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ABsTrRACT. Necessary and sufficient conditions for the between different types of
invertibility are established.

Bceranosneni HeoOxinHI Ta gOCTATHI YMOBU CHIBIAIHHS PI3HUX THUIIB 0GOPOTHOCTI.

1. INTRODUCTION AND PRELIMINARIES

Throughout, X denotes a complex Banach space, B(X) the Banach algebra of all
bounded linear operators on X, let I be the identity operator, and for T' € B(X) we
denote by 7%, N(T), R(T), R™(T) = (,,>0 R(T™), p(T'), o(T') respectively the adjoint,
the null space, the range, the hyper-range, the resolvent set and the spectrum of 7.

Let E be a subset of X. FE is said to be T-invariant if T(E) C E. We say that T
is completely reduced by a pair (E, F) and we denote (E, F) € Red(T) if E and F are
two closed T-invariant subspaces of X such that X = E & F. In this case we write
T =Tg@®Tr and we say that T is a direct sum of T\ and T)r. An operator T € B(X)
is said to be semi-regular, if R(T') is closed and N(T') C R*>*(T) [1].

On the other hand, recall that an operator T' € B(X) admits a generalized Kato
decomposition, (GKD for short), if there exists (X1, X3) € Red(T) such that T,x, is semi-
regular and 7x, is quasi-nilpotent, in this case T is said tobe a pseudo Fredholm operator.
If we assume in the definition above that T)x, is nilpotent, then T is said to be of Kato
type. Clearly, every semi-regular operator is of Kato type and a quasi-nilpotent operator
has a GKD, see [5, 7] for more information about generalized Kato decomposition.

For every bounded operator T' € B(X), let us define a semi-regular spectrum, Kato
type spectrum and generalized Kato spectrum respectively by:

0se(T) :={A € C: T — A is not semi-regular };
o1(T) :={A € C: T — A\ does not admit a Kato decomposition};

ogk(T) :=={X € C: T — A does not admit a generalized Kato decomposition}.

Recall that a bounded operator T' € B(X) is Riesz, if T — A\ is Fredholm in the usual
sense for every A € C\{0} [1]. Of course compact and quasi-nilpotent operators are
particular cases of Riesz operators.

In [11], Zivkovié-Zlatanovié SC and M D. Cvetkovié introduced and studied a new
concept of Kato decomposition to extend the Mbektha concept to "generalized Kato-
Riesz decomposition". In fact, an operator T' € B(X) admits a generalized Kato-Riesz
decomposition, (GKRD for short), if there exists (X1, X2) € Red(T) such that T x, is
semi-regular and T|x, is Riesz. The generalized Kato-Riesz spectrum is defined by

ogkr(T) :={A € C: T — AI does not admit a generalized Kato-Riesz decomposition}.
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Let T € B(X), T is said to be Drazin invertible if there exist a positive integer k and
an operator S € B(X) such that

ST =TS, TF'S =T"% and S?°T = S.

Which is also equivalent to the fact that T' = T} & T5; where T} is invertible and T is
nilpotent. The Drazin spectrum is defined by

op(T) ={A € C:T — Al is not Drazin invertible }.

The concept of Drazin invertible operators has been generalized by Koliha [4]. In fact,
T € B(X) is generalized Drazin invertible if and only if 0 ¢ acc(o(T)), where acc(o(T))
is the set of accumulation points of ¢(T"). This is also equivalent to the fact that there
exists (X1, X2) € Red(T') such that T x, is invertible and T x, is quasi-nilpotent. The
generalized Drazin spectrum is defined by

o40(T) = {A € C: T — Al is not generalized Drazin invertible }.

