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ON ONE PROBLEM OF YU. M. BEREZANSKY

YURI BOGDANSKII

ABsTRACT. In this article we prove the maximum principle for L-harmonic functions
on a Hilbert space, where (Lu)(z) = j(z)(u”(x)) with j(x) being a nonnegative
functional on the space of self-adjoint bounded operators. The proposed method is
then applied to a study of parabolic equations for functions on a Hilbert space.

JoBeneno npuHnun MakcumyMa i L-rapMoHidHuX (DyHKIIM Ha riibGepToBiM
npocropi, ae (Lu)(z) = j(z)(u”(x)), j(x)—HeBin emunii dpyHKIiOHAT Ha NIPOCTOPI
CaMOCIIPSIZKEHUX OOMEXKEHUX ONEepPaTOpiB. 3alpPONOHOBAHUN METOJ, 3aCTOCOBYETHCS
TAKOXK JI0 JIOCJIIIPKEHHs TapaboJliiYHuX PiBHsIHB BiHOCHO (DYHKINA Ha riyibGepToBiM
TPOCTOPI.

Let Bs(H) be the Banach space (equipped with the operator norm) of self-adjoint
bounded linear operators on a real Hilbert space H, J the cone of nonnegative linear
functionals on Bs(H), D a bounded domain in H.

For a twice Fréchet differentiable at « € H scalar function u, the value v (z) lies in
By(H).

Given a function u € C%(D) N C(D), let us consider a second order elliptic differential

expression of the form
(Lu)(z) = j(z) (" (2)), (1)
where j: D — J.

It is natural then to ask the question about the validity of the infinite-dimensional
analog of the weak maximum principle for L-harmonic functions on D.

By convention, functionals a € J of the form C +— T'r(AC), where A is a nonnegative
nuclear operator in H, are called regular. In the case where H is infinite-dimensional,
there also exist singular functionals, whose kernel contains all operators of finite rank in
By (H).

It is also known that every functional a € J admits a unique decomposition @ = a3 4o
into a sum of regular and singular functionals.

In the case where all functionals j(z) in (1) are regular, the corresponding maximum
principle can be obtained by applying the method of finite-dimensional approximations.

In the case where all functionals j(z) in (1) are singular, the maximum principle was
proved in [1, 4].

The last result more that 40 years ago was presented by the author at a seminar
organized by Yu. M. Berezansky. And instantly the question from Yu. M. Berezansky
followed: does a maximum principle holds in the case where the functionals j(z) in (1)
are of the general form?

I did not succeed in answering this question at that time. Afterwards, the statement
was proved for a smaller class of functions (see [2]). And only after many years, having
approached the original problem again, I managed to obtain the desired result. The
summary of the proof was published in [3].

Theorem 1. Let H be a real Hilbert space, D a bounded domain in H, f : D—Ra
function of class C(D) such that irrl)ff > —00, € > 0.
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Then there exists a function h(x) = a||z||*+ (b,z)+¢ (a,c € R;a > 0;b € H) for which
sup [BF) ()| < e, k=0,1,2 (2)
D

and such that for the function g(z) = f(z) + h(x) there evists a point xg € D such that
g(z) > g(xo) for all x € D\ {xo}. If additionally i%ff < gg f, then one can choose a

sufficiently small € > 0 such that x¢ € D.

Proof. Denote a = irle f and

. e € €
§m1n{2, 2diam D’ (diamD)Q} ' 3)
In the case where f(z) = a, we can take g(x) = a + d||z — x¢||? (zo € D). Thus, in the
following we can assume that f is non-constant.
Take a point 1 € D for which ¢; = f(z1) —a € (0, g) and, given d; > 0, define the
function f; on D by fi(z) = f(z) + 81|z — 21]2.
Then for all z € D which satisfy the inequality ||z —z1|* > §t, one has fi(z) > f(z)+er.
We also have that fi(x1) = f(x1), i%f 1> i%ff and

o1

Let us construct a sequences {e}, {0y}, {zn}, {fn} for n > 1 as follows: e,11 € (0,e5);
Zn4+1 € D has to satisfy the following two (compatible) conditions

fn(xn+1) < fn(xn) = fnfl(mn)v

fn(l‘n+1) < Hle fn + En+1

wt fy = int {fi(e) 0 € D, -] < 3| @)
D

()

(let fo := f).

