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EQUALITY BETWEEN DIFFERENT TYPES OF INVERTIBILITY

HAMID BOUA AND MOHAMMED KARMOUNI

Dedicated to our Professor Abdelaziz Tajmouati on the occasion of his retirement.

Abstract. Necessary and sufficient conditions for the between different types of
invertibility are established.

Встановленi необхiднi та достатнi умови спiвпадiння рiзних типiв оборотностi.

1. Introduction and Preliminaries

Throughout, X denotes a complex Banach space, \scrB (X) the Banach algebra of all
bounded linear operators on X, let I be the identity operator, and for T \in \scrB (X) we
denote by T \ast , N(T ), R(T ), R\infty (T ) =

\bigcap 
n\geq 0 R(Tn), \rho (T ), \sigma (T ) respectively the adjoint,

the null space, the range, the hyper-range, the resolvent set and the spectrum of T .
Let E be a subset of X. E is said to be T -invariant if T (E) \subseteq E. We say that T

is completely reduced by a pair (E,F ) and we denote (E,F ) \in Red(T ) if E and F are
two closed T -invariant subspaces of X such that X = E \oplus F . In this case we write
T = T\shortmid E \oplus T\shortmid F and we say that T is a direct sum of T\shortmid E and T\shortmid F . An operator T \in \scrB (X)
is said to be semi-regular, if R(T ) is closed and N(T ) \subseteq R\infty (T ) [1].

On the other hand, recall that an operator T \in \scrB (X) admits a generalized Kato
decomposition, (GKD for short), if there exists (X1, X2) \in Red(T ) such that T\shortmid X1

is semi-
regular and T\shortmid X2

is quasi-nilpotent, in this case T is said tobe a pseudo Fredholm operator.
If we assume in the definition above that T\shortmid X2 is nilpotent, then T is said to be of Kato
type. Clearly, every semi-regular operator is of Kato type and a quasi-nilpotent operator
has a GKD, see [5, 7] for more information about generalized Kato decomposition.

For every bounded operator T \in \scrB (X), let us define a semi-regular spectrum, Kato
type spectrum and generalized Kato spectrum respectively by:

\sigma se(T ) := \{ \lambda \in \BbbC : T  - \lambda I is not semi-regular \} ;

\sigma tk(T ) := \{ \lambda \in \BbbC : T  - \lambda I does not admit a Kato decomposition\} ;

\sigma gk(T ) := \{ \lambda \in \BbbC : T  - \lambda I does not admit a generalized Kato decomposition\} .
Recall that a bounded operator T \in \scrB (X) is Riesz, if T  - \lambda I is Fredholm in the usual
sense for every \lambda \in \BbbC \setminus \{ 0\} [1]. Of course compact and quasi-nilpotent operators are
particular cases of Riesz operators.

In [11], Živković-Zlatanović SČ and M D. Cvetković introduced and studied a new
concept of Kato decomposition to extend the Mbektha concept to "generalized Kato-
Riesz decomposition". In fact, an operator T \in \scrB (X) admits a generalized Kato-Riesz
decomposition, (GKRD for short), if there exists (X1, X2) \in Red(T ) such that T\shortmid X1 is
semi-regular and T\shortmid X2

is Riesz. The generalized Kato-Riesz spectrum is defined by

\sigma gKR(T ) := \{ \lambda \in \BbbC : T  - \lambda I does not admit a generalized Kato-Riesz decomposition\} .
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Let T \in \scrB (X), T is said to be Drazin invertible if there exist a positive integer k and
an operator S \in \scrB (X) such that

ST = TS, T k+1S = T k and S2T = S.

Which is also equivalent to the fact that T = T1 \oplus T2; where T1 is invertible and T2 is
nilpotent. The Drazin spectrum is defined by

\sigma D(T ) = \{ \lambda \in \BbbC : T  - \lambda I is not Drazin invertible \} .
The concept of Drazin invertible operators has been generalized by Koliha [4]. In fact,
T \in \scrB (X) is generalized Drazin invertible if and only if 0 /\in acc(\sigma (T )), where acc(\sigma (T ))
is the set of accumulation points of \sigma (T ). This is also equivalent to the fact that there
exists (X1, X2) \in Red(T ) such that T\shortmid X1 is invertible and T\shortmid X2 is quasi-nilpotent. The
generalized Drazin spectrum is defined by

\sigma gD(T ) = \{ \lambda \in \BbbC : T  - \lambda I is not generalized Drazin invertible \} .
The concept of analytical core for an operator has been introduced by Vrbova in [10] and
study by Mbekhta [7, 8], that is the following set:

K(T ) = \{ x \in X : \exists (xn)n\geq 0 \subset X and \delta > 0 such that x0 = x, Txn = xn - 1 \forall n \geq 
1 and \| xn\| \leq \delta n\| x\| \} 

The quasi-nilpotent part of T , H0(T ) is given by :

H0(T ) := \{ x \in X; rT (x) = 0\} where rT (x) = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow +\infty 

| | Tnx| | 1
n .

