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NEW RESULTS ON THE EXISTENCE OF PERIODIC SOLUTIONS
FOR A HIGHER-ORDER P-LAPLACIAN NEUTRAL DIFFERENTIAL
EQUATION WITH MULTIPLE DEVIATING ARGUMENTS

LOUBNA MOUTAOUEKKIL

ABsTrRACT. In this article, we consider the following high-order p-Laplacian neutral
differential equation with multiple deviating arguments:

(p(@(t) = ca(t —r))™ (1)) ™
— F@(E)a (8) + glt, (), 2t = 11 (1)), oo 0(t — (1)) + €(t).
By applying the continuation theorem and some analytic techniques, sufficient condi-
tions for the existence of periodic solutions are established. It is interesting that the

equations not only depend on the constant ¢ but are also dependent on the deviating
arguments 7,1 = (1,..., k).

Posrisimarorbes HeliTpasibHi qudepeHiiaibHi pIBHAHHS 3 p-JlalljIaciaHOM 1 KpaTHUMU
BIJIXMJIEHHSIMA apryMeHTIB:

(ep(@(t) = ca(t — )™ (1)) ™
= fl@®)a’(t) + g(t, 2(t), a(t — T1.(1)), .., 2(t — 7())) + e(t).
3aCTOCOBYIOUHN TEOPEMY MPOJOBXKEHHS Ta MEBHI AHAJITUYHI METOJUA, OTPUMYIOTHCS

JocTaTHI yMOBH ICHYBaHHSI TEPIOAWYHUX PO3B’sA3KiB. PiBHAHHSA 3ayie’KaTh He TiIbKA
BiJl KOHCTAHTH ¢, ajie i Bijg apryMeHTiB i3 Biaxwmienuamu 7;,¢ = (1,...,k).

1. INTRODUCTION

In the past years, there has been a considerable interest in the existence of periodic
solutions of higher order neutral differential equations because of its background in applied
sciences. For example Wang and Lu [2] studied a kind of high-order neutral functional
differential equation with distributed delay as follows:

0

(a(t) = ca(t — o)™ = f(a(t)2'(t) + g(/ (t + s)da(s)) = p(t).
In 2010, Wang and Zhu [1] further discussed existence of periodic solutions for a
fourth-order p—Laplacian neutral functional differential equation of the form:

(pp(a(t) —ca(t —9)) () = fla®)z'(t) + gt z(t — 7(t, 2]x))) + e(?).
Inspired by the above fact and other great articles, see [3, 5] and [6], in this paper, we aim
at studying the existence of periodic solutions for the following higher-order p—Laplacian
neutral differential equation with multiple deviating arguments:

(pp(a(t) —cx(t=r) ()™ = fx()z’(t)+g(t, x(t), 2(t=T1(t)), ooy 2t =71 (t))) +e(t),

(1.1)
where p > 2 is a fixed real number. The conjugate exponent of p is denoted by ¢, i.e
% + é = 1. Let ¢, : R — R be the mapping defined by ¢,(s) = |s|P~?s for s # 0, and

vp(0) =0, f e C(R,R), g € C(RF2 R) with g(t + T, ug, w1, ..., ux) = g(t, ug, uy, ..., ug),
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Y(t, ug, u1, ..., ur) € RFF2 e is continuous T-periodic functions defined on R, 7; €
CHR,R)(i=1,2,...,k) with 7;(¢t + T) = 7;(t), T is positive constant, c is a constant and
le| # 1, n,m are a positive integer.

Therefore, in this paper, based on the Mawhin continuation theorem and some analysis
skill, without assumption of fo t)dt = 0, some new sufficient conditions for the existence
of T-periodic solution of p— Laplaman equation (1.1) will be established. The rest of this
paper is organized as follows. Section 2 is devoted to introducing some definitions and
recalling some preliminary results that will be extensively used. The existence results will
be obtained in Section 3. Finally, an example is given to illustrate the effectiveness of
our result in Section 4. Our results are different from those of bibliographies listed in
the previous texts. Therefore, we improve the corresponding results in literature to the
multiple deviating arguments case.