For 6,41 > 0, we define the function f, 1 as follows:

Jni1(x) = fu(@) + 0pya|lz — CCnJr1||2~

Then for all x € D satisfying ||z — 2, 11]|% > %’ we have f11(x) > fn(z) + €pt1 and
therefore, similarly to (4), one has that

. . - En
i fya = inf { fra ) 0 € D, flo = i < 52, ©)
D n+1

It follows from (4)—(6) that ||, 1 — z,|* < 5= forn > 1.
1
Ifr, = (;—”) ’ < 27" then there exists g = lim z, € D.
n n—oo
Let v > 0 be a solution of the equation &1 = 81%. Let ¢, = sniﬂ and §,, = 2,1%.
1 o]

Then r,, = (;—:)E =27 <27 gy = %rn, n > 1; the series de converges and
k=1
its sum does not exceed (EL
Since fn(x) = f(x)+ Z Skllz — x5 ||?, the sequence of functions f,, converges uniformly
k=1

on D to the function g(z) = f(x)+h(z), where h(z) = Z(Sk||x—xk||2 = al|z||?+ (b, z)+c.
k=1

Additionally, we have
0 < h(x) < §- (diam D)?,
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Z (5k($ — xk)
k=1

1" (@) =2 &) < 26,
k=1

| grad h(z)| = 2 < 26 diam D,

from which inequality (2) follows.

Let us prove that x( is a strict minimum point of g.
1

Let x # x¢ and r,, = (;—z) s llz = ol|. Then for m > n, the following inequalities
hold:
T — Tol| < 2P < Lz — 2z ,
e o] tz 2ol o
[ = zm| > ||z = zoll = [[m — zoll > 2rp.
From (4)—(6) and inequalities (7) we obtain the inequalities
Suppose now that m > n. Then, by (7), we have

lZm — Zngi1ll < ll2m — 2ol + |Tne1 — w0l < 270 + 27041 < 27y
1 1
< 3llz = zoll < 3z = 2l + 7 = 2ol < ll2 = 2l
Therefore, one has the inequality
Jm(®) = fr(Tng1) = (frno1(2) + 0|z — xm”Z) = (fm-1(Tny1) + dml|Tnt1 — meZ)

> fmfl(x) - fmfl(anrl)'

Thus, there exist @ > 0 and n € N such that for any m > n, the following inequality
holds:

fm(xn-O-l) < fm(x) - o

Passing to the limit as m — oo we get

9(Tn+1) < g(z) —a.
Passing now to the limit as n — oo we obtain
9(zo) < g().

In the case where 'ggf — i%ff =B >0withe € (O, %6), the minimum point x lies in
D. O
Remark 2. In conditions of Theorem 1, with a minor modification of the proof, one
can also guarantee existence of the corresponding function h(z) of the form h(z) =

al|z||? + (b,z), where 0 < a < € and ||b|| < €, for which the function g(z) = f(z) + h(x)
has the required property.

Corollary 3. Let H be a real Hilbert space, D a bounded domain in H, f : D—Ra
function of class C™(D) N C(D) such that i%ff > —o00, € > 0.

Then there ezists a function g € C™(D) N C(D) such that
supl|f1() = g™ () < & k=012
and
B ()= g™ (x) in D for k> 2

and there exists g € D such that g(z) > g(zo) for allx € D\ {z0}.
In the case i%ff < gg f, one can choose a sufficiently small € > 0 such that x¢ € D.
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Theorem 4. Let D be a bounded domain in a Hilbert space H, f : D — R a function of
class C?(D) N C(D) such that i%ff > —00, j: D — J such that irll)f l7(:)]] > 0. Suppose

that for all x € D, the following inequality holds:
(Lf)(x) = j(z)(f"(x)) < 0.
T i =i .
hen 1%ff ggf
Proof. Assume that iangf — i%ff = ¢ > 0. Pick any point x; € D and consider the
function h(z) = f(z) — d|jx — 21]°.
If 6 < s@@mpyz> then iargh - i%fh > 5. In this case one has h"(x) = f"(x) — 241 and

(Lh)(x) = (Lf)(x) — 26]|j(x)||, where I : H — H is the identity operator.
Denoting i%f l7()]] = @ > 0, we get the inequality

(Lh)(z) < —2ad

that holds for all z € D. -
By Corollary 3, there exists a function g € C?(D) N C(D) such that for all x € D, the
following inequalities hold:

l9(z) = h(z)] < Z, lg” (z) = B" ()] < 20,

and which attains a strict minimum at some point g € D.
On one hand, for all z € D, we have (Lg)(z) < 0, and on the other hand, ¢"(z) >0
and thus, (Lg)(zo) > 0, which is a contradiction. O

Corollary 5 (Maximum principle for L-harmonic functions). Let D be a bounded domain
in H, f: D — R a function of class C*(D) N C(D) which is bounded in D, j: D — J
such that i%f l7()]l > 0. Suppose that (Lf)(x) = j(z)(f"(z)) =0 for all x € D.

T = inf f = inf f.
hen Saquf sgpf and g}jf 1%]‘

The following statement is a modification of Corollary 3 and also follows directly from
Theorem 1.

Let H = Hy ® Hy and D = Dy x Dy, where Dy, is a domain in Hy (k = 1,2). Let
I' ¢ 9D. Denote by CP9(D;T") the set of all continuous on D UT functions f, for which
the partial Fréchet derivatives % f and 3‘%2 f exist and are continuous on D for all

ke{l,....,ptandl € {1,...,q}.

