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ASYMPTOTICALLY STABLE SOLUTIONS OF A NONLINEAR
INTEGRAL EQUATION

İSMET ÖZDEMİR

Abstract. The purpose of this paper is to study the existence and asymptotical
stability of solutions of some functional integral equations which include a number
of classical nonlinear integral equations as special cases. Our investigations will be
carried out in the space of continuous and bounded functions on an unbounded
interval. We use the technique associated with the measure of noncompactness and
a suitable fixed point theorem of Darbo type. The applicability of the results is
illustrated by examples showing the difference between our main result and some
previous results.

Метою цiєї статтi є дослiдження iснування та асимптотичної стiйкостi розв’язкiв
iнтегрально функцiональних рiвнянь, спецiальними випадками яких є низка
класичних нелiнiйних iнтегральних рiвнянь. Нашi дослiдження ведуться в
просторах обмежених неперервних функцiй на нескiнченному iнтервалi. Викори-
стовується технiка мiр некомпактностi та теореми про нерухому точку типу
Дарбо. Результати iлюструються прикладами, що вказують на вiдмiнностi з
деякими попереднiми результатами.

1. Introduction

The theory of integral equations is an important part of nonlinear analysis and it is
frequently applicable in engineering, mechanics, physics, economics, optimization, queing
theory and so on. The theory of nonlinear integral equations is rapidly developing
with the help of tools of nonlinear functional analysis, topology and fixed-point theory
(see [1, 4–8,10,13–15,17,20,21,23,24,26–33]).

In this paper, we will investigate the existence of asymptotically stable solutions of the
following nonlinear functional integral equation

x(t) = f

\biggl( 
t, (T1x)(t), (T2x)(t)

\int \infty 

0

u (t, s, (T3x)(s)) ds

\biggr) 
, t \in \BbbR +, (1.1)

where the functions f , u and the operators Ti, (i = 1, 2, 3) are known, while x = x(t) is
an unknown function. It is clear that the equation (1.1) includes the equations (1.2)-(1.14)
given the following as special cases.

El-Abd [17] proved an existence theorem on monotonic solutions for the nonlinear
functional integral equation of convolution type:

x(t) = f1

\biggl( 
t,

\int \infty 

0

k(t - s)f2 (s, x (\phi (s))) ds

\biggr) 
, t \in \BbbR +. (1.2)

Khosravi et al. [23] studied the existence of solutions for the following class of nonlinear
functional integral equations of convolution type:

x(t) = f(t, x(t)) +

\int \infty 

0

k(t - s)(Qx)(s)ds, t \in \BbbR +. (1.3)

2020 Mathematics Subject Classification. 45G10, 47H08, 47H10, 45M10.
Keywords. Nonlinear integral equation, measure of noncompactness, Darbo fixed-point theorem,

asymptotically stable solutions.
57

https://doi.org/10.31392/MFAT-npu26_1.2021.08
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Agarwal and O’Regan [1] give the conditions on the existence of the solutions for the
nonlinear integral equation:

x(t) =

\int \infty 

0

k(t, s)f (s, x(s)) ds, t \in \BbbR +. (1.4)

Meehan and O’Regan [26–28] discussed the existence of the solutions for the nonlinear
integral equations:

x(t) = h(t) +

\int \infty 

0

k(t, s)f (s, x(s)) ds, t \in \BbbR +, (1.5)

x(t) = h(t) + \mu 

\int \infty 

0

k(t, s)f (s, x(s)) ds, t \in \BbbR +, (1.6)

x(t) = h(t) +

\int \infty 

0

k(t, s)[f (x(s)) + g(x(s))]ds, t \in \BbbR +. (1.7)

Salem [33] examined the existence of solutions of the quadratic integral equation:

x(t) = H(t, x(t)) + x(t)

\int \infty 

0

k(t, s)\varphi (s)(f(x(s)) + g(x(s)))ds, t \in \BbbR +. (1.8)

Karoui et al. [21] researched the existence of the solution of nonlinear quadratic integral
equation:

x(t) = a(t) + x(t)

\int \infty 

0

k(t, s)h (s, x(s)) ds, t \in \BbbR +. (1.9)

Banaś et al. [5] studied the existence and asymptotic stability of the solutions for the
nonlinear integral equation:

x(t) = a(t) + g(t, x(t))

\int \infty 

0

K(t, s)h (s, x(s)) ds, t \in \BbbR +. (1.10)

Banaś and Poludniak [4] investigated the monotonic solutions for the nonlinear integral
equation:

x(t) = g(t) +

\int \infty 

0

u (t, s, x(s)) ds, t \in \BbbR +. (1.11)

Banaś and Olszowy [6], Cabellaro et al. [10], Darwish et al. [15], Karoui et al. [21] and
Olszowy [29–31] studied the existence of the solutions for the Urysohn integral equation
defined on unbounded interval:

x(t) = a(t) + f(t, x(t))

\int \infty 

0

u (t, s, x(s)) ds, t \in \BbbR +. (1.12)

Olszowy [29] investigated the conditions on the existence of solutions of the equation:

x(t) = F

\biggl( 
t, x(t),

\int \infty 

0

u (t, s, x(s)) ds

\biggr) 
, t \in \BbbR +. (1.13)

İlhan and Özdemir [20,32] examined the nonlinear integral equation of the form:

x(t) = (T1x)(t) + (T2x)(t)

\int \infty 

0

u (t, s, x(s)) ds, t \in \BbbR +. (1.14)

It is worthwhile mentioning that equation (1.1) appears very often in a lot of applications
to real world problems. For example, if

f(t, x, y) = f1(t, y), u(t, s, x) = k(t - s)f2(s, x), (T1x)(t) \equiv 0, (T2x)(t) \equiv 1

and
(T3x)(t) = x (\phi (t)) ,
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then (1.1) becomes the nonlinear integral equation (1.2). The equation (1.2) arises very
often in applications of integral equations in many branches of mathematical physics
(see [3, 17,18,25]). If

f(t, x, y) = a(t) + y, u(t, s, x) = K(t, s)h (s, x) , (T1x)(t) \equiv 0, (T2x)(t) = g (t, x(t))

and (T3x)(t) = x(t), then (1.1) reduces to the nonlinear quadratic integral equation (1.10).
The integral equation (1.10) is applied in the theory of radiative transfer and the theory
of neutron transport as well in the kinetic theory of gases (see [5, 9, 11, 12, 19, 22]). In the
cace where

f(t, x, y) = g(t) + y, (T1x)(t) \equiv 0, (T2x)(t) \equiv 1, (T3x)(t) = x(t),

(1.1) has the form (1.11) which is a well-known Urysohn integral equation (see [4]).
Using the technique of a suitable measure of noncompactness, we prove a theorem on

the existence and asymptotically stable of the solutions of the equation (1.1). We give
some examples satisfying the conditions given in this paper. The approach applied in
this paper depends on extending and generalizing of the methods and tools used in the
study of some nonlinear integral equations which are presented above. It is worthwhile
mentioning that the class of integral equations considered in this paper are more general
then those investigated up to now.