The concept of analytical core for an operator has been introduced by Vrbova in [10] and
study by Mbekhta [7, 8], that is the following set:
KT)={reX : I(zn)n>o C X and 6 >0 such that zg =z, Tz, = xp_1 Yn >
L and [Jz,[| < 0™z}

The quasi-nilpotent part of T', Hy(T) is given by :
Hy(T) :={z € X;rpr(xz) = 0} where rr(x) = lirf ||T”x\|%
n—-+oo

In [3], M D. Cvetkovi¢ and SC. Zivkovi¢-Zlatanovié introduced and studied a new
concept of generalized Drazin invertibility of bounded operators as a generalization of
generalized Drazin invertible operators. In fact, an operator T € B(X) is said to be
generalized Drazin bounded below if Hy(T) is closed and complemented with a subspace
M in X such that (M, Hy(T)) € Red(T) and T'(M) is closed which is equivalent to there
exists (M, N) € Red(T) such that T s is bounded below and 7Ty is quasi-nilpotent, see
[3, Theorem 3.6]. An operator 7' € B(X) is said to be generalized Drazin surjective if
K(T) is closed and complemented with a subspace N in X such that N C Hy(T) and
(K(T),N) € Red(T) which is equivalent to there exists (M, N) € Red(T) such that T,
is surjective and Ty is quasi-nilpotent, see [3, Theorem 3.7].

The generalized Drazin bounded below and surjective spectra of T' € B(X) are defined
respectively by:

ogpm(T) ={X € C, T — A is not generalized Drazin bounded below};

ogpo(T) ={X € C, T — X is not generalized Drazin surjective}.

From [3], we have:
ogp(T) = 0gpm(T) Uagpo(T).

Recently, Zivkovié-Zlatanovi¢ SC and M D. Cvetkovié [11] introduced and studied a new
concept of pseudo-inverse to extend the Koliha concept, generalized Drazin bounded below,
and generalized Drazin surjective to "generalized Drazin-Riesz invertible", "generalized
Drazin-Riesz bounded below" and "generalized Drazin-Riesz surjective" respectively. In
fact, an operator T € B(X) is said to be generalized Drazin-Riesz invertible, if there
exists S € B(X) such that

TS =ST, STS=S and TST — T is Riesz

Zivkovié-Zlatanovié SC and M D. Cvetkovié also showed that T is generalized Drazin-Riesz
invertible iff it has a direct sum decomposition T' = T; @ Ty with 77 is invertible and T} is
Riesz. If we assume in the characterization above that Tj is bounded below (surjective),
then T is said to be generalized Drazin-Riesz bounded below(generalized Drazin-Riesz
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surjective). The generalized Drazin-Riesz, generalized Drazin-Riesz bounded below and
generalized Drazin-Riesz surjective spectra of T' € B(X) are defined respectively by:

o4or(T) ={A € C, T — Xl is not generalized Drazin-Riesz invertible}

ogprm(T) ={X € C, T — X is not generalized Drazin-Riesz bounded below }

ogpro(T) ={A € C, T — X is not generalized Drazin-Riesz surjective}

2. MAIN RESULTS

Recall that T € B(X) is said to have the single valued extension property at Ag € C
(SVEP for short) if for every open neighbourhood U C C of A, the only analytic function
f : U — X which satisfies the equation (T — zI)f(z) = 0 for all z € U is the function
f = 0. An operator T is said to have the SVEP if T" has the SVEP for every A\ € C.
Obviously, every operator T' € B(X) has the SVEP at every A € p(T) = C\ o(T), hence
T and T™* have the SVEP at every point of the boundary d(c (7)) of the spectrum.

Let T € B(X), the ascent of T is defined by a(T) = min{p € N: N(T?) = N(T?*1)},
if such p does not exists we let a(T)) = co. Analogously the descent of T is d(T) =
min{q € N : R(T?) = R(T?™1)}, if such ¢ does not exists we let d(T) = oo [6]. It is
well known that if both a(T") and d(T) are finite then a(T) = d(T') and we have the
decomposition X = R(T?) @ N(TP) where p = a(T) = d(T). The descent and ascent
spectra of T' € B(X) are defined by :

0des(T) = {A € C, T — A has not finite descent}

0ac(T) = {)\ € C, T — AI has not finite ascent }.
We start with the following example.

Example 2.1. Let T : [>(N) — [?(N) be the unilateral right shift operator defined by

T(x1,22, ) = (0,z1,29,---) forall (z,) € lx(N).
o(T)={AeC:0< A <1},

0a(T)=0s(T") ={Ne€C:|A =1}.
So, 04(T) C o(T) is strict. Also, o5(T™*) C o(T') and 04.(T) C 04(T) C o(T) are strict.

