \inf_{\Gamma_R} v,\tag{8}$$

where $\Gamma_R = \{(x,0) : ||x - x_0|| \le R\} \cup \{(x,t) : ||x - x_0|| = R, \ t \in [0,T)\}.$

Considering now the function u, by (8), we get

$$u(x_0, t_0) \ge \inf_{\Gamma_R} \left(u(x, t) + 2a\varepsilon(t - t_0) + \varepsilon \|x - x_0\|^2 \right) \ge \inf_{\Gamma_R} \left(u(x, t) - 2a\varepsilon t_0 + \varepsilon \|x - x_0\|^2 \right). \tag{9}$$

Let $M = \sup_{W} u$. Take $R > \sqrt{\frac{2M}{\varepsilon}}$.

Then $||x - x_0||^2 = R$ implies that $\varepsilon ||x - x_0||^2 > 2M$ and thus, by (9),

$$u(x_0, t_0) \ge \inf_{\|x - x_0\| \le R} u(x, 0) - 2a\varepsilon t_0 \ge \inf_{x \in H} u(x, 0) - 2a\varepsilon t_0,$$

which, since $\varepsilon > 0$ is arbitrary, proves the theorem.

Corollary 10 (Maximum principle for a Cauchy problem for the heat equation). Let $j: W \to J$ be such that $\sup_{W} ||j(\cdot)|| < +\infty$. Suppose that a function $u \in C^{2,1}(W; H \times \{0\})$

is bounded on W and satisfies in W the equation

$$\frac{\partial u}{\partial t}(x,t) = j(x,t) \left(u_x''(x,t) \right).$$

Then $\inf_{W} u = \inf_{H} u(\cdot, 0)$ and $\sup_{W} u = \sup_{H} u(\cdot, 0)$.

Remark 11. In an obvious way from Corollaries 5–10 one obtains corresponding uniqueness theorems and theorems about continuous dependence of a solution on the boundary-value (or initial-value) conditions.

References

- [1] Yu. Bogdanskii, Cauchy problem for parabolic equations with essentially infinite-dimensional elliptic operators, Ukr. Math. J. 29 (1977), no. 6, 781–784.
- [2] Yu. Bogdanskii, Maximum principle for irregular elliptic differential equation in countabledimensional Hilbert space, Ukr. Math. J. 40 (1988), no. 1, 21–25.
- [3] Yu. Bogdanskii, Maximum principle for an elliptic equation in a Hilbert space, Spectral and Evolution Problems 10 (2000), 93–95.
- [4] Yu. Bogdanskii and Yu. Daletskii, Cauchy problem for the simplest parabolic equation with essentially infinite-dimensional elliptic operator, (Suppl. to chapters IV, V) Yu. Daletskii, S. Fomin. Measures and differential equations in infinite-dimensional space, Kluwer Acad. Publ., 1991, pp. 309–322.

YURI BOGDANSKII: bogd__@ukr.net

Igor Sikorsky Kyiv Polytechnic Institute, 37 Peremohy Avenue, 03056 Kyiv, Ukraine

Received 21/09/2020; Revised 02/11/2020