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ASYMPTOTICALLY STABLE SOLUTIONS OF A NONLINEAR
INTEGRAL EQUATION

ISMET OZDEMIR

ABsTrACT. The purpose of this paper is to study the existence and asymptotical
stability of solutions of some functional integral equations which include a number
of classical nonlinear integral equations as special cases. Our investigations will be
carried out in the space of continuous and bounded functions on an unbounded
interval. We use the technique associated with the measure of noncompactness and
a suitable fixed point theorem of Darbo type. The applicability of the results is
illustrated by examples showing the difference between our main result and some
previous results.

Mertoro 11i€l cTaTTi € JJOCIIIIXKEHHST ICHY BAHHST Ta AaCUMIITOTUYHOI CTIKOCTI PO3B’A3KiB
iHTerpajbHO (PYHKIIOHAJILHUX DIBHSAHB, CHELIAJBHUMH BHUIAJKAMU SKUX € HU3KA
KJIACUYHUX HeJIHINHUX iHTerpasnbHuxX piBHsAHb. Hami mociiizkeHHs BeayThCs B
pocTopax 0OMeXKEHUX HellepepBHUX (DYHKIINH HA HeCKIHYeHHOMY iHTepBaJii. Bukopu-
CTOBYETBHCSI TE€XHiKa Mip HEKOMIIAKTHOCTI Ta T€OpPEMH IIPO HEPYXOMY TOYKY THUILY
Jap6o. Pesynbraru imocTpyioTbCcs NPUKIIaLaMu, [0 BKa3yIOTh Ha BiAMiHHOCTI 3
JEeSAKAMU TOIePeTHIMU Pe3yIbTaTaMHU.

1. INTRODUCTION

The theory of integral equations is an important part of nonlinear analysis and it is
frequently applicable in engineering, mechanics, physics, economics, optimization, queing
theory and so on. The theory of nonlinear integral equations is rapidly developing
with the help of tools of nonlinear functional analysis, topology and fixed-point theory
(see [1,4-8,10,13-15,17,20,21,23,24, 26-33]).

In this paper, we will investigate the existence of asymptotically stable solutions of the
following nonlinear functional integral equation

x(t)=f (t, (Thz)(t), (Tox)(t) /Ooou(t,s, (Ts5z)(s)) ds) , teRy, (1.1)

where the functions f, u and the operators T;, (i = 1,2,3) are known, while x = x(¢) is
an unknown function. It is clear that the equation (1.1) includes the equations (1.2)-(1.14)
given the following as special cases.

El-Abd [17] proved an existence theorem on monotonic solutions for the nonlinear
functional integral equation of convolution type:

o) = i (t, / k(= 8)fa (5, (6(5)) ds) teR,. (1.2)

Khosravi et al. [23] studied the existence of solutions for the following class of nonlinear
functional integral equations of convolution type:

xz(t) = ft,z(t)) + /OOO k(t —s)(Qx)(s)ds, t € Ry. (1.3)
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Agarwal and O’Regan [1] give the conditions on the existence of the solutions for the
nonlinear integral equation:

z(t) = /000 k(t,s)f (s,z(s))ds, t € Ry. (1.4)

Meehan and O’Regan [26-28] discussed the existence of the solutions for the nonlinear
integral equations:

o) = h(O)+ [ k(e (5. 0(9) s, teR,,  (15)
z(t) = h(t) + /L/OOO E(t,s)f (s,x(s))ds, teRy, (1.6)
z(t) = h(t) + /000 E(t, $)[f (z(s)) + g(x(s))]ds, teR,. (1.7)

Salem [33] examined the existence of solutions of the quadratic integral equation:

w(t) = H(t, x(t)) + (1) /Ooo k(t,s)e(s)(f(x(s)) + g(x(s)))ds,  teRy.  (1.8)

Karoui et al. [21] researched the existence of the solution of nonlinear quadratic integral
equation:

(t) = a(t) + 2(t) /OOO k(t,$)h (s, 2(s)) ds, € R,. (1.9)

Banas et al. [5] studied the existence and asymptotic stability of the solutions for the
nonlinear integral equation:

x(t) = a(t) + g(t, x(t)) /000 K(t,s)h(s,x(s)) ds, teRy. (1.10)

Banas and Poludniak [4] investigated the monotonic solutions for the nonlinear integral
equation:

xz(t) = g(t) + /OOC u (t,s,x(s))ds, teRy. (1.11)