In [3], M D. Cvetković and SČ. Živković-Zlatanović introduced and studied a new
concept of generalized Drazin invertibility of bounded operators as a generalization of
generalized Drazin invertible operators. In fact, an operator T \in \scrB (X) is said to be
generalized Drazin bounded below if H0(T ) is closed and complemented with a subspace
M in X such that (M,H0(T )) \in Red(T ) and T (M) is closed which is equivalent to there
exists (M,N) \in Red(T ) such that T\shortmid M is bounded below and T\shortmid N is quasi-nilpotent, see
[3, Theorem 3.6]. An operator T \in \scrB (X) is said to be generalized Drazin surjective if
K(T ) is closed and complemented with a subspace N in X such that N \subseteq H0(T ) and
(K(T ), N) \in Red(T ) which is equivalent to there exists (M,N) \in Red(T ) such that T\shortmid M
is surjective and T\shortmid N is quasi-nilpotent, see [3, Theorem 3.7].
The generalized Drazin bounded below and surjective spectra of T \in \scrB (X) are defined
respectively by:

\sigma gD\scrM (T ) = \{ \lambda \in \BbbC , T  - \lambda I is not generalized Drazin bounded below\} ;

\sigma gD\scrQ (T ) = \{ \lambda \in \BbbC , T  - \lambda I is not generalized Drazin surjective\} .
From [3], we have:

\sigma gD(T ) = \sigma gD\scrM (T ) \cup \sigma gD\scrQ (T ).

Recently, Živković-Zlatanović SČ and M D. Cvetković [11] introduced and studied a new
concept of pseudo-inverse to extend the Koliha concept, generalized Drazin bounded below,
and generalized Drazin surjective to "generalized Drazin-Riesz invertible", "generalized
Drazin-Riesz bounded below" and "generalized Drazin-Riesz surjective" respectively. In
fact, an operator T \in \scrB (X) is said to be generalized Drazin-Riesz invertible, if there
exists S \in \scrB (X) such that

TS = ST, STS = S and TST  - T is Riesz

Živković-Zlatanović SČ and M D. Cvetković also showed that T is generalized Drazin-Riesz
invertible iff it has a direct sum decomposition T = T1 \oplus T0 with T1 is invertible and T0 is
Riesz. If we assume in the characterization above that T1 is bounded below (surjective),
then T is said to be generalized Drazin-Riesz bounded below(generalized Drazin-Riesz
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surjective). The generalized Drazin-Riesz, generalized Drazin-Riesz bounded below and
generalized Drazin-Riesz surjective spectra of T \in \scrB (X) are defined respectively by:

\sigma gDR(T ) = \{ \lambda \in \BbbC , T  - \lambda I is not generalized Drazin-Riesz invertible\} 

\sigma gDR\scrM (T ) = \{ \lambda \in \BbbC , T  - \lambda I is not generalized Drazin-Riesz bounded below \} 

\sigma gDR\scrQ (T ) = \{ \lambda \in \BbbC , T  - \lambda I is not generalized Drazin-Riesz surjective\} 

2. Main Results

Recall that T \in \scrB (X) is said to have the single valued extension property at \lambda 0 \in \BbbC 
(SVEP for short) if for every open neighbourhood U \subseteq \BbbC of \lambda 0, the only analytic function
f : U  - \rightarrow X which satisfies the equation (T  - zI)f(z) = 0 for all z \in U is the function
f \equiv 0. An operator T is said to have the SVEP if T has the SVEP for every \lambda \in \BbbC .
Obviously, every operator T \in \scrB (X) has the SVEP at every \lambda \in \rho (T ) = \BbbC \setminus \sigma (T ), hence
T and T \ast have the SVEP at every point of the boundary \partial (\sigma (T )) of the spectrum.