2. Notations and preliminaries

In this section, we give a collection of auxiliary facts which will be needed in the
sequel. Assume that (E, \| .\| ) is a real Banach space with zero element \theta . Let B(x, r)
denote the closed ball centered at x and with radius r. The symbol Br stands for the
ball B(\theta , r). If X is a subset of E, then X and ConvX denote the closure and convex
closure of X, respectively. With the symbols \lambda X and X + Y , we denote the standard
algebraic operations on sets. Moreover, we denote by \frakM E the family of all nonempty and
bounded subsets of E and \frakN E its subfamily consisting of all relatively compact subsets.
The definition of the concept of a measure of noncompactness is presented below (see [2]).

Definition 2.1. A function \mu : \frakM E \rightarrow \BbbR + = [0,\infty ) is said to be a measure of noncom-
pactness in E if it satisfies following conditions:

(1) The family ker\mu = \{ X \in \frakM E : \mu (X) = 0\} is nonempty and ker\mu \subset \frakN E .
(2) X \subset Y \Rightarrow \mu (X) \leq \mu (Y ).
(3) \mu (X) = \mu (ConvX) = \mu (X).
(4) \mu (\lambda X + (1 - \lambda )Y ) \leq \lambda \mu (X) + (1 - \lambda )\mu (Y ), for \lambda \in [0, 1].
(5) If \{ Xn\} is a sequence of nonempty, bounded, closed subsets of the set E such that

Xn+1 \subset Xn, (n = 1, 2, ...) and \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \mu (Xn) = 0, then the set X\infty = \cap \infty 
n=1Xn

is nonempty.

In the sequel, we will work in the Banach space BC(\BbbR +,\BbbR ) consisting of real functions
defined, continuous and bounded on \BbbR +. This space is endowed with the standard norm
\| x\| = \mathrm{s}\mathrm{u}\mathrm{p}\{ | x(t)| : t \in \BbbR +\} .

We will use a measure of noncompactness in the space BC(\BbbR +,\BbbR ). In order to define
this measure let us fix a nonempty and bounded subset X of BC(\BbbR +,\BbbR ). For x \in X,
\varepsilon \geq 0 and L > 0 denoted by \omega L(x, \varepsilon ) the modulus of continuity of function x, i.e.,

\omega L(x, \varepsilon ) = \mathrm{s}\mathrm{u}\mathrm{p}\{ | x(s) - x(t)| : t, s \in [0, L] and | t - s| \leq \varepsilon \} .
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Further let us put

\omega L(X, \varepsilon ) = \mathrm{s}\mathrm{u}\mathrm{p}\{ \omega L(x, \varepsilon ) : x \in X\} ,
\omega L
0 (X) = \mathrm{l}\mathrm{i}\mathrm{m}

\varepsilon \rightarrow 0
\omega L(X, \varepsilon ),

\omega 0(X) = \mathrm{l}\mathrm{i}\mathrm{m}
L\rightarrow \infty 

\omega L
0 (X). (2.15)

Moreover, let us denote

X(t) = \{ x(t) : x \in X\} 

and

diamX(t) = \mathrm{s}\mathrm{u}\mathrm{p}\{ | x(t) - y(t)| : x, y \in X\} 

for any fixed t \in \BbbR +. With help of the above mappings we define the following measure
of noncompactness in BC(\BbbR +,\BbbR ) [2]:

\mu (X) = \omega 0(X) + \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
t\rightarrow \infty 

diamX(t). (2.16)

The kernel of \mu consists of all nonempty and bounded subsets X of BC(\BbbR +,\BbbR ) such
that functions from X are locally equicontinuous on \BbbR + and the thickness of the bundle
formed by functions from X tends to zero at infinity.

Now we recall definitions of the concepts of local attractivity and asymptotic stability
of the solutions of operator equations. Let us assume that \Omega is a nonempty subset of the
space BC(\BbbR +,\BbbR ) and F be an operator defined on \Omega with values in BC(\BbbR +,\BbbR ). Let us
consider the operator equation of the form:

x(t) = (Fx)(t), t \in \BbbR +. (2.17)

Definition 2.2. We say that solutions of (2.17) are locally attractive if there exist an
x0 \in BC(\BbbR +,\BbbR ) and an r > 0 such that for all solutions x = x(t) and y = y(t) of (2.17)
belonging to B(x0, r) \cap \Omega we have that

\mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

(x(t) - y(t)) = 0.

In the case when limit is uniform with respect to the set B(x0, r) \cap \Omega , that is, when for
each \varepsilon \geq 0 there exists L > 0 such that

| x(t) - y(t)| \leq \varepsilon 

for all x, y \in B(x0, r) \cap \Omega being solutions of (2.17) and for all t \geq L, we will say that
solutions of (2.17) are uniformly locally attractive (or equivalently asymptotically stable)
on \BbbR +, [16].

Finally, we present the following fixed-point theorem which we will need later, [2].

Theorem 2.3. Let Q be a nonempty, bounded, closed and convex subset of the Banach
space E and let

T : Q \rightarrow Q

be a continuous transformation such that \mu (TX) \leq c\mu (X) for any nonempty subset X of
Q, where \mu is a measure of noncompactness in E and c \in [0, 1) is a constant. Then T
has a fixed point in set Q.

Remark 2.4. Denote by FixT the set of all fixed points of the operator T belonging to
Q. It can be readily seen that the set FixT belongs to the family ker\mu , [2].
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3. The Main Result

We will assume that the functions and operators involved in the equation (1.1) satisfy
the following conditions:

(i) f : \BbbR + \times \BbbR \times \BbbR \rightarrow \BbbR is a continuous function and the function t \rightarrow f(t, 0, 0) is a
member of the space BC(\BbbR +,\BbbR ).

(ii) The function f satisfies the Lipschitz condition with the nonnegative constants l1
and l2 with respect to second and third variables, i.e.

| f(t, x1, y) - f(t, x2, y)| \leq l1| x1  - x2| 
for all t \in \BbbR + and x1, x2, y \in \BbbR and

| f(t, x, y1) - f(t, x, y2)| \leq l2| y1  - y2| 
for all t \in \BbbR + and x, y1, y2 \in \BbbR .

(iii) The operators Ti : BC(\BbbR +,\BbbR ) \rightarrow BC(\BbbR +,\BbbR ) are continuous and there exist
nondecreasing functions di : \BbbR + \rightarrow \BbbR + such that

\| Tix\| \leq di(\| x\| ) (i = 1, 2, 3)

for all x \in BC(\BbbR +,\BbbR ).
(iv) u : \BbbR + \times \BbbR + \times \BbbR \rightarrow \BbbR is a continuous function and there exist a continuous

function g : \BbbR + \times \BbbR + \rightarrow \BbbR + and a nondecreasing function h : \BbbR + \rightarrow \BbbR + such
that

| u(t, s, x)| \leq g(t, s)h(| x| )
for all t, s \in \BbbR + and x \in \BbbR . Besides, the function s \rightarrow g(t, s) defining for each
t \in \BbbR + is integrable on \BbbR +, the function q : \BbbR + \rightarrow \BbbR + given by q(t) =

\int \infty 
0

g(t, s)ds
is bounded on \BbbR + and \mathrm{l}\mathrm{i}\mathrm{m}t\rightarrow \infty q(t) = 0.