Banas and Olszowy [6], Cabellaro et al. [10], Darwish et al. [15], Karoui et al. [21] and
Olszowy [29-31] studied the existence of the solutions for the Urysohn integral equation
defined on unbounded interval:

x(t) = a(t) + f(t,x(t))/ u(t,s,xz(s))ds, teRy. (1.12)
0
Olszowy [29] investigated the conditions on the existence of solutions of the equation:
xz(t)=F (t,x(t),/ u(t,s,x(s))ds) , teR,. (1.13)
0

Tlhan and Ozdemir [20,32] examined the nonlinear integral equation of the form:

z(t) = (Thz)(t) + (Tex)(t) /000 u(t, s, z(s))ds, teR,. (1.14)

It is worthwhile mentioning that equation (1.1) appears very often in a lot of applications
to real world problems. For example, if

f(tam; y) = fl(ta y)7 u(ta 5,1') = k(t - S)fQ(Sa‘T)’ (Tlx)(t) = 07 (TQ‘T)(t) =1
and

(Tsz)(t) = 2 (¢(1))
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then (1.1) becomes the nonlinear integral equation (1.2). The equation (1.2) arises very
often in applications of integral equations in many branches of mathematical physics
(see [3,17,18,25]). If

f(tv T, y) = a(t) + Y, u(t’ S, CC) = K(t, S)h (57 x) ) (Tlm)(t) =0, (TQx)(t) =g (ta x(t))

and (T32)(t) = x(t), then (1.1) reduces to the nonlinear quadratic integral equation (1.10).
The integral equation (1.10) is applied in the theory of radiative transfer and the theory
of neutron transport as well in the kinetic theory of gases (see [5,9,11,12,19,22]). In the
cace where

fta,y) =gt) +y, (Ta)t) =0, (Ta)t) =1, (Taz)t) = 2(b),

(1.1) has the form (1.11) which is a well-known Urysohn integral equation (see [4]).

Using the technique of a suitable measure of noncompactness, we prove a theorem on
the existence and asymptotically stable of the solutions of the equation (1.1). We give
some examples satisfying the conditions given in this paper. The approach applied in
this paper depends on extending and generalizing of the methods and tools used in the
study of some nonlinear integral equations which are presented above. It is worthwhile
mentioning that the class of integral equations considered in this paper are more general
then those investigated up to now.

2. NOTATIONS AND PRELIMINARIES

In this section, we give a collection of auxiliary facts which will be needed in the
sequel. Assume that (E,|.||) is a real Banach space with zero element 6 . Let B(x,r)
denote the closed ball centered at x and with radius r. The symbol B, stands for the
ball B(#,r). If X is a subset of E, then X and ConvX denote the closure and convex
closure of X, respectively. With the symbols AX and X + Y, we denote the standard
algebraic operations on sets. Moreover, we denote by 9 g the family of all nonempty and
bounded subsets of E and Mg its subfamily consisting of all relatively compact subsets.
The definition of the concept of a measure of noncompactness is presented below (see [2]).

Definition 2.1. A function p: M — R4 = [0, 00) is said to be a measure of noncom-
pactness in F if it satisfies following conditions:

(1) The family kerpu = {X € Mg : u(X) = 0} is nonempty and ker p C Ng.

(2) X CY = pu(X) <puY).

(3) #(X) = u(ConvX) = u(X).

(4) pOX + (1 =NY) < Au(X)+ (1= 1)pY), for X €[0,1].

(5) If {X,} is a sequence of nonempty, bounded, closed subsets of the set E such that
Xn+1 C Xpy (n=1,2,...) and lim, o (X)) = 0, then the set Xoo = NS, X,
is nonempty.

In the sequel, we will work in the Banach space BC' (R, R) consisting of real functions
defined, continuous and bounded on R . This space is endowed with the standard norm
o]l = supf(t)| : t € R, }.