Let T \in \scrB (X), the ascent of T is defined by a(T ) = min\{ p \in \BbbN : N(T p) = N(T p+1)\} ,
if such p does not exists we let a(T ) = \infty . Analogously the descent of T is d(T ) =
min\{ q \in \BbbN : R(T q) = R(T q+1)\} , if such q does not exists we let d(T ) = \infty [6]. It is
well known that if both a(T ) and d(T ) are finite then a(T ) = d(T ) and we have the
decomposition X = R(T p) \oplus N(T p) where p = a(T ) = d(T ). The descent and ascent
spectra of T \in \scrB (X) are defined by :

\sigma des(T ) = \{ \lambda \in \BbbC , T  - \lambda I has not finite descent\} 

\sigma ac(T ) = \{ \lambda \in \BbbC , T  - \lambda I has not finite ascent \} .

We start with the following example.

Example 2.1. Let T : l2(\BbbN )  - \rightarrow l2(\BbbN ) be the unilateral right shift operator defined by

T (x1, x2, \cdot \cdot \cdot ) = (0, x1, x2, \cdot \cdot \cdot ) for all (xn) \in l2(\BbbN ).

\sigma (T ) = \{ \lambda \in \BbbC : 0 \leq | \lambda | \leq 1\} ,

\sigma a(T ) = \sigma s(T
\ast ) = \{ \lambda \in \BbbC : | \lambda | = 1\} .

So, \sigma a(T ) \subset \sigma (T ) is strict. Also, \sigma s(T
\ast ) \subset \sigma (T ) and \sigma se(T ) \subseteq \sigma a(T ) \subset \sigma (T ) are strict.

In the following result we give several necessary and sufficient conditions for T to have
some equalities between different types of spectra.

Theorem 2.2. Let T \in \scrB (X). The statements are equivalent:

(1) T and T \ast have SVEP at every \lambda /\in \sigma s(T );
(2) \sigma (T ) = \sigma s(T );
(3) \sigma gD(T ) = \sigma gD\scrQ (T );
(4) T and T \ast have SVEP at every \lambda /\in \sigma gD\scrQ (T );
(5) T and T \ast have SVEP at every \lambda /\in \sigma gDR\scrQ (T );
(6) \sigma gDR(T ) = \sigma gDR\scrQ (T );
(7) \sigma D(T ) = \sigma des(T ).

Proof. 1) \Leftarrow \Rightarrow 2): Suppose that \sigma (T ) = \sigma s(T ). \lambda /\in \sigma s(T ) = \sigma (T ), then T  - \lambda I is
invertible, so T and T \ast have SVEP at \lambda . Conversely, if \lambda /\in \sigma s(T ), then T  - \lambda I is
surjective and by hypothesis T has SVEP at \lambda , so T  - \lambda I is invertible. Hence, \lambda /\in \sigma (T ).
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2) =\Rightarrow 3) If \sigma (T ) = \sigma s(T ), according to [3, Theorems 2.5 and 2.6] we have

\lambda /\in \sigma gD\scrQ (T ) \Leftarrow \Rightarrow T  - \lambda I is generalized Drazin surjective
\Leftarrow \Rightarrow T  - \lambda I admits a GKD and \lambda /\in acc\sigma s(T )

\Leftarrow \Rightarrow T  - \lambda I admits a GKD and \lambda /\in acc\sigma (T )

\Leftarrow \Rightarrow T  - \lambda I is generalized Drazin invertible
\Leftarrow \Rightarrow \lambda /\in \sigma gD(T ).

Hence \sigma gD\scrQ (T ) = \sigma gD(T ).
3) =\Rightarrow 4): Suppose that \sigma gD\scrQ (T ) = \sigma gD(T ), if \lambda /\in \sigma gD\scrQ (T ) then T  - \lambda I is generalized

Drazin invertible. So, T and T \ast have the SVEP at \lambda .
4) =\Rightarrow 2): If T and T \ast have SVEP at every \lambda /\in \sigma gD\scrQ (T ), then T and T \ast have SVEP

at every \lambda /\in \sigma s(T ) which gives \sigma (T ) = \sigma s(T ).
2) =\Rightarrow 6): Assume that \sigma (T ) = \sigma s(T ), according to [11, Theorems 2.5 and 2.3] we

have

\lambda /\in \sigma gDR\scrQ (T ) \Leftarrow \Rightarrow T  - \lambda I is generalized Drazin Riesz surjective
\Leftarrow \Rightarrow T  - \lambda I admits a GKRD and \lambda /\in int(\sigma s(T ))

\Leftarrow \Rightarrow T  - \lambda I admits a GKRD and \lambda /\in int(\sigma (T ))

\Leftarrow \Rightarrow T  - \lambda I is generalized Drazin Riesz invertible
\Leftarrow \Rightarrow \lambda /\in \sigma gDR(T ).