Remark 3.1. It can be shown that the requirements on the function g given in
the assumption (iv) are independent.

For example; if g(t, s) = te - ts, then the function q defined as

q(t) =

\int \infty 

0

g(t, s)ds =

\Biggl\{ 
0, t = 0

1, t > 0

is bounded on \BbbR +, but \mathrm{l}\mathrm{i}\mathrm{m}t\rightarrow \infty q(t) = 1 \not = 0.
If g(t, s) = te - t2s, then

q(t) =

\int \infty 

0

g(t, s)ds =

\Biggl\{ 
0, t = 0
1
t , t > 0

and \mathrm{l}\mathrm{i}\mathrm{m}t\rightarrow \infty q(t) = 0, but the function q is unbounded on \BbbR +.

(v) There exists the positive real number r0 satisfying the inequality

l1d1(r) + l2d2(r)h(d3(r))G+ F \leq r,

where F = \mathrm{s}\mathrm{u}\mathrm{p} \{ | f (t, 0, 0)| : t \geq 0\} and G = \mathrm{s}\mathrm{u}\mathrm{p} \{ | q(t)| : t \geq 0\} .

Remark 3.2. F and G given in (v) are the finite constants from the assumptions
(i) and (iv).

(vi) There exist the nonnegative constants mr0 and \vargamma r0 for r0 such that the inequalities

\mu (T1X) \leq mr0\mu (X)

and
\omega 0(T2X) \leq \vargamma r0\omega 0(X)
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hold for all nonempty and bounded subsets X of Br0 , where \omega 0 and \mu are defined
by (2.15) and (2.16).

(vii) We assume that

l1mr0 + l2\vargamma r0h(d3(r0))G < 1.

(viii) There exists a continuous nondecreasing function \phi r0 : \BbbR + \rightarrow \BbbR + which holds
\phi r0(0) = 0 and

| u(t2, s, x) - u(t1, s, x)| \leq \phi r0(| t2  - t1| )p(s)

for all t1, t2, s \in \BbbR + and x \in \BbbR with | x| \leq r0, where p \in BC(\BbbR +,\BbbR +) such that
\| p\| 1 =

\int \infty 
0

| p(s)| ds < \infty .
(ix) There exists a continuous nondecreasing function \eta r0 : \BbbR + \rightarrow \BbbR + which holds

\eta r0(0) = 0 and

| u(t, s, x) - u(t, s, y)| \leq \eta r0(| x - y| )k(s)

for all t, s \in \BbbR + and x, y \in \BbbR with | x| \leq r0, | y| \leq r0, where k \in BC(\BbbR +,\BbbR +) such
that \| k\| 1 =

\int \infty 
0

| k(s)| ds < \infty .

Now we can give an existence theorem on the functional integral equation (1.1).

Theorem 3.3. Under the assumptions (i) - (ix), there exists a positive real number r0 such
that the equation (1.1) has at least one solution x = x(t) belonging to Br0 \subset BC(\BbbR +,\BbbR ).
Moreover, all the solutions of the equation (1.1) belonging to the ball Br0 are asymptotically
stable on \BbbR +.

Proof. We define operator T on Br0 in the following way:

(Tx)(t) = f

\biggl( 
t, (T1x)(t), (T2x)(t)

\int \infty 

0

u (t, s, (T3x)(s)) ds

\biggr) 
.

Notice that in view of assumptions (i), (iii) and (iv), the function t \rightarrow (Tx)(t) is well
defined on the interval \BbbR +. At first we show that the function Tx is continuous on \BbbR +

for an arbitrary fixed x \in Br0 . Since the functions f and Tix (i = 1, 2) are continuous, it
is sufficient to prove that the function t \rightarrow 

\int \infty 
0

u (t, s, (T3x)(s)) ds is continuous on \BbbR +.
Let us fix arbitrarily \varepsilon \geq 0 and take arbitrary numbers t1, t2 \in \BbbR + with | t1  - t2| \leq \varepsilon .
Then in view of assumption (viii) we obtain the estimate\bigm| \bigm| \bigm| \bigm| \int \infty 

0

[u (t1, s, (T3x)(s)) - u (t2, s, (T3x)(s))] ds

\bigm| \bigm| \bigm| \bigm| 
\leq 
\int \infty 

0

| u (t1, s, (T3x)(s)) - u (t2, s, (T3x)(s))| ds

\leq 
\int \infty 

0

\phi r0(| t1  - t2| )p(s)ds \leq \phi r0(\varepsilon )\| p\| 1

which implies that the function t \rightarrow 
\int \infty 
0

u (t, s, (T3x)(s)) ds is continuous on \BbbR +. Therefore,
Tx is continuous on \BbbR +.
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Next we show that Tx is bounded on \BbbR +. By our assumptions, we derive that

| (Tx)(t)| =

\bigm| \bigm| \bigm| \bigm| f \biggl( t, (T1x)(t), (T2x)(t)

\int \infty 

0

u (t, s, (T3x)(s)) ds

\biggr) \bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm| \bigm| \bigm| \bigm| f \biggl( t, (T1x)(t), (T2x)(t)

\int \infty 

0

u (t, s, (T3x)(s)) ds

\biggr) 
 - f

\biggl( 
t, 0, (T2x)(t)

\int \infty 

0

u (t, s, (T3x)(s)) ds

\biggr) \bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| f \biggl( t, 0, (T2x)(t)

\int \infty 

0

u (t, s, (T3x)(s)) ds

\biggr) 
 - f (t, 0, 0)

\bigm| \bigm| \bigm| \bigm| 
+| f (t, 0, 0) | (3.18)

for arbitrarily fixed t \in \BbbR +. From (3.18), we have that

| (Tx)(t)| \leq l1 | (T1x)(t)| + | f (t, 0, 0)| 

+l2 | (T2x)(t)| 
\int \infty 

0

| u (t, s, (T3x)(s))| ds

\leq l1d1(\| x\| ) + l2d2(\| x\| )
\int \infty 

0

g(t, s)h (| (T3x)(s)| ) ds+ F

\leq l1d1(\| x\| ) + l2d2(\| x\| )h(\| T3x\| )
\int \infty 

0

g(t, s)ds+ F

\leq l1d1(\| x\| ) + l2d2(\| x\| )h(d3(\| x\| ))G+ F (3.19)

for all t \in \BbbR +. Hence, from (3.19), we obtain the following evaluation:

\| Tx\| \leq l1d1(\| x\| ) + l2d2(\| x\| )h(d3(\| x\| ))G+ F. (3.20)

The estimate (3.20) implies that the function Tx is bounded on \BbbR +. Combining this fact
with the continuity of the function Tx on \BbbR +, we conclude that the operator T transforms
the ball Br0 into the space BC(\BbbR +,\BbbR ). Moreover linking (3.20) and the assumption
(v) we deduce that the operator T maps the ball Br0 into itself, where r0 is a number
indicated in assumption (v).