2. PRELIMINARIES

For convenience, define Cr = {z|z € C(R,R),z(t +T) = z(t)} with the norm
2|0 = max,epo,77 [#(t)], and CF = {z|z € C'(R,R), z(t + T) = x(t)} with the norm
|z = maxicjo,7{|7o, |20} We also define a linear operator A as follows:

A:Cr— Cr, (Az)(t) = x(t) — cx(t — 7).

Lemma 2.1 ([9]). If |¢| # 1, then A has continuous bounded inverse A1 on Cr, which
satisfies

—I—chaj t—jr), forle] <1, Va € Cr;
(1) (A™2)(t) = oo
t+7” o(t+(j+1
S MEEUEDD  foriel > 1, v € O,
j=1
- |z[o
(2) (A7)l < ,  Vzelr
11— el
1 T

T
(3)/ (A=Lz)(t)]dt < w()|dt, Yo Cr.

0 = =lell Jo
Lemma 2.2. Let k > 0,7 > 0 be two constants, s € Cp(R,R), 7, € CL(R,R) and

|7/lo < 1. Then
/|(t—n |dt<6/ B[Edt;
0

1
here § = ———— |r!lo =
where 8 = g Irllo = max I7/()].

Proof. Tt is easy to see that
T T T
S\t —T; k = S\t —T; k — T 7'-/ S\t —T; k y
/O|<t () [¥dt / ls(t — 7u(e))[Fd(t — mi(t)) + / (6)]s(t — 7a(t)) [Fdt
€., . .
— |7 s(t—m; kde < s(t)[F
(1 \l|o>/0 Is(t - 7:(t))] dt</0 1s(t)

and thus

T 1 T
/ Is(t — (1)t < 7/ 1s(8)[Fdt.
0 1- \T\o 0

(2

This completes the proof. O
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Lemma 2.3 (Borsuk [15]). Q@ C R"™ is an open bounded set, and symmetric with respect
to0€ Q. If f € C(Q,R™) and f(z) # pf(—x),Vo € 0, Vu € [0,1], then deg(f,,0) is
an odd number.

Now, we recall Mawhin’s continuation theorem which our study is based upon.

Let X and Y be real Banach spaces and L : D(L) C X — Y be a Fredholm operator
with index zero. Here D(L) denotes the domain of L. This means that ImL is closed
in Y and dim KerL = dim(Y/ImL) < +oco. Consider the supplementary subspaces X;
and Y7 and such that X = KerL® X; and Y = ImL & Y; and let P : X — KerL
and Q : Y — Y] be natural projections. Clearly, KerL N (D(L)N X;) = {0}, thus the
restriction L, := L|D(L)QX1 is invertible. Denote the inverse of L, by K.

Now, let 2 be an open bounded subset of X with D(L)NQ # (), amap N : Q — Y is
said to be L-compact on €, if QN(Q) is bounded and the operator K(I — Q)N : Q — Y
is compact.

Lemma 2.4 (Mawhin [13]). Suppose that X and Y are two Banach spaces, and L :
D(L) C X =Y is a Fredholm operator with index zero. Furthemore,  C X is an open
bounded set, and N : Q) — Y is L-compact on Q. If all of the following conditions hold:

(1) Lz # ANx,Vx € 9Q N D(L), A €]0,1];

(2) Nx & ImL,Vx € 00N KerL;and

(3) deg{JQN,QnN KerL,0} # 0, where J : ImQ — KerL is an isomorphism.

Then the equation Lx = Nx has at least one solution on QN D(L).

In order to use Mawhin’s continuation theorem to study the existence of T-periodic
solution for Eq (1.1) , we rewrite Eq (1.1) in the following system

{ (Az1) M (1) = pg(z2(t)), (2.2)
o™ () = fa1(0)74 () + g(t, 21 (8), 21 (E = T1(E)), ooy w1 (E — i (E))) + e().