Hence \sigma gDR\scrQ (T ) = \sigma gDR(T ).
6) =\Rightarrow 5): Suppose that \sigma gDR\scrQ (T ) = \sigma gDR(T ). If \lambda /\in \sigma gDR\scrQ (T ), then T  - \lambda I is

generalized Drazin Riesz invertible, so T and T \ast have SVEP at \lambda , by [11, Theorem 2.3].
5) =\Rightarrow 2): If T and T \ast have SVEP at every \lambda /\in \sigma gDR\scrQ (T ), then T and T \ast have SVEP

at every \lambda /\in \sigma s(T ) hence \sigma (T ) = \sigma s(T ).
2) \Leftarrow \Rightarrow 7): Suppose that \sigma (T ) = \sigma s(T ). \lambda /\in \sigma des(T ), then T  - \lambda I has finite descent.

Therefore, we may apply [2, Proposition 1.1] to find \delta > 0 such that, for every \mu \in \BbbC 
with 0 < | \mu  - \lambda | < \delta , T  - \mu I becomes surjective. By hypothesis T  - \mu I is bijective. Since
T  - \mu I is invertible for every \mu \in \BbbC with 0 < | \mu  - \lambda | < \delta , then \lambda is not an accumulation
point of the spectrum of T i.e. T  - \lambda I is generalized Drazin invertible: T  - \lambda I = T1 \oplus T2,
where T1 is invertible and T2 is quasinilpotent. Since the descent of T  - \lambda I is finite, the
descent of T2 is also finite. Now, T2 is quasinilpotent with finite descent and hence is
nilpotent. It follows that T  - \lambda I is Drazin invertible, i.e. \lambda /\in \sigma D(T ). Conversely, if
\lambda /\in \sigma s(T ), then T  - \lambda I has finite descent, by hypothesis T  - \mu I is Drazin invertible. So
T  - \lambda I has finite ascent and a(T  - \lambda I) = d(T  - \lambda I) = 0, which implies that T  - \lambda I is
bijective. \square 

In the same way we have the following result.

Theorem 2.3. Let T \in \scrB (X). The statements are equivalent:
(1) T and T \ast have SVEP at every \lambda /\in \sigma a(T );
(2) \sigma (T ) = \sigma a(T );
(3) \sigma gD(T ) = \sigma gD\scrM (T );
(4) T and T \ast have SVEP at every \lambda /\in \sigma gD\scrM (T );
(5) T and T \ast have SVEP at every \lambda /\in \sigma gDR\scrM (T );
(6) \sigma gDR(T ) = \sigma gDR\scrM (T ).

Proposition 2.4. Let T \in \scrB (X). The statements are equivalent:
(1) T \ast has SVEP at every \lambda /\in \sigma gk(T );
(2) T \ast has SVEP at every \lambda /\in \sigma se(T );
(3) \sigma s(T ) = \sigma se(T );
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(4) \sigma gD\scrQ (T ) = \sigma gk(T ).

Proof. 1) =\Rightarrow 2): Since \sigma gk(T ) \subset \sigma se(T ) we have the result.
2) =\Rightarrow 3): Let \lambda /\in \sigma se(T ), then T  - \lambda I is semi-regular and since T \ast has SVEP at every

\lambda /\in \sigma se(T ), so T  - \lambda I is surjective, hence \lambda /\in \sigma s(T ).
3) =\Rightarrow 4): Let \lambda /\in \sigma gk(T ), T  - \lambda I admit a GKD, then there exists (M,N) \in Red(T )

such that (T  - \lambda I)| M is semi-regular and (T  - \lambda I)| N is quasi-nilpotent. (T  - \lambda I)| M is
semi-regular implies that 0 \in \BbbC \setminus \sigma se((T  - \lambda I)| M ), since \sigma se((T  - \lambda I)| M ) is closed, there
exists \epsilon > 0 such that D(0, \epsilon ) \subset \BbbC \setminus \sigma se((T  - \lambda I)| M ).