Now, we shall prove that the operator T is continuous on Br0 . To do this, consider
any \varepsilon > 0 and fixed y \in Br0 . Then,

| (Tx)(t) - (Ty)(t)| =

\bigm| \bigm| \bigm| \bigm| f \biggl( t, (T1x)(t), (T2x)(t)

\int \infty 

0

u (t, s, (T3x)(s)) ds

\biggr) 
 - f

\biggl( 
t, (T1y)(t), (T2y)(t)

\int \infty 

0

u (t, s, (T3y)(s)) ds

\biggr) \bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm| \bigm| \bigm| \bigm| f \biggl( t, (T1x)(t), (T2x)(t)

\int \infty 

0

u (t, s, (T3x)(s)) ds

\biggr) 
 - f

\biggl( 
t, (T1y)(t), (T2x)(t)

\int \infty 

0

u (t, s, (T3x)(s)) ds

\biggr) \bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| f \biggl( t, (T1y)(t), (T2x)(t)

\int \infty 

0

u (t, s, (T3x)(s)) ds

\biggr) 
 - f

\biggl( 
t, (T1y)(t), (T2y)(t)

\int \infty 

0

u (t, s, (T3y)(s)) ds

\biggr) \bigm| \bigm| \bigm| \bigm| .(3.21)
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From the hypothesis (ii) and the inequality (3.21) we derive that

| (Tx)(t) - (Ty)(t)| \leq l1 | (T1x)(t) - (T1y)(t)| 

+l2

\bigm| \bigm| \bigm| \bigm| (T2x)(t)

\int \infty 

0

u (t, s, (T3x)(s)) ds

 - (T2y)(t)

\int \infty 

0

u (t, s, (T3y)(s)) ds

\bigm| \bigm| \bigm| \bigm| . (3.22)

Since

(T2x)(t)

\int \infty 

0

u (t, s, (T3x)(s)) ds - (T2y)(t)

\int \infty 

0

u (t, s, (T3y)(s)) ds

= [(T2x)(t) - (T2y)(t)]

\int \infty 

0

u (t, s, (T3x)(s)) ds

+ (T2y)(t)

\int \infty 

0

[u (t, s, (T3x)(s)) - u (t, s, (T3y)(s))]ds,

we get by (3.22) that

| (Tx)(t) - (Ty)(t)| \leq l1 | (T1x)(t) - (T1y)(t)| 

+ l2 | (T2x)(t) - (T2y)(t)| 
\int \infty 

0

| u (t, s, (T3x)(s))| ds

+ l2 | (T2y)(t)| 
\int \infty 

0

| u (t, s, (T3x)(s)) - u (t, s, (T3y)(s))| ds.

(3.23)

By using of the assumptions, from the estimate (3.23) we get that

| (Tx)(t) - (Ty)(t)| \leq l1 \| T1x - T1y\| + l2 \| T2x - T2y\| h(\| T3x\| )
\int \infty 

0

g(t, s)ds

+l2d2(\| y\| )
\int \infty 

0

k(s)\eta r0(| (T3x)(s) - (T3y)(s)| )ds

\leq l1 \| T1x - T1y\| + l2 \| T2x - T2y\| h(d3(\| x\| ))G

+l2d2(\| y\| )\eta r0 (\| (T3x - T3y\| )
\int \infty 

0

k(s)ds

\leq l1 \| T1x - T1y\| + l2 \| T2x - T2y\| h(d3(r0))G
+l2d2(r0)\eta r0 (\| (T3x - T3y\| ) \| k\| 1 (3.24)

for all t \in \BbbR +. Since the operators Ti (i = 1, 2, 3) are continuous for any fixed y \in Br0 ,
there exists the number \delta > 0 such that we have \| Tix  - Tiy\| \leq \varepsilon for all x \in Br0 with
\| x - y\| < \delta . In this case, (3.24) yields that

\| Tx - Ty\| \leq l1\varepsilon + l2h(d3(r0))G\varepsilon + l2d2(r0)\| k\| 1\eta r0(\varepsilon ) (3.25)

for all x \in Br0 with \| x  - y\| < \delta . By (3.25) and assumption (ix), we have that T is
continuous at the fixed arbitrary point y \in Br0 and thus T is continuous on the ball Br0 .

Further, we shall show that the operator F satisfies the Darbo condition on the ball
Br0 . In order to do this, let us take a nonempty subset X of the ball Br0 . Fix \varepsilon \geq 0,
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L > 0 and choose x \in X and t1, t2 \in [0, L] with | t1  - t2| \leq \varepsilon . Then,

| (Tx)(t1) - (Tx)(t2)| =
\bigm| \bigm| \bigm| \bigm| f \biggl( t1, (T1x)(t1), (T2x)(t1)

\int \infty 

0

u (t1, s, (T3x)(s)) ds

\biggr) 
 - f

\biggl( 
t2, (T1x)(t2), (T2x)(t2)

\int \infty 

0

u (t2, s, (T3x)(s)) ds

\biggr) \bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \bigm| f \biggl( t1, (T1x)(t1), (T2x)(t1)

\int \infty 

0

u (t1, s, (T3x)(s)) ds

\biggr) 
 - f

\biggl( 
t2, (T1x)(t1), (T2x)(t1)

\int \infty 

0

u (t1, s, (T3x)(s)) ds

\biggr) \bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| f \biggl( t2, (T1x)(t1), (T2x)(t1)

\int \infty 

0

u (t1, s, (T3x)(s)) ds

\biggr) 
 - f

\biggl( 
t2, (T1x)(t2), (T2x)(t1)

\int \infty 

0

u (t1, s, (T3x)(s)) ds

\biggr) \bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| f \biggl( t2, (T1x)(t2), (T2x)(t1)

\int \infty 

0

u (t1, s, (T3x)(s)) ds

\biggr) 
 - f

\biggl( 
t2, (T1x)(t2), (T2x)(t2)

\int \infty 

0

u (t2, s, (T3x)(s)) ds

\biggr) \bigm| \bigm| \bigm| \bigm| . (3.26)

Taking into account assumptions, we have by (3.26) that

| (Tx)(t1) - (Tx)(t2)| \leq \omega L
r0(f, \varepsilon ) + l1 | (T1x)(t1) - (T1x)(t2)| 

+ l2

\bigm| \bigm| \bigm| \bigm| (T2x)(t1)

\int \infty 

0

u (t1, s, (T3x)(s)) ds

 - (T2x)(t2)

\int \infty 

0

u (t2, s, (T3x)(s)) ds

\bigm| \bigm| \bigm| \bigm| 
= \omega L

r0(f, \varepsilon ) + l1 | (T1x)(t1) - (T1x)(t2)| 

+ l2

\bigm| \bigm| \bigm| \bigm| [(T2x)(t1) - (T2x)(t2)]

\int \infty 

0

u (t1, s, (T3x)(s)) ds

+(T2x)(t2)

\int \infty 

0

[u (t1, s, (T3x)(s)) - u (t2, s, (T3x)(s))] ds

\bigm| \bigm| \bigm| \bigm| 
\leq \omega L

r0(f, \varepsilon ) + l1 | (T1x)(t1) - (T1x)(t2)| 

+ l2 | (T2x)(t1) - (T2x)(t2)| 
\int \infty 

0

| u (t1, s, (T3x)(s))| ds

+ l2 | (T2x)(t2)| 
\int \infty 

0

| u (t1, s, (T3x)(s)) - u (t2, s, (T3x)(s))| ds

\leq \omega L
r0(f, \varepsilon ) + l1\omega 

L(T1x, \varepsilon ) + l2\omega 
L(T2x, \varepsilon )h(\| T3x\| )