We will use a measure of noncompactuness in the space BC(R,R). In order to define
this measure let us fix a nonempty and bounded subset X of BC(Ry,R). For z € X,
e >0and L > 0 denoted by w(z, ) the modulus of continuity of function z, i.e.,

wh(z,e) = sup{|z(s) — z(t)| : t,s € [0, L] and |t — 5| < &}.
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Further let us put

wh(X,e) = sup{wl(z,e) : x € X},

wf(X) = lim wh (X, ¢),
e—0
wo(X) :ngxgowg(x). (2.15)

Moreover, let us denote

and
diam X (t) = sup{|z(t) — y(t)| : z,y € X}

for any fixed ¢t € Ry. With help of the above mappings we define the following measure
of noncompactness in BC(R,R) [2]:
#(X) = wo(X) + lim sup diam X (¢). (2.16)
t—o00

The kernel of u consists of all nonempty and bounded subsets X of BC(Ry,R) such
that functions from X are locally equicontinuous on R and the thickness of the bundle
formed by functions from X tends to zero at infinity.

Now we recall definitions of the concepts of local attractivity and asymptotic stability
of the solutions of operator equations. Let us assume that 2 is a nonempty subset of the
space BC(R4,R) and F be an operator defined on €2 with values in BC(R4,R). Let us
consider the operator equation of the form:

2(t) = (Fz)(t), t € R,. (2.17)

Definition 2.2. We say that solutions of (2.17) are locally attractive if there exist an
xo € BC(R4,R) and an r > 0 such that for all solutions = z(t) and y = y(¢) of (2.17)
belonging to B(xzg,r) N we have that

Jim (x(t) — y(t)) = 0.

In the case when limit is uniform with respect to the set B(xg,r) N2, that is, when for
each € > 0 there exists L > 0 such that

lz(t) —y(t)] < e

for all x,y € B(xp,r) N Q being solutions of (2.17) and for all ¢ > L, we will say that
solutions of (2.17) are uniformly locally attractive (or equivalently asymptotically stable)
on R4, [16].

Finally, we present the following fixed-point theorem which we will need later, [2].

Theorem 2.3. Let Q be a nonempty, bounded, closed and convex subset of the Banach
space E and let

T:Q—=Q

be a continuous transformation such that p(TX) < cu(X) for any nonempty subset X of
Q, where u is a measure of noncompactness in E and ¢ € [0,1) is a constant. Then T
has a fized point in set Q.

Remark 2.4. Denote by Fix T the set of all fixed points of the operator T belonging to
Q. Tt can be readily seen that the set Fix T belongs to the family ker p, [2].
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3. THE MAIN RESULT

We will assume that the functions and operators involved in the equation (1.1) satisfy
the following conditions:

(i)
(ii)

(iii)

(iv)

)

(vi)

f Ry xR xR — R is a continuous function and the function ¢t — f(¢,0,0) is a
member of the space BC(R4,R).

The function f satisfies the Lipschitz condition with the nonnegative constants [y
and [y with respect to second and third variables, i.e.

|f(t,x1,y) - f(t,x%y)\ < ll“rl - .’E2|
for all t € Ry and z1, 29,y € R and
|f(t,z,91) — f(t, 2, y2)] < lo|yr — yol

for all t € Ry and z,y1,y2 € R.
The operators T; : BC(Ry,R) — BC(R4,R) are continuous and there exist
nondecreasing functions d; : R, — R, such that

[Tiz]| < di(ll]) (i = 1,2,3)

for all x € BC(R4,R).

u: Ry xRy xR — R is a continuous function and there exist a continuous
function g : R4 x Ry — Ry and a nondecreasing function h : Ry — Ry such
that

u(t, s, 2)| < g(t, s)h(|z[)

for all t,s € Ry and x € R. Besides, the function s — g(t, s) defining for each
t € R, is integrable on R, the function ¢ : Ry — Ry given by q(t) = [;° g(t, s)ds
is bounded on Ry and lim;_, ¢(t) = 0.

Remark 3.1. It can be shown that the requirements on the function g given in
the assumption (iv) are independent.
For example; if g(t,s) = te™'*, then the function ¢ defined as

e 0, t=0
t: t, d: ’
o) = [ alt.)ds {17 o

is bounded on R, but lim; o q(t) =1 # 0.
If g(t,s) = te=’%, then

at) = [ gft.yds = {0 Ty
and lim;_, o ¢(t) = 0, but the function ¢ is unbounded on R, .
There exists the positive real number r( satisfying the inequality
l1di(r) + lada(r)h(d3(r))G+ F <,
where F' = sup {|f (¢,0,0)| : t > 0} and G = sup{|q(¢)| : t > 0}.
Remark 3.2. F and G given in (v) are the finite constants from the assumptions
(i) and (iv).
There exist the nonnegative constants m,, and 9, for ro such that the inequalities
(T X) < mpop(X)

and
wo (TQX) < ﬂrowO(X)
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hold for all nonempty and bounded subsets X of B, where wp and p are defined
by (2.15) and (2.16).
(vii) We assume that

limy, + 129, h(d3(r0))G < 1.