In the following result we give several necessary and sufficient conditions for T' to have
some equalities between different types of spectra.

Theorem 2.2. Let T € B(X). The statements are equivalent:

(1) T and T* have SVEP at every A ¢ o5(T);
o(T) = o5(T);

ogp(T) = ogpo(T);

T and T* have SVEP at every A ¢ ogpo(T);

T and T* have SVEP at every A ¢ o,pro(T);

ogpr(T) = 0gpro(T);
p(T) = 0aes(T).

Proof. 1) <= 2): Suppose that o(T) = 05(T). X ¢ 0s(T) = o(T), then T — AI is
invertible, so T and T* have SVEP at A. Conversely, if A ¢ o4(T), then T — A is
surjective and by hypothesis T has SVEP at A, so T — AI is invertible. Hence, A ¢ o(T).

(2)
(3)
(4)
(5)
(6)
(7) o
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2) = 3) If o(T") = 05(T), according to [3, Theorems 2.5 and 2.6] we have

A¢ogpo(T) <= T — Al is generalized Drazin surjective
<= T — M admits a GKD and X ¢ accog(T)
<= T — A\l admits a GKD and X ¢ acco(T)
<= T — A is generalized Drazin invertible
= Agogn(T).

Hence o4po(T) = 04p0(T).

3) = 4): Suppose that o,po(T) = o4p(T), if X & 0ypo(T) then T — AI is generalized
Drazin invertible. So, T' and T™* have the SVEP at A.

4) = 2): If T and T* have SVEP at every A ¢ o4po(T'), then T' and T* have SVEP
at every A ¢ o5(T) which gives o(T) = o5(T).

2) = 6): Assume that o(T") = 04(T), according to [11, Theorems 2.5 and 2.3| we
have

T — A is generalized Drazin Riesz surjective
T — Al admits a GKRD and A ¢ int(os(T))
T — Al admits a GKRD and A ¢ int(o(T))
T — M is generalized Drazin Riesz invertible
A ¢ ogpr(T).

A §é O0gDRQ (T)

10007

Hence 04pro(T) = 04pr(
6) = 5): Suppose that O'gDRQ(T) = O'gDR(T)- If )¢ O'gDRQ(T), then T"— A\ is
generalized Drazin Riesz invertible, so T' and T* have SVEP at A, by [11, Theorem 2.3|.
5) = 2): If T and T have SVEP at every A ¢ o4pro(T), then T and T have SVEP
at every A ¢ o5(T) hence o(T) = o5(T).

2) <= T): Suppose that o(T) = 05(T). A\ ¢ 04es(T), then T — AI has finite descent.
Therefore, we may apply [2, Proposition 1.1] to find § > 0 such that, for every p € C
with 0 < |u— A| < &, T — ul becomes surjective. By hypothesis T' — p[ is bijective. Since
T — pl is invertible for every p € C with 0 < | — A| < 6, then A is not an accumulation
point of the spectrum of T i.e. T'— AI is generalized Drazin invertible: T'— Al =Ty & T,
where T is invertible and T5 is quasinilpotent. Since the descent of T'— A is finite, the
descent of T5 is also finite. Now, T5 is quasinilpotent with finite descent and hence is
nilpotent. It follows that T'— AI is Drazin invertible, i.e. A ¢ op(T). Conversely, if
A ¢ 04(T), then T — AI has finite descent, by hypothesis T' — u[ is Drazin invertible. So
T — A has finite ascent and a(T' — M) = d(T' — AI) = 0, which implies that 7' — AI is
bijective. O

In the same way we have the following result.

Theorem 2.3. Let T € B(X). The statements are equivalent:
(1) T and T* have SVEP at every A ¢ o4(T);

) o(T) = 0a(T);

) 040(T) = ogpm(T);

) T and T* have SVEP at every A ¢ oapm(T);

) T and T* have SVEP at every A ¢ ogprm(T);

(6) 0gpr(T) = 0gpRM(T).