1 1
Where g > 2 is constant with = + = = 1. Clearly, if z(t) = (1(¢),x2(t)) " is a T-periodic

p q
solution to equation set (2.2), then z(¢) must be a T-periodic solution to equation (1.1).
Thus, in order to prove that Eq (1.1) has a T-periodic solution, it suffices to show that
equation set (2.2) has a T-periodic solution
X ={z=(x1(t),22(t)" € C'R,R?) : 2(t + T) = z(t)}

with the norm ||z||x = maz{||z1]], ||z2]|}, Y = {z = (z1(t),22(t))" € O(R,R?) : z(¢t +
T) = x(t)} with the norm ||z||y = max{|z1]o, |x2|o}, obviously, X and Y are two Banach
spaces. Meanwhile, let

)™
L:D(L)C X =Y, (La)(t) = ( (Axg% (t)(t) ) , (2.3)
where D(L) = {x € C"™™(R,R?) : 2(t + T) = x(t)},
N:X =Y,
_ ©q(w2(t))
[Na)(t) = ( Flar (02, (8) + gt 21(8), 1. (E— T1(8)), ooy 21 ( — 70(£))) + €(8) ) (24)

It is easy to see that equation set (2.2) can be converted to the abstract equation
Lz = Nx. Moreover, from the definition of L, we see that KerL = R? ImL = {y:y¢€

Y, fOT y(s)ds = 0}. So L is a Fredholm operator with index zero.
Let projections P : X — KerL and Q : Y — Im(Q be defined by

po= (o) =g () )
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Obviously KerL = Im@ = R?. Denote the inverse of L|gerpnp(r) bY L;l then

_ AT Gy)(t)
Lo )] t) = ( ( ! 2.5
()] o= (Ve (25)
where
n—1 1 t
_ - (2) i n—
(@) = 32 A OO0+ gy [ ooy
=1 1 '
_ T ) m
(G0 = 3 3O + gy [ s,
and (Amgz))(()) (1 =1,2...,n —1) are defined by E1Z = B, where
1 0 0 0 O
c1 1 0 -0 0
C2 c1 1 0 0
E, = )
Ch—3 Cn—4 Cp-5 - 1 0
Cn—2 Cn—3 Cn—4 e C1 (n—1)x (n—1)
Z = ((Azy)™=1(0), (Az1)"=2(0), -+ , (Az1)"(0), (Az1)'(0)) T,
B = (b17 b27 e 7bn—27 bn—l)Ta
17 ,
bl:_ﬁ/o (T_s)yl(s)dsa 221,2,"',71—17
and )
T3
- i—1.2.... . n—9
Cj (.7 + 1)| .] » < 7n I
25(0), i =1,2,--- ;m — 1, are determined by the equation E;W = F, where
1 0 0 -0 0
c1 1 0 -0 0
Co C1 1 0 0
E; = ) ) .
Cm—-3 Cm—4 Cm-5 = 1 0
Cm—2 Cm-3 Cm-4 - 1)
W = (25" (0),2§"72(0), - 25 (0),25(0))
F: (d17d2)"' adm727dm71)—r)
1 7 .
i = a7 | (T — s)'ya(s)ds, 1=1,2,---,m—1,
Ti .
ande:m,jzl,Q,"',m—Q.

From (2.4)and (2.5), it isn’t hard to find that N is L-compact on €, where © is an
arbitrary open bounded subset of X.
For the sake of convenience, we list the following assumptions which will be used by us
in studing the existence of T— periodic solution to Eq (1.1).
(H1) There is a constant d > 0 such that:
(1) g(t, o, ur,y .oy ug) > lelo, V(t, ug, ury .oy ug) € [0, T] x RFHL with u; > d (i =
0,1,...,k).



48 LOUBNA MOUTAOUEKKIL

(2) g(t,ug,ur, . u) < —lelo, V(t, uo, vty oyug) € [0,T] x RFFL with u; <

—d (1 =0,1,...,k).
(Hs) |g(t,ug, uty ...y ug)| < Zi‘c:o a;|u;[P~ + B8, where a;(i = 0,...,k), 3 are positive
constants.

(H3) There exist positive constants 1,b |f(z)| < l|z[P~2 + b.