\int \infty 

0

g(t1, s)ds

+ l2d2(\| x\| )
\int \infty 

0

\phi r0(| t1  - t2| )p(s)ds

\leq \omega L
r0(f, \varepsilon ) + l1\omega 

L(T1x, \varepsilon ) + l2\omega 
L(T2x, \varepsilon )h(d3(\| x\| ))G

+ l2d2(\| x\| )\phi r0(| t1  - t2| )
\int \infty 

0

p(s)ds

\leq \omega L
r0(f, \varepsilon ) + l1\omega 

L(T1x, \varepsilon ) + l2h(d3(r0))G\omega L(T2x, \varepsilon )

+ l2d2(r0)\| p\| 1\phi r0(\varepsilon )
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which implies that

\omega L(Tx, \varepsilon ) \leq \omega L
r0(f, \varepsilon ) + l1\omega 

L(T1x, \varepsilon ) + l2h(d3(r0))G\omega L(T2x, \varepsilon )

+l2d2(r0)\| p\| 1\phi r0(\varepsilon ), (3.27)

where,

\omega L
r0(f, \varepsilon ) = \mathrm{s}\mathrm{u}\mathrm{p} \{ | f(t1, x1, y) - f(t2, x1, y)| : t1, t2 \in [0, L], x1 \in [ - d1(r0), d1(r0)] ,

y \in [ - d2(r0)h(d3(r0))G, d2(r0)h(d3(r0))G] and | t1  - t2| \leq \varepsilon \} ,
\omega L(Tix, \varepsilon ) = \mathrm{s}\mathrm{u}\mathrm{p}\{ | (Tix)(t1) - (Tix)(t2)| : t1, t2 \in [0, L] and | t1  - t2| \leq \varepsilon \} 

for i = 1, 2. By (3.27) we get that

\omega L(TX, \varepsilon ) \leq \omega L
r0(f, \varepsilon ) + l1\omega 

L(T1X, \varepsilon ) + l2h(d3(r0))G\omega L(T2X, \varepsilon )

+l2d2(r0)\| p\| 1\phi r0(\varepsilon ). (3.28)

By uniform continuity of the function f on the set
[0, L]\times [ - d1(r0), d1(r0)]\times [ - d2(r0)h(d3(r0))G, d2(r0)h(d3(r0))G], it is easily deduced that
\omega L
r0(f, \varepsilon ) \rightarrow 0 as \varepsilon \rightarrow 0. Also, by (viii), \phi r0(\varepsilon ) \rightarrow 0 as \varepsilon \rightarrow 0. Thus, (3.28) yields that

\omega L
0 (TX) \leq l1\omega 

L
0 (T1X) + l2h(d3(r0))G\omega L

0 (T2X). (3.29)

If we take limit as L \rightarrow \infty , we have by (3.29) that

\omega 0(TX) \leq l1\omega 0(T1X) + l2h(d3(r0))G\omega 0(T2X). (3.30)

Further let us take a nonempty subset X of the ball Br0 . From estimate (3.23) and the
conditions (iii) and (iv), it is shown that

diam(TX)(t) \leq l1diam(T1X)(t) + l2diam(T2X)(t)h(\| T3x\| )
\int \infty 

0

g(t, s)ds

+ l2d2(\| y\| ) [h(\| T3x\| ) + h(\| T3y\| )]
\int \infty 

0

g(t, s)ds

\leq l1diam(T1X)(t) + l2diam(T2X)(t)h(d3(\| x\| ))q(t)
+ l2d2(\| y\| ) [h(d3(\| x\| )) + h(d3(\| y\| ))] q(t)
\leq l1diam(T1X)(t) + l2diam(T2X)(t)h(d3(r0))q(t)

+ 2l2d2(r0)h(d3(r0))q(t) (3.31)

for all t \in \BbbR +. If we take limit superior as t \rightarrow \infty in (3.31) by considering \mathrm{l}\mathrm{i}\mathrm{m}t\rightarrow \infty q(t) = 0,
we have the inequality:

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
t\rightarrow \infty 

diam(TX)(t) \leq l1 \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
t\rightarrow \infty 

diam(T1X)(t). (3.32)

By linking (2.16), (3.30) and (3.32), we derive by assumption (vi) and the inequality
\omega 0(X) \leq \mu (X) that

\mu (TX) \leq l1\mu (T1X) + l2\vargamma r0h(d3(r0))G\omega 0(X)

\leq l1mr0\mu (X) + l2\vargamma r0h(d3(r0))G\mu (X)

= [l1mr0 + l2\vargamma r0h(d3(r0))G]\mu (X). (3.33)

Now let us observe that by assumption (vii) and (3.33) we have that T is a contraction
with respect to the measure of noncompactness \mu . By Theorem 2.3 the operator T has at
least one fixed point x in the ball Br0 . Obviously, every function x = x(t) being a fixed
point of the operator T is a solution of (1.1). Further, keeping in mind Remark 2.4, we
conclude that the set FixT of all fixed points of the operator T belonging to the ball Br0

is a member of the ker\mu . Hence, in view of the description of the ker\mu we infer that all
of solutions of (1.1) belonging to the ball Br0 are asymptotically stable on \BbbR +. This step
completes the proof of our theorem. \square 
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4. Examples

Example 4.1. Consider the following integral equation:

x(t) =

\mathrm{s}\mathrm{i}\mathrm{n}

\biggl( 
tx(t)

\int 1
1+t

0 \mathrm{s}\mathrm{i}\mathrm{n}x(\tau )d\tau + \pi 
2

\biggr) 
7

\biggl( 
1 +

\bigm| \bigm| \bigm| \bigm| x(t) \int 1
1+t

0 \mathrm{s}\mathrm{i}\mathrm{n}x(\tau )d\tau 

\bigm| \bigm| \bigm| \bigm| \biggr) (1 + t)

+
1

8
\Bigl( \bigm| \bigm| \bigm| x2(t)

\int \infty 
0

x3(s)+1
(t+1)(s2+1)ds

\bigm| \bigm| \bigm| + 1
\Bigr) , (4.34)

where t \in \BbbR +. Notice that (4.34) is a special case of (1.1) if we put

f(t, x, y) =
\mathrm{s}\mathrm{i}\mathrm{n}
\bigl( 
tx+ \pi 

2

\bigr) 
7 (1 + | x| ) (1 + t)

+
1

8 (| y| + 1)
,

(T1x)(t) = x(t)

\int 1
1+t

0

\mathrm{s}\mathrm{i}\mathrm{n}x(\tau )d\tau , (T2x)(t) = x2(t), (T3x)(t) = x3(t)

and u(t, s, x) = x+1
(t+1)(s2+1) .