Proposition 2.4. Let T € B(X). The statements are equivalent:
(1) T* has SVEP at every A ¢ ogi(T);

(2) T* has SVEP at every A ¢ os.(T);
(3> Os (T) = Use(T);

(2
(3
(4
(5
6
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(4) 0gpo(T) = agk(T).

Proof. 1) = 2): Since 0g4x(T) C 04(T) we have the result.

2) = 3): Let A ¢ 04.(T), then T — AI is semi-regular and since T* has SVEP at every
A ¢ 05.(T), so T — M is surjective, hence A ¢ o5(T).

3) =>4): Let A ¢ 04%(T), T — A\ admit a GKD, then there exists (M, N) € Red(T)
such that (T'— AI)|a; is semi-regular and (T — AI)|y is quasi-nilpotent. (7' — AI)|5; is
semi-regular implies that 0 € C \ 0s.((T' — Al)|as), since o4 ((T — AI)jar) is closed, there
exists € > 0 such that D(0,¢) C C\ o5 (T — M) jar)-

(T' — M\I)|n is quasi-nilpotent, so 0 € acc(p((T' — M)jx) C acc(C\ o5 (T — A)|n))-
Consequently,

0 € acc(C\ose((T—=A1)|a)NC\ose ((T—=A)|n)) = acc(C\ose(T—AI)) = acc(C\os(T—AI)).

Therefore, 0 ¢ int(os(T —AI)). According to [3, Theorem 3.7], T — X is generalized Drazin
surjective, A ¢ o4po(T).

4) = 1): Suppose that o4po(T) = 04k(T), let A & 04x(T) then T — AI is generalized
Drazin invertible, so T" and T™* have the SVEP. d

By duality, we have the following.

Proposition 2.5. Let T € B(X). The statements are equivalent:

(1) T has SVEP at every A ¢ ogx(T);
(2) T has SVEP at every A & o4.(T);
( ; 0a(T) = 05 (T);

(4) ogpm(T) = ogi(T).
Proposition 2.6. Let T € B(X). The statements are equivalent:

(1) T and T* have SVEP at every A ¢ ogx(T);
(2) T and T* have SVEP at every A ¢ os.(T);
(3) o(T) = 0se(T);

(4) ogp(T) = ogi(T).

Proof. 1) = 2): Since og4x(T) C 0s(T) we have the result.

2) = 3): Let A ¢ 04.(T), then T — AT is semi-regular and since 7" and T have SVEP
at every A, so T — A is invertible, hence A\ ¢ o(T).

3) = 4): Let A ¢ 041(T), T — M admit a GKD, then there exists (M, N) € Red(T')
such that (T'— AI)|y; is semi-regular and (T — AI)|y is quasi-nilpotent. (T — AI)|5; is
semi-regular implies that 0 € C \ o5 ((T' — AI)|ar), since o4 ((T — AI)jar) is closed, there
exists € > 0 such that D(0,¢e) C C\ o5 ((T — M) jar)-

(T — AI)|y is quasi-nilpotent, so 0 € acc(p((T — M )|y) C acc(C\ 05 ((T' — M)|n))-
Consequently,

0 € acc(C\ose((T—A) 13 )NC\Ose ((T—=A)|n)) = acc(C\ose(T—AI)) = acc(C\o(T—\I)).

Therefore, 0 ¢ int(c(T — AI)). According to [3, Theorem 3.9|, T'— AI is generalized
Drazin invertble, A ¢ o,p(T).

4) = 1): Suppose that o,p(T) = ogi(T), let A ¢ 045(T) then T — X is generalized
Drazin invertible, so T and T™* have the SVEP. O

Theorem 2.7. Let T' € B(X). The statements are equivalent:

(1) T and T* have SVEP at every A ¢ ogx(T);
(2) T and T* have SVEP at every A ¢ o.(T);
(3) T and T* have SVEP at every A ¢ os.(T);
(4) op(T) = ouw(T);

(5) o(T) = 05e(T);
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(6) ogp(T) = ogr(T).
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