3. MAIN RESULTS

Lemma 3.1. Suppose that [Hy] holds, if x € D(L) is an arbitrary solution of the equation
Lx = ANz, A €]0,1[,where L and N are defined by (2.3) and (2./), respectively, then
there must be a point t* € [0,T] such that

|21 (£9)] < d. (3.6)

Proof. Suppose x € D(L) is an arbitrary solution of the equation Lz = ANz, for some
A €]0, 1], then

{ (Az) (1) = Aq(w2) (1) = M2 (D] *w2(0),

2§ (1) = M (1 (D) (8) + Mgty 21(6), 1 (£ — 70 (), o2 (E — 75(8))) + Ael).
(3.1

From the first equation of (3.7), we have 25 (t) = ¢, (3 (Az1)™)(t), and then by substi-

tuting it into the second equation of (3.7),we have

(pp(Az1) ™ ()™ = N f(@1(£)2 () +Ng(t, @1(8), 21 (E=T1(£)) ooy 1 (=T (1)) +APe(1).

Integrating both sides of Eq. (3.8) on the interval [0, T], we have (3
/OTg(t, 1 (8), 2 (6 = 71 (8)), 21 (£ — 7 () + /OT () = 0.
By the integral mean value theorem, there is a constant ¢y € [0, 7] such that
g(t,z1(to), z1(to — 11(t0)), -, 71 (o — T(t0))) = f% /OT e(t)dt. (3.9)

Case 1. If |z1(t)| < d, then taking t* = tg such that |z (¢t*)| < d.
Case 2. If |x1(tp)| > d, in this case we need to prove that there exist & € R such that
|z1(€)| < d. By (3.9), we can get

g(t,fEl(to),xl(to — Tl(to)), ...,.Tl(to — Tk(to))) = —%/O e(t)dt S |6|0.

From assumption (H7)(1), we see that there exist » € {1,2,...,k} such that z;(to —
Tr(to)) < d. On the other hand we have

1 T
g(t,.Tl(to),xl(to — Tl(t())), ...,’I‘l(to — Tk(to))) = 7?/0 e(t)dt Z 7|€|0.

From (H1)(2) there exist [ € {1,2, ..., k} such that z1(tg — 7(to)) > —d. In this case we
consider the following two other cases
o If Il =r ,we get |z1(to — 71(t0))| < d, then taking & = x1(tg — 7;(to)) such that
[z1(8)] < d.
e If [ # r we consider three other cases:
— If Il(to - Tl(to)) < Il(to - Tr(to)), which yields |1‘1(t0 — Tl(to))| < d and
lz1(to — 7 (t0))| < d, let & = 21(to — 7i(to)) or & = z1(to — 7 (o)) obviously
lz1(§)] < d.
— If 21 (tg— 7+ (t0)) < @1(to — Ti(to)) and one of the following assumptions holds:
x1(to — 7(to)) > —d or z1(to — 1i(to)) < d, we assume & = z1(to — 71(to)) or
& = x1(to — 7(to)), we can obtain |z1(§)| < d.
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- If])1(t0—7’r(to)) S xl(to—Tl(to)), xl(to—Tr(to)) < —d and l‘l(to—Tl(to)) > d
By the intermediate value theorem there exist ¢; such that x1(¢1) = 0, then
taking £ = t1, we have |z1(£)| < d.

= |7 T
Furthermore |z (t*)| < d with t* € [0, T). O

Let k' = [ﬁ}, where F} is integer part of the number %, then taking t* = £ — k'T.

Theorem 3.2. Assume that |7/|o <1, (i=1,---,k) and assumption [Hy] — [Hs] hold.
Suppose one of the following conditions is satisfied:

2 + (ao +3F aidi) T ( T )(n—1><p—1)+(m—2>
/g

2P H1[1 — |¢|[p—1 2

(1) p>2 and <1

(2) p=2and

]? ). n—1 -1 m—2 n+m—:
2+ o0+ Xy ) T ()

2041 — [effp~t 2m A1 —|c|

where §; is defined in Lemma 2.2. Then Eq (1.1) has at one least one T—periodic solution.

Proof. Let Q; = {x € X : Lv = AN, \ €]0, 1[} if 2(t) = (v1(t),22(t)) " € Q1, then from
(2.3) and (2.4), we have
{ (Az1) ™M (8) = Apg(@2)(8) = Aa2(t)]1%2(D),
2™ (8) = Af (21 (0)2 (8) + Ag(t, 21 (£), 21 (E — 71(8)), ooy 21 (E — T(2))) + Ae(?).