(viii) There exists a continuous nondecreasing function ¢,, : R — R which holds
¢ro(0) =0 and

|u(t2,s,:£) - u(tl,s,x)| S ¢T0(|t2 - t1|)p(8)

for all ¢1,t2,s € Ry and z € R with |z| < rg, where p € BC(R4,R) such that
o
Iplly = Jy~ Ip(s)lds < oo.
(ix) There exists a continuous nondecreasing function 7,, : Ry — Ry which holds
Mo (0) = 0 and

u(t, s, 2) = u(t, s,y)| < 1 (|2 = y[)k(s)

for all t,s € Ry and z,y € R with |z| < ro, |y| < 1o, where k € BC(R4,R;) such
that [|k[|, = [;° |k(s)|ds < oc.

Now we can give an existence theorem on the functional integral equation (1.1).

Theorem 3.3. Under the assumptions (i)— (ix), there exists a positive real number rq such
that the equation (1.1) has at least one solution x = x(t) belonging to By, C BC(R4,R).
Moreover, all the solutions of the equation (1.1) belonging to the ball By, are asymptotically
stable on R .

Proof. We define operator T on B,, in the following way:

@@@%=fGdﬂﬂﬁhﬂﬂﬂﬂAmu@ﬁAR@®D®>.

Notice that in view of assumptions (i), (i) and (iv), the function t — (T'z)(t) is well
defined on the interval Ry. At first we show that the function 7'z is continuous on R
for an arbitrary fixed « € B,,. Since the functions f and T;x (i = 1,2) are continuous, it
is sufficient to prove that the function t — [~ u (t, s, (T5z)(s)) ds is continuous on Ry
Let us fix arbitrarily ¢ > 0 and take arbitrary numbers t1,t2 € Ry with |, — to| < e.
Then in view of assumption (viii) we obtain the estimate

/OO [u(ty,s, (T5x)(s)) — u(ta, s, (T3z)(s))] ds

0

< /OO lu(t1,s, (T5z)(s)) — u(te, s, (Tzz)(s))| ds

“—Jo
s/(mWPQW@wsmmmm
0

which implies that the function t — [ u (t, s, (T5z)(s)) ds is continuous on R,.. Therefore,
Tz is continuous on R.
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Next we show that Tz is bounded on R. By our assumptions, we derive that

KT@@M\menmuxUmwamuu@mnmw»@)

IN

‘f@&ﬂ@@%UﬁXﬂAmu@wiﬂmﬁhw>
_f (t, 0, (Tyz)(t) /O Tl s, (Tyz)(s)) ds) ‘
+ ‘f (t7 0, (Tox)(t) /000 u(t, s, (Tzz)(s)) ds) — f(t,0, 0)‘

+[f (£,0,0)| (3.18)
for arbitrarily fixed ¢t € R;. From (3.18), we have that

(T2)O] < L))+ 17 (t,0,0)
+hKR@@HA lu(t, 5, (Tsz)(s))| ds

IN

hdy([l]]) + lada((l]) /OOO 9(t,)h (|(Tzz)(s)[) ds + F

IN

Ldy([|z]]) + Ladz (2D R(| T2 ]) /OOO g(t,s)ds + F
< hdi(flz]]) + ladz(llz[)A(ds(]|z))G + F (3.19)

for all ¢ € R;. Hence, from (3.19), we obtain the following evaluation:
17| < bdi(||=]]) + lodz(l|2]))A(ds(|2]))G + F. (3.20)

The estimate (3.20) implies that the function Tz is bounded on Ry . Combining this fact
with the continuity of the function Tz on R, we conclude that the operator T' transforms
the ball B,, into the space BC(R;,R). Moreover linking (3.20) and the assumption
(v) we deduce that the operator T' maps the ball B,, into itself, where r¢ is a number
indicated in assumption (v).