It is verified that the assumptions of Theorem 3.3 are satisfied.
Indeed, f is continuous on \BbbR + \times \BbbR \times \BbbR and the function t \rightarrow f(t, 0, 0) = 1

7(1+t) +
1
8 is

a member of the space BC(\BbbR +,\BbbR ).
Since\bigm| \bigm| f(t, x1, y) - f(t, x2, y)

\bigm| \bigm| = 1

7 (1 + t)

\bigm| \bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n}
\bigl( 
tx1 +

\pi 
2

\bigr) 
1 + | x1| 

 - 
\mathrm{s}\mathrm{i}\mathrm{n}
\bigl( 
tx2 +

\pi 
2

\bigr) 
1 + | x2| 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 1

7(1 + t)(1 + | x1| )(1 + | x2| )

\Bigl( 
| 1 + | x2|  - 1 - | x1| | 

\bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n}\Bigl( tx1 +
\pi 

2

\Bigr) \bigm| \bigm| \bigm| 
+(1 + | x1| )

\bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n}\Bigl( tx1 +
\pi 

2

\Bigr) 
 - \mathrm{s}\mathrm{i}\mathrm{n}

\Bigl( 
tx2 +

\pi 

2

\Bigr) \bigm| \bigm| \bigm| \Bigr) 
\leq 1

7
| x1  - x2| +

1

7(1 + t)(1 + | x1| )(1 + | x2| )
(1 + | x1| )| x1  - x2| t

\leq 2

7
| x1  - x2| 

and

| f(t, x, y1) - f(t, x, y2)| =
1

8

\bigm| \bigm| \bigm| \bigm| 1

| y1| + 1
 - 1

| y2| + 1

\bigm| \bigm| \bigm| \bigm| \leq 1

8
| y1  - y2| 

for all t \in \BbbR + and x, x1, x2, y, y1, y2 \in \BbbR , we can take the constants l1 and l2 satisfying
(ii) as l1 = 2

7 and l2 = 1
8 .

T1, T2 and T3 are the continuous operators on the space BC(\BbbR +,\BbbR ). Further for all
x \in BC(\BbbR +,\BbbR ) and t \in \BbbR + the inequalities

| (T1x)(t)| =

\bigm| \bigm| \bigm| \bigm| \bigm| x(t)
\int 1

1+t

0

\mathrm{s}\mathrm{i}\mathrm{n}x(\tau )d\tau 

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 1

1 + t
\| x\| \leq \| x\| ,

| (T2x)(t)| \leq | x2(t)| \leq \| x\| 2

and

| (T3x)(t)| \leq | x3(t)| \leq \| x\| 3

hold. So, the assumption (iii) is satisfied with d1(t) = t, d2(t) = t2 and d3(t) = t3.
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Now notice that the function u is continuous on the set \BbbR + \times \BbbR + \times \BbbR . Moreover, we
get that

| u(t, s, x)| =
\bigm| \bigm| \bigm| \bigm| x+ 1

(t+ 1)(s2 + 1)

\bigm| \bigm| \bigm| \bigm| \leq | x| + 1

(t+ 1)(s2 + 1)

for all t, s \in \BbbR + and x \in \BbbR . Thus, according to the assumption (iv) we may put
g(t, s) = 1

(t+1)(s2+1) and h(t) = t+ 1. Further we get

q(t) =

\int \infty 

0

g(t, s)ds =

\int \infty 

0

ds

(t+ 1)(s2 + 1)
=

\pi 

2(t+ 1)

and, obviously, we have that

G = \mathrm{s}\mathrm{u}\mathrm{p} \{ q(t) : t \geq 0\} =
\pi 

2

and q(t) \rightarrow 0 as t \rightarrow \infty .
Now if we consider the values d1(r) = r, d2(r) = r2 and d3(r) = r3 together with

F = \mathrm{s}\mathrm{u}\mathrm{p} \{ | f (t, 0, 0)| : t \geq 0\} = 15
56 , the inequality

l1d1(r) + l2d2(r)h(d3(r))G+ F \leq r

in the assumption (v) takes the following form:

2r

7
+

r2

8

\pi 

2
(r3 + 1) +

15

56
\leq r. (4.35)

The number r0 chosen as 0.429816 \leq r0 < 0.962102 satisfies (4.35).
Apart from this, fixing a nonempty and bounded subset X of the ball Br0 , let x \in X,

\varepsilon \geq 0, L > 0 and t, s \in [0, L] such that | t - s| \leq \varepsilon .
Without loss of generality, we assume that t \leq s. So,

(T1x)(t) - (T1x)(s) = x(t)

\int 1
1+t

0

\mathrm{s}\mathrm{i}\mathrm{n}x(\tau )d\tau  - x(s)

\int 1
1+s

0

\mathrm{s}\mathrm{i}\mathrm{n}x(\tau )d\tau 

= (x(t) - x(s))

\int 1
1+t

0

\mathrm{s}\mathrm{i}\mathrm{n}x(\tau )d\tau 

+ x(s)

\Biggl( \int 1
1+t

0

\mathrm{s}\mathrm{i}\mathrm{n}x(\tau )d\tau  - 
\int 1

1+s

0

\mathrm{s}\mathrm{i}\mathrm{n}x(\tau )d\tau 

\Biggr) 

= (x(t) - x(s))

\int 1
1+t

0

\mathrm{s}\mathrm{i}\mathrm{n}x(\tau )d\tau + x(s)

\Biggl( \int 1
1+t

1
1+s

\mathrm{s}\mathrm{i}\mathrm{n}x(\tau )d\tau 

\Biggr) 
which yields that

| (T1x)(t) - (T1x)(s)| \leq 
1

1 + t
| x(t) - x(s)| + | x(s)| 

\bigm| \bigm| \bigm| \bigm| 1

1 + t
 - 1

1 + s

\bigm| \bigm| \bigm| \bigm| 
\leq | x(t) - x(s)| + r0| t - s| (4.36)

for all t, s \in [0, L] such that | t - s| \leq \varepsilon . Besides, it is clear that

| (T2x)(t) - (T2x)(s)| =
\bigm| \bigm| x2(t) - x2(s)

\bigm| \bigm| 
= | x(t) + x(s)| | x(t) - x(s)| 
\leq 2r0| x(t) - x(s)| (4.37)

for all t, s \in [0, L] such that | t - s| \leq \varepsilon .
From estimates (4.36), (4.37) and in the view of the (2.15), we get that

\omega 0(T1X) \leq \omega 0(X), (4.38)
\omega 0(T2X) \leq 2r0\omega 0(X). (4.39)



ASYMPTOTICALLY STABLE SOLUTIONS 69

Inequality (4.39) implies that the second inequality of assumption (vi) is satisfied with
the constant \vargamma r0 = 2r0.