(3.10)
From Lemma 3.1 we have
t t
|21 (t)| = |21 (") —|—/ xy(s)ds| < d+/ |z (s)|ds, te[t",t" +T],
t* t*
and
t* t*
22 ()] = |21 (¢ — T)] = | (£°) f/ 2 (s)ds] < d+/ 12 (s)|ds, ¢ € [t%,1° + T).
t—T t*—T

Combining the above two inequalities, we obtain

|z10 tg[léf?;] |21(2)] te[g{?ﬁﬂ |21(2)]

1 t t*
< - / /
S oax {d +3 </t |21 (s)|ds + /FT |x1(8)|d5> } (3.11)

1 (T
<d+ f/ |2 (s)|ds.
2 Jo
From Lemma 2.1 and the first equation of 3.10, we have

™Mo = max |41 Az (1)]

|
t€[0,T]
(n)

max;eo,7 |(Az1)"™ (t)]

< 3.12

el (312)

sOq(|I2|o).
11— ||

On the other hand, from :CémfZ)(O) = xémﬂ) (T), there exists a point t; € [0,T] such that

xém_l)(tl) = 0, which together with the integration of the second equation of 3.10 on the
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interval [0, T yields

m— m— 1 T m
2 1<>|<2(< ”<t1>+5/0 23 ><t>|dt)

T
<A / F@a ()2 (1) + (b, 20 (8), 22 (= ()2 (¢ — 70()) + () dt
T T
< / (s (8))] 2 (1) de + / (9t 1 (0,21 (= 70 (8)), 1 — 7(8)))dE

T
+ /O le(t)|dt

T T T
< / s ()P, (1) dt + / 1 (8) dt + / vl (1) P

+Zaz|w1 t—7(6))[P~ dt + T(|elo + B).

(3.13)
By, Lemma 2.2 and (3.13) we obtain
1 0 T T
2O <l [ fiolae+0 [ ol
k
+ (oo + > @) Tl f ™+ T(lelo + B).  (3.14)
=1
Substituting (3.11) into (3.14), we have
1 /7 "
202"V (1) < 1 <d+2/ |x’1(t)dt> / |dt+b/ ()|t
0
(3.15)

k 1 T
+ (o0 + > ;)T <d+ 5/ |2 (¢ )dt) T(lelo + B).
i=1 0

Then we can get

od N\ (7 pmh
2z V) <22 P14 / |2, (¢)|dt +b/ |, (¢)|dt
fo |z (¢)|dt 0 0

k 2 p—1 T p—1
+ (OZ() + Zaiéi)TT_p 1+ ———-— / |{E/1(t)|dt
< fo | (t)|dt 0

i=1
+ T'(lelo + B)-
(3.16)
By classical elementary inequalities, we see that there exist a # > 0 which is dependent
on p, such that

14+z)P <1+ (1+p)z. x €1]0,0]. (3.17)

If fo |2} (t)|dt > 22, then it follows from (3.16) and (3.17) that
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:L_(m—l) 2p 2d(p—1) T x/ p—1 T x/
20"V (1)) < 2 1<1+f0 . |dt> (/ | 1<t>|dt> +b/0 (1) dt

k . 2dp T p=1 (3.18)
+(a0+;a¢5i)T2 <1+f0 ot dt) (/ |x1(t)|dt>

+T(lelo + B).

From the Wirtinger inequality (see [18], Lemma 2.4), we have

/OT |2} (¢)|dt < T2 (/OT |gc’1(t)2dt>
<} <2T7T)“ (/0T|x(1")(t)2dt>é (3.19)

T n—1 "
<T (277) 2™ o

2

Substituting (3.19) into (3.18), we can see that

(n—1)(p—1)
TP— 1 n) p—
Pt < ) ‘x(l )|g !

2T
(n—1)(p—2)
TP—2 z P ‘x(")|:0*2
271' 1 0

k
202"V ()] < [2”1 + 2770 + 3 aid)T
=1
k
25 Pld(p — 1) + 2* (a0 + Y o) Tdp
=1

T n—1
ot (5) ol + el + ).