Now, we shall prove that the operator T is continuous on B,,. To do this, consider
any € > 0 and fixed y € B;,. Then,

[(Tz)(t) = (Ty)(®)]

(v @0 @0 [ s @) ds)
—f@xﬂmuxawxﬂému@wxnmw»dﬁ\

IN

qe ﬂﬂ()UﬂX)/m (.5, (Ta0)(s) s
(Toa)( /Ooou (Ts)(s ))ds)‘

'f( (Thy)(t), (Tex)( t)/ooou (T3z)(s ))ds)
(Toy)(t

/oou Ls, (Tsy)(s ))ds)‘.(3.21)

0

-f < (Twy)(t

—f <t7 (le
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From the hypothesis (i) and the inequality (3.21) we derive that

(Tz)(t) = (Ty)W)] < L |(Tiz)(t) — (Tiy)(t)]

+lo [(Tox)(t) /000 u(t, s, (Tzz)(s)) ds

—amxwémuusxnw@»w (3.22)
Since
(Bmmﬂ;uW&ﬂhM$M&%ﬂw@A u(t, s, (Toy)(s)) ds
:KﬂwXﬂfCﬁwﬁﬂl w(t, s, (Ty)(s)) ds
+HMXU/WW@JK%@@»—U@JKEW@mﬁv
0
we get by (3.22) that
(T)(t) — (Ty)(®) < b [(Tux)(t) — (Try)(0)
1 (Do) (1) — (Tt |/ 5, (Ty)(s) | ds 5.23)

@O [ (s, (1)) - u b5, T ()] ds
By using of the assumptions, from the estimate (3.23) we get that

[(Tz)(t) = (Ty)O)] < LT — Tayll + 2 | Tox — Toyl| h(||Ts2]) /Ooo g(t,s)ds

+lada([lyll) /OOO k()1 (I(Ts2) (s) — (Ty)(s)|)ds
Tox — Ty h(ds([|=]))G

IN

L || The — Tyl + L

+lada (Y1), ([(T32 — T3y||)/ k(s)ds
0
L || Tyr — Tyl + b2 || Tex — Tyl h(ds(ro))G
+lada (r0)nr, (|(Tsz — Tsy||) ||kl (3.24)

IN

for all ¢ € R. Since the operators T; (i = 1,2, 3) are continuous for any fixed y € B,
there exists the number § > 0 such that we have ||T;x — T;y|| < € for all z € B,, with
|z — y|| < 6. In this case, (3.24) yields that

[Tz — Ty[| < lie + l2h(ds(ro))Ge + lada(ro) [|k[| ;7 () (3.25)

for all x € By, with ||z —y|| < §. By (3.25) and assumption (iz), we have that T is
continuous at the fixed arbitrary point y € B, and thus T is continuous on the ball B, .

Further, we shall show that the operator F' satisfies the Darbo condition on the ball
B,,. In order to do this, let us take a nonempty subset X of the ball B,,. Fix € > 0,
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L > 0 and choose = € X and t1,ts € [0, L] with |t; — t3] <e. Then,

(T2) (1) — (T (t2)] = ‘f (tl, (Tia)(0), (L)1) | (s, (Th2) () ds>

1 (12 ()t (Tt [ s (a0 )
< |1 (o). @) [ uto.s @) ds)
1 (12 o), (@en) [ o () as )
1 (t2 o). @) [~ oo, @) ds)

1 (12 T ta), (Tan)(0) [ w00, (Taa) (5 )
¥ \f (t2, (Tia) ), (L)) [ s, (Ta)(5) ds)

(3.26)

—f <t2, (Thx)(t2), (Tox)(t2) /000 u (ta, s, (Tsx)(s)) ds) .

Taking into account assumptions, we have by (3.26) that

(T2)(t1) = (Tx)(t2)] < wiy (f.€) + L [(Taz) (1) — (Thz)(t2)]

+ Iy |(Tox)(t1) /OOO u(t1, s, (Tsx)(s))ds

(Toa)(ta) /0 " (b5, (Ts2)(5)) ds
=wh (f.e) + I [(Tvzx)(t1) — (Thz)(t2)|

[(Tox)(tr) — (Tow)(t2)] /Ooou (t1, s, (Tsw)(s)) ds

+ 2

+(Tox)(t2) /OOO [u(ty, s, (T3z)(s)) — u(tz,s, (Tsx)(s))] ds
<wh (fre) + 1 [(Tiz) (t) — (Tya) (t2)]

+la|(Tao)(t0) — (Tar) )] | " (1.5, (Ty)(s