Furthermore, the estimate

| (T1x)(t) - (T1y)(t)| =

\bigm| \bigm| \bigm| \bigm| \bigm| x(t)
\int 1

1+t

0

\mathrm{s}\mathrm{i}\mathrm{n}x(\tau )d\tau  - y(t)

\int 1
1+t

0

\mathrm{s}\mathrm{i}\mathrm{n} y(\tau )d\tau 

\bigm| \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| (x(t) - y(t))

\int 1
1+t

0

\mathrm{s}\mathrm{i}\mathrm{n}x(\tau )d\tau 

+y(t)

\int 1
1+t

0

(\mathrm{s}\mathrm{i}\mathrm{n}x(\tau ) - \mathrm{s}\mathrm{i}\mathrm{n} y(\tau )) d\tau 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq | x(t) - y(t)| 

\int 1
1+t

0

| \mathrm{s}\mathrm{i}\mathrm{n}x(\tau )| d\tau 

+ | y(t)| 
\int 1

1+t

0

| \mathrm{s}\mathrm{i}\mathrm{n}x(\tau ) - \mathrm{s}\mathrm{i}\mathrm{n} y(\tau )| d\tau 

\leq 1

1 + t
\| x - y\| + 1

1 + t
\| y\| \| x - y\| 

\leq 1

1 + t

\bigl( 
2r20 + 2r0

\bigr) 
(4.40)

holds for all x, y \in X and t \in \BbbR +. Using (4.40), we have the equality:

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
t\rightarrow \infty 

diam (T1X)(t) = 0. (4.41)

From (2.16), (4.38) and (4.41), we get that:

\mu (T1X) \leq \omega 0(X) \leq \mu (X). (4.42)

So, we derive by (4.42) that the first inequality of assumption (vi) is satisfied with
mr0 = 1.

The inequality of assumption (vii) is equivalent to:
2

7
+

2r0
8

\pi 

2
(r30 + 1) < 1. (4.43)

The inequality (4.43) holds for 0.429816 \leq r0 < 0.962102.
Additionally, for all t1, t2, s \in \BbbR + and x \in \BbbR with | x| \leq r0 we have that:

| u(t1, s, x) - u(t2, s, x)| =

\bigm| \bigm| \bigm| \bigm| x+ 1

(t1 + 1)(s2 + 1)
 - x+ 1

(t2 + 1)(s2 + 1)

\bigm| \bigm| \bigm| \bigm| 
=

| x+ 1| 
s2 + 1

\bigm| \bigm| \bigm| \bigm| 1

t1 + 1
 - 1

t2 + 1

\bigm| \bigm| \bigm| \bigm| 
\leq | x| + 1

s2 + 1

| t1  - t2| 
(t1 + 1)(t2 + 1)

\leq r0 + 1

s2 + 1
| t1  - t2| .

If we put \phi r0(t) = t and p(s) = r0+1
s2+1 , the assumption (viii) is satisfied.

Finally, for all t, s \in \BbbR + and x, y \in \BbbR with | x| \leq r0, | y| \leq r0, we get that:

| u(t, s, x) - u(t, s, y)| =
\bigm| \bigm| \bigm| \bigm| x+ 1 - y  - 1

(t+ 1)(s2 + 1)

\bigm| \bigm| \bigm| \bigm| \leq | x - y| 
1 + s2

.

If we take \eta r0(t) = t and k(s) = 1
s2+1 , the assumption (ix) is satisfied.

Since all of the assumptions of Theorem 3.3 are fullfilled, we deduce that the integral
equation (4.34) has at least one solution belonging to the ball Br0 of the space BC(\BbbR +,\BbbR ).
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Taking into account Remark 2.4 and the measure of noncompactness \mu given by (2.16),
we infer easily that any solutions of (4.34) which belong to the ball Br0 are asymptotically
stable on \BbbR + as defined in Definition 2.2.

Example 4.2. Let us consider the following integral equation:

x(t) =
t

3(1 + t)
+

1

14
\mathrm{l}\mathrm{n} (e+ \mathrm{e}\mathrm{x}\mathrm{p} ( - | x(t)| ))

+
1

5
\mathrm{c}\mathrm{o}\mathrm{s}

\left(   \sqrt{} x2(t) + 2

\int \infty 

0

\Bigl( \int \mathrm{s}\mathrm{i}\mathrm{n} s

0
x(\tau )d\tau 

\Bigr) 3
\mathrm{e}\mathrm{x}\mathrm{p}(t+ s+ 1)

ds

\right)   , (4.44)

where t \in \BbbR +. Observe that

f(t, x, y) =
t

3(1 + t)
+

1

14
\mathrm{l}\mathrm{n} (e+ | x| ) + 1

5
\mathrm{c}\mathrm{o}\mathrm{s} y,

(T1x)(t) = \mathrm{e}\mathrm{x}\mathrm{p} ( - | x(t)| ) , (T2x)(t) =
\sqrt{} 
x2(t) + 2, (T3x)(t) =

\int \mathrm{s}\mathrm{i}\mathrm{n} t

0

x(\tau )d\tau 

and u(t, s, x) = x3

\mathrm{e}\mathrm{x}\mathrm{p}(t+s+1) .
It is clear that the function f : \BbbR + \times \BbbR \times \BbbR \rightarrow \BbbR is continuous and the function

t \rightarrow f(t, 0, 0) = t
3(1+t) +

19
70 is a member of the space BC(\BbbR +,\BbbR ).

Without loss of generality we can suppose that | x1| < | x2| . So, there exists a number
\xi \in (| x1| , | x2| ) satisfying the inequality

| f(t, x1, y) - f(t, x2, y)| =
1

14
| \mathrm{l}\mathrm{n} (e+ | x1| ) - \mathrm{l}\mathrm{n}(e+ | x2| )| 

\leq 1

14(e+ \xi )
| x1  - x2| (4.45)

for all t \in \BbbR + and y \in \BbbR . Taking into account (4.45), we have that

| f(t, x1, y) - f(t, x2, y)| \leq 
1

14
| x1  - x2| 

for all t \in \BbbR + and x1, x2, y \in \BbbR .
Besides, we can easily see that the inequality

| f(t, x, y1) - f(t, x, y2)| =
1

5
| \mathrm{c}\mathrm{o}\mathrm{s} y1  - \mathrm{c}\mathrm{o}\mathrm{s} y2| \leq 

1

5
| y1  - y2| 

holds for all t \in \BbbR + and x, y1, y2 \in \BbbR .
Therefore, we can chose the nonnegative constants l1 and l2 satisfying the condition

(ii) of Theorem 3.3 as l1 = 1
14 and l2 = 1

5 .
It is clear that T1, T2 and T3 are the continuous operators on the space BC(\BbbR +,\BbbR ).

Moreover for all x \in BC(\BbbR +,\BbbR ) and t \in \BbbR +, we get that:

| (T1x)(t)| = | \mathrm{e}\mathrm{x}\mathrm{p} ( - | x(t)| )| \leq 1,

| (T2x)(t)| =
\bigm| \bigm| \bigm| \sqrt{} x2(t) + 2

\bigm| \bigm| \bigm| \leq \sqrt{} \| x\| 2 + 2

and

| (T3x)(t)| =

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int \mathrm{s}\mathrm{i}\mathrm{n} t

0

x(\tau )d\tau 

\bigm| \bigm| \bigm| \bigm| \bigm| \leq | \mathrm{s}\mathrm{i}\mathrm{n} t| \| x\| \leq \| x\| .

Hence the assumption (iii) is satisfied with d1(t) = 1, d2(t) =
\surd 
t2 + 2 and d3(t) = t.