Lemma 6. Suppose that the domains Dy, are bounded in Hy. Let f € CP9(D;T") be such
that irlef > —oo and irllff —i%ff =2e>0.

Then there exists a function g € CP9(D;T") that attains a strict minimum in D, for
which the following inequalities hold:

sup [f(-) —g()| <e,
D

k ak
sup || —=f — —5g9|| < ¢
P 8x’ff (%slfg‘ ’
o o'
sup ||—f — =—g¢g|| < ¢
DpH(?mlzf 8;10!29‘ -

for 1 <k <min{p,2}, 1 <1 <min{q,2}; and for 3<k <p, 3<1<q one has
oF ok o o'
Wf = a3 x9 7[](: 09
x5 0z7™" 0w, o5,

everywhere in D.
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Let D be a bounded domain in a Hilbert space H, T € (0, +00), P = Dx(0,T) C H xR,
P=Dx[0,T),T=P\P=(Dx{0})u(doD x [0,T)) C OP.

Theorem 7. Let j : P — J and suppose that a function u € C*'(P;T) satisfies the
inequality

ou
g S _ "

everywhere in the cylinder P. Suppose also that a = sup ||j(-)]| < +o0 and irlgfu > —00.
P

Then inf u = inf u.
P T

Proof. Suppose that irrlfu — i%fu > 2a > 0. Let 6 = &. Consider the function v(z,t) =

u(z,t) + ot.
The inequality % — L;v > 6 > 0 holds everywhere in P. Moreover, we have that
ilrlfv > i¥fu and iI}%f’U < irFl)fu + 0T, and thus

infv—infv > 20 — 6T = a.
T P

Let w be a function that is e-close to v in the sense of Lemma 6 and that attains a
strict minimum in P at a point (zg,tg). Then L,w = j(z,t)(w)) < j(x,t)(vY) + ac and
ow ov

o= > e —ae>6— )
5 wafat e—Lyv—ae>d—¢e(a+1)

Take € < min{a%r17 $}. Then everywhere in P one has
ow
ot

while the minimum point (xg,t9) € P and thus, one has

ow
E(Imto) — Lyw(xo,t9) <0,

which is a contradiction. O

— L,w >0,

Corollary 8 (Maximum principle for the first boundary value problem for the heat
equation). Let j : P — J be such that sup ||j(-)|| < 4o00. Suppose that a function
P

u € C?1(P;T) is bounded on P and satisfies in P the equation

ou . ”
Tl Lyu = j(x,t)(ul).

Then inf u = inf u and supu = sup u.
P r P r

Theorem 9. Let W = H x (0,T), where T € (0,400], and T' = H x {0}. Let u €
C*Y(W;T) be bounded on W, j : W — J. Suppose that a = sup ||5(-)|| < +oo and
w

everywhere in W the following inequality holds:

O 1) 2 (L)1) = o 1), ).

Then inf u = inf u = inf u(-,0).
w r H

Proof. Pick a point (zg,%9) € W. Define the function w by w(z,t) = 2a(t—to)+ ||z — z0||*.
Then w satisfies in W the inequality
ow



30 YURI BOGDANSKII

Take € > 0. For the function v = u 4+ ew, one has
v(x0,t0) = u(zo, o), % > Lyv (in W).
Given R > 0, consider the cylinder Pgr = {(z,t) : ||z — x| < R, t € (0,T)}. By
Theorem 7, the following inequality holds:

U(antO) > infv, (8)
I'r

where I'r = {(2,0) : ||z —zo|| < R} U{(z,t) : |lz —zo|| =R, t €[0,T)}.
Considering now the function u, by (8), we get

u(zo,to) > ilpf (u(z,t) + 2ae(t — to) + el|z — zo|?) > irnf (u(z,t) — 2aety + ellz — zo|?) .
R R

9)

Let M = supu. Take R > %
w
Then ||z — x0||> = R implies that ¢||z — z¢]|> > 2M and thus, by (9),

t)>  inf .0) — 2aety > inf u(z,0) — 2act,
u(zo 0)_Hr_1xr(1)”§Ru(x ) aeo_xlgHu(x ) acto

which, since € > 0 is arbitrary, proves the theorem. O

Corollary 10 (Maximum principle for a Cauchy problem for the heat equation). Let
j: W = J be such that sup ||j(-)|| < +oo. Suppose that a function u € C**(W;H x {0})
w

is bounded on W and satisfies in W the equation

ou

E(I,t) = j(z,t) (uy(z,1)).

Then inf u = inf u(-,0) and supu = sup u(+,0).
w H w H
Remark 11. In an obvious way from Corollaries 5-10 one obtains corresponding unique-
ness theorems and theorems about continuous dependence of a solution on the boundary-
value (or initial-vlaue) conditions.
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