(T  - \lambda I)| N is quasi-nilpotent, so 0 \in acc(\rho ((T  - \lambda I)| N ) \subset acc(\BbbC \setminus \sigma se((T  - \lambda I)| N )).
Consequently,

0 \in acc(\BbbC \setminus \sigma se((T - \lambda I)| M )\cap \BbbC \setminus \sigma se((T - \lambda I)| N )) = acc(\BbbC \setminus \sigma se(T - \lambda I)) = acc(\BbbC \setminus \sigma s(T - \lambda I)).

Therefore, 0 /\in int(\sigma s(T  - \lambda I)). According to [3, Theorem 3.7], T  - \lambda is generalized Drazin
surjective, \lambda /\in \sigma gD\scrQ (T ).

4) =\Rightarrow 1): Suppose that \sigma gD\scrQ (T ) = \sigma gk(T ), let \lambda /\in \sigma gk(T ) then T  - \lambda I is generalized
Drazin invertible, so T and T \ast have the SVEP. \square 

By duality, we have the following.

Proposition 2.5. Let T \in \scrB (X). The statements are equivalent:
(1) T has SVEP at every \lambda /\in \sigma gk(T );
(2) T has SVEP at every \lambda /\in \sigma se(T );
(3) \sigma a(T ) = \sigma se(T );
(4) \sigma gD\scrM (T ) = \sigma gk(T ).

Proposition 2.6. Let T \in \scrB (X). The statements are equivalent:
(1) T and T \ast have SVEP at every \lambda /\in \sigma gk(T );
(2) T and T \ast have SVEP at every \lambda /\in \sigma se(T );
(3) \sigma (T ) = \sigma se(T );
(4) \sigma gD(T ) = \sigma gk(T ).

Proof. 1) =\Rightarrow 2): Since \sigma gk(T ) \subset \sigma se(T ) we have the result.
2) =\Rightarrow 3): Let \lambda /\in \sigma se(T ), then T  - \lambda I is semi-regular and since T and T \ast have SVEP

at every \lambda , so T  - \lambda I is invertible, hence \lambda /\in \sigma (T ).
3) =\Rightarrow 4): Let \lambda /\in \sigma gk(T ), T  - \lambda I admit a GKD, then there exists (M,N) \in Red(T )

such that (T  - \lambda I)| M is semi-regular and (T  - \lambda I)| N is quasi-nilpotent. (T  - \lambda I)| M is
semi-regular implies that 0 \in \BbbC \setminus \sigma se((T  - \lambda I)| M ), since \sigma se((T  - \lambda I)| M ) is closed, there
exists \epsilon > 0 such that D(0, \epsilon ) \subset \BbbC \setminus \sigma se((T  - \lambda I)| M ).

(T  - \lambda I)| N is quasi-nilpotent, so 0 \in acc(\rho ((T  - \lambda I)| N ) \subset acc(\BbbC \setminus \sigma se((T  - \lambda I)| N )).
Consequently,

0 \in acc(\BbbC \setminus \sigma se((T - \lambda I)| M )\cap \BbbC \setminus \sigma se((T - \lambda I)| N )) = acc(\BbbC \setminus \sigma se(T - \lambda I)) = acc(\BbbC \setminus \sigma (T - \lambda I)).

Therefore, 0 /\in int(\sigma (T  - \lambda I)). According to [3, Theorem 3.9], T  - \lambda I is generalized
Drazin invertble, \lambda /\in \sigma gD(T ).

4) =\Rightarrow 1): Suppose that \sigma gD(T ) = \sigma gk(T ), let \lambda /\in \sigma gk(T ) then T  - \lambda I is generalized
Drazin invertible, so T and T \ast have the SVEP. \square 

Theorem 2.7. Let T \in \scrB (X). The statements are equivalent:
(1) T and T \ast have SVEP at every \lambda /\in \sigma gk(T );
(2) T and T \ast have SVEP at every \lambda /\in \sigma tk(T );
(3) T and T \ast have SVEP at every \lambda /\in \sigma se(T );
(4) \sigma D(T ) = \sigma tk(T );
(5) \sigma (T ) = \sigma se(T );
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(6) \sigma gD(T ) = \sigma gk(T ).
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References

[1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer. Acad.
Press, 2004.

[2] M. Burgos, A. Kaidi, M. Mbekhta and M. Oudghiri, The descent spectrum and perturbations,
Journal of Operator Theory 56 (2006), 259-271.
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