The function u(t, s, x) is continuous on the set \BbbR + \times \BbbR + \times \BbbR . Further, it is clear that

| u(t, s, x)| =
\bigm| \bigm| \bigm| \bigm| x3

\mathrm{e}\mathrm{x}\mathrm{p}(t+ s+ 1)

\bigm| \bigm| \bigm| \bigm| = | x| 3

\mathrm{e}\mathrm{x}\mathrm{p}(t+ s+ 1)
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for all t, s \in \BbbR + and x \in \BbbR . Thus the functions appearing in the assumption (iv) have
the form g(t, s) = \mathrm{e}\mathrm{x}\mathrm{p}( - t - 1) \mathrm{e}\mathrm{x}\mathrm{p}( - s) and h(t) = t3. Clearly we have that:

q(t) =

\int \infty 

0

g(t, s)ds = \mathrm{e}\mathrm{x}\mathrm{p}( - t - 1)

\int \infty 

0

\mathrm{e}\mathrm{x}\mathrm{p}( - s)ds = \mathrm{e}\mathrm{x}\mathrm{p}( - t - 1),

G = \mathrm{s}\mathrm{u}\mathrm{p} \{ | q(t)| : t \geq 0\} = \mathrm{s}\mathrm{u}\mathrm{p} \{ \mathrm{e}\mathrm{x}\mathrm{p}( - t - 1) : t \geq 0\} =
1

e
and q(t) \rightarrow 0 as t \rightarrow \infty .

F = \mathrm{s}\mathrm{u}\mathrm{p} \{ | f (t, 0, 0)| : t \geq 0\} = 127
210 and the assumption (v) which has the form:

1

14
+

\surd 
r2 + 2 r3

5e
+

127

210
\leq r. (4.46)

By computation we see that the number r0 \in [0.719716, 1.92146] is the solution of the
inequality (4.46).

Moreover the operators T1 and T2 satisfy the assumption (vi). Indeed for \varepsilon \geq 0, L > 0,
\| x\| \leq r0 and t, s \in [0, L] such that | t - s| \leq \varepsilon .

Without loss of generality, assuming that | x(t)| < | x(s)| , we obtain that

| (T1x)(t) - (T1x)(s)| = | \mathrm{e}\mathrm{x}\mathrm{p} ( - | x(t)| ) - \mathrm{e}\mathrm{x}\mathrm{p} ( - | x(s)| )| 

=
| | x(t)|  - | x(s)| | 

\mathrm{e}\mathrm{x}\mathrm{p} \rho 

\leq | x(t) - x(s)| , (4.47)

where \rho \in (| x(t)| , | x(s)| ).
Besides, without loss of generality, assuming that

x(t) < x(s), we get that

| (T2x)(t) - (T2x)(s)| =
\bigm| \bigm| \bigm| \sqrt{} x2(t) + 2 - 

\sqrt{} 
x2(s) + 2

\bigm| \bigm| \bigm| 
=

| x(t) - x(s)| 2| \xi | 
2
\sqrt{} 

\xi 2 + 2

\leq | x(t) - x(s)| , (4.48)

where \xi \in (x(t), x(s)).
In the view of (2.15), we have by (4.47) and (4.48) that:

\omega 0(T1X) \leq \omega 0(X) (4.49)

and

\omega 0(T2X) \leq \omega 0(X). (4.50)

Fixing a nonempty and bounded subset X of the ball Br0 , for x, y \in X, by taking y(t)
and (T1y)(t) instead of x(s) and (T1x)(s) in (4.47), respectively, we get that:

| (T1x)(t) - (T1y)(t)| \leq | x(t) - y(t)| . (4.51)

Using (4.51), we have that:

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
t\rightarrow \infty 

diam(T1X)(t) \leq \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
t\rightarrow \infty 

diamX(t). (4.52)

From (2.16), (4.49) and (4.52), we derive that:

\mu (T1X) \leq \mu (X). (4.53)

So, it is shown by (4.53) and (4.50) that the inequalities of assumption (vi) are satisfied
with the constants mr0 = 1 and \vargamma r0 = 1.

Next we have that the inequality of assumption (vii) corresponds to

1

14
+

r30
5e

< 1 (4.54)
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and (4.54) holds for r0 \in [0.719716, 1.92146].
Further, without loss of generality, we assume that t1 < t2, for all t1, t2, s \in \BbbR + and

x \in \BbbR with | x| \leq r0, we have that

| u(t1, s, x) - u(t2, s, x)| =

\bigm| \bigm| \bigm| \bigm| x3

\mathrm{e}\mathrm{x}\mathrm{p}(t1 + s+ 1)
 - x3

\mathrm{e}\mathrm{x}\mathrm{p}(t2 + s+ 1)

\bigm| \bigm| \bigm| \bigm| 
\leq x3

\mathrm{e}\mathrm{x}\mathrm{p}(s+ 1)

\bigm| \bigm| \bigm| \bigm| 1

\mathrm{e}\mathrm{x}\mathrm{p}(t1)
 - 1

\mathrm{e}\mathrm{x}\mathrm{p}(t2)

\bigm| \bigm| \bigm| \bigm| 
\leq x3

\mathrm{e}\mathrm{x}\mathrm{p}(s+ 1)

| \mathrm{e}\mathrm{x}\mathrm{p}(t2) - \mathrm{e}\mathrm{x}\mathrm{p}(t1)| 
\mathrm{e}\mathrm{x}\mathrm{p}(t1 + t2)

\leq x3

\mathrm{e}\mathrm{x}\mathrm{p}(s+ 1)

| t2  - t1| \mathrm{e}\mathrm{x}\mathrm{p}(\xi )
\mathrm{e}\mathrm{x}\mathrm{p}(t1 + t2)

\leq r30
\mathrm{e}\mathrm{x}\mathrm{p}(s+ 1)

| t2  - t1| ,

where \xi \in (t1, t2). If we put \phi r0(t) = r30 t and p(s) = 1
\mathrm{e}\mathrm{x}\mathrm{p}(s+1) , the assumption (viii) is

satisfied.
Finally, it is clear that the inequality

| u(t, s, x) - u(t, s, y)| =

\bigm| \bigm| \bigm| \bigm| x3

\mathrm{e}\mathrm{x}\mathrm{p}(t+ s+ 1)
 - y3

\mathrm{e}\mathrm{x}\mathrm{p}(t+ s+ 1)

\bigm| \bigm| \bigm| \bigm| 
\leq 

| x - y| 
\bigm| \bigm| x2 + xy + y2

\bigm| \bigm| 
\mathrm{e}\mathrm{x}\mathrm{p}(t+ s+ 1)

\leq 3r20| x - y| 
\mathrm{e}\mathrm{x}\mathrm{p}(s+ 1)

holds for all t, s \in \BbbR + and x, y \in \BbbR with | x| \leq r0, | y| \leq r0. If we take \eta r0(t) = 3r20t and
k(s) = 1

\mathrm{e}\mathrm{x}\mathrm{p}(s+1) , the assumption (ix) is satisfied.
The result follows from Theorem 3.3.

Remark 4.3. The nonlinear integral equations (4.34) and (4.44) can’t be derived from
the integral equations (1.2)-(1.14) examined in [1, 4–6,10,15,17,20,21,23,26–33].
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