(3.20)

n—1)(p—1 -1
Tpfl z ( )(p—1) (Pq|x2|0 p
2m 1= lell
n—1)(p—2 -2
TP*Q z ( )(p—2) @q‘xQ‘O p
2m 1= el

cor (Y7 (@b e 48 o)
2 11— ]cl] o

Combination of (3.20) and (3.12) implies

i=1

k
2lz{" V(1)) < [2”1 +21P(ag + > 06T

k
25Pld(p — 1) +2*P(ap + Y a;0;)Tdp

i=1

So, we have

n—1 —1
- z ( )(p—1) |x2|0
o = Jefr
n—1 —2 —
o2 (TN wli
2m 11— fef[P—2

i (5) ('“'q_ >+T(I6|o+6) (322)

k
2lz{™ V(1)) < [2“1 +21P(ag + > 06T
=1

k
25Pld(p — 1) + 2* P(ag + Y a;6;)Tdp
i=1

2m 1= el]
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Since fOT(goq(xQ fo (") dt = 0, there exists a point ¢, € [0, 7] such that
xa2(te) =0, hence we can get

t t

|z (t)] = |z2(t2) —|—/ xh(s)ds| < [ |xh(s)|ds, t € [ta,ta + T],
tz t2

and

ta

ja(t)] = |2t — T)| = |ara(t2) — /t_;xa(s)dsm / 2h()|ds, € [ta,ta +T).

-T

[ s+ [ )]

Combining the above two inequalities, we obtain

1
Tolp = max |xa(t)| = max |r2(t)| < max —
[2lo te[O,T]| 2()| tE[tg,tg—&-T]‘ 2(8)] < tE[ta,ta+T) {2 (

1 T
<5 [ I,
2 Jo

From the Wiritinger inequality, we have

1 (T
|zalo < 5/0 |25 (t)|dt

1 T %
<} < / |:c'2<t>2dt>
0

N (3.23)
. T m—2 T ( 1) ) 2
<Tz | — IR
<ti(5) ([ el
T(T\"? (m)
< — (= .
=7 (27r> 22" o
Substituting (3.23) into (3.22), we can see that
m—2
T(T (m—1)
< (=
<5 (5) Il
21+(a0+2§:1 ai5i>T 7\ (=D (p-D+(m—2)
= 1 1 i |20
2p1[1 — |c||P or
2d(p — 1) + (a0+2 e z)po 7 (- D@2+ (m—2)
+ T’p_1 - |(E2‘giq
2P|1 — |¢||P—2 2m
T2 ( T\ (agd™\ | T2 T\
b— ( — 0 — (= .
i (%) =) 2 <2w> (lefo +£)
(3.24)

Case 1: If p > 2, we can get 1 < g < 2. It follows from

<1

920 + (ao +5F s ) T 7\ (D e m2)
P -
2P L1 — [c|[P~t (27T>

that there exists a positive constant My, such that

|z2]0 < Ma;. (3.25)
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Case 2: If p = 2, we can get ¢ = 2. It follows from

<1

20+ (a0 + X0, @idi) T 7\ (DEHDHM2) e Ty
v (= a7 2
271 — fef[P! (27T> 41— |c]|

that there exists a positive constant My, such that
|z2lo < Mo;.
On the other hand From(3.12), we have

—1
n ©q(|72]0) Mgl /
2™y < < = M. (3.26)
! L=l = [1—Ic]| !

Since x1(0) = z1(T'), there exists a point ¢35 € [0,7] such that z(¢t35) = 0. From the
Wirtinger inequality, we can get

! < 1 T I/t dt
o< 5 [l (o)

1
2

) T
SHVNEORT
0 (3.27)
n—2
(T B
=2 \2r flo
T T n—2
S 5 (27‘() M{ = Mll.
Which together with (3.11) yields
Lt T My
1o < d+ 5/ [ (s)lds < T+ 5L := M (3.28)
0

Let My = maxy <, |f(w)| ; Mg = maxie(o,),juo|<Mia,....Jux | <M1z |9(E Yo, -, ug) | Hence,
from (3.27) and (3.25)

T
/ 2™ () dt
0

T
< */0 [f (1 (£)2) () + g(t, 21(8), 21.(t = 71(1), ooy 22 (E = 70(£))) + e(t)]dE

_ 1
|x§m Yo < 7 max

-2

T T
S/ If(fcl(t))llx’l(t)ldH/ lg(t, 21(8), 21 (t = 71(F), s o (t = T (2)))]dE
0 0

T
+/ le(t)|dt
0
< MyT|xh o + T(My + lelo)

S MfTM11 + T(Mg + |6|0) = HO
(3.29)
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Since x2(0) = x2(T'), there exists a point ¢4 € [0,T] such that z5(t4) = 0. From the
Wirtinger inequality, we can get

! <1 r Nt dt
|952|0_2 o x5 ()]

T
/'uﬂm%t
0
T\™3 _
(2)

T m—37
( ) MO = MQQ.

1
2

Nl=

<T
(3.30)

IN
SRS TR

27

1
If foT |2} (t)|dt < 22, then it follows from (3.11)that |21]o < (1 + g)d, which together with
(3.14) and (3.23) implies that there exists positive constant such that |za|o < May;. This
case can be treated similar.
Let Qy = {z|r € KerL,QNx = 0}. If z € Qy then x € R? is a constant vector with
22| %22 = 0,

T
1 /O (21 (87, (8) + g(t, 21 (), 21t — 71 (8)),s oo 21t — 76 (1)) + ()]t = 0.

T
(3.31)
By the first formula of (3.31) , we have x5 = 0. This together with the second equation
of (3.31) yields

1 [T
*/ lg(t,z1, 21, ..., 1) + e(t)]dt = 0.
T Jo
In view of (Hy), we see that |z1| < d. Now, Let
My = max{Mi1, M12}, My = max{ Moy, Mas}.

Then ||z1]] < My, ||2a| < My. Taking Q = {x|x = (z1,22)" € X, ||21|| < My + d, |22 <
M + d}, we get 1 U Qs C 2. So from (3.25) and (3.28), it is easy to see that conditions
(1) and (2) of Lemma 2.4 are satisfied.

Next, we verify the condition (3) of Lemma 2.4 . To do this, we define the isomorphism
J:ImQ — KerL, J(xy,75)" = (21,22) 7. Then

Pq(@2)
JQN (z) = 1 x € KerLNA.

T
f/ l9(t, 21, 21, .y 1) +e(t)]dt. |~
0
By Lemma 2.3, we need to prove that
JQN(x) # u(JQN(—x)), Vz € 6QﬂKe7‘L , 1€ 0,1]

Case 1. If 2 = (z1,72)" € 00N Ker L\{(M; +d,0)", (=M, —d,0) "}, then x5 # 0 which,
gives us @q(x2) # 0 and
pq(2)pq(—22) <0,

hence, Vi € [0,1] we have JQN () # u(JQN(—z)).
Case 2. If x = (M; +d,0)" or & = (—M; —d,0)" then

0
JQN (z) = 1

T
7 [ Bt + el |
0
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which, together with (Hy), yields Vu € [0,1], JQN(z) # u(JQN(—zx)).

Thus, the condition (3) of Lemma 2.4 is also satisfied. Therefore, by applying Lemma
2.4, we conclude that the equation Lx = Nz has a solution z = (z1,72)" on QN D(L),
so (1.1) has an T-periodic solution xy(t). O

Example 3.3. In this section, we provide an example to illustrate effectiveness of
Theorem 3.2.
Let us consider the following equation

(pa(2(t) — 3(x — %))(2)@))(3)
cos 207t sin 207t

= Fa(®)a' (1) + gt (t), ot - 0 ot - T

where p =4, m =3, n=2,T = 1O,c:3 f()—%uQ—i-l—%ﬁ,l:%,b:i,
Ti(t) = 820 gy (t) = BT e(f) = 0o cos20mt + &, g(t,u,v,w) = sgn(u)u?(2 +
sin 20mt) + 55 (sgn(v)v? + sgn( Jw?) | cos 20t|.

Therefore we can choose d =1, a; = ap = 0,014.

We can easily check the condition (Hy), (Hz) of Theorem 3.2 hold. We can compute

that

——)) +e(t), (3.32)

< 1.

20+ (a0 + Xb, i) T 7\ (D=1 (m2)
P
271 — [ef[P—T (27T>

1
By Theorem 3.2, equation (3.32) has at least one 0 -periodic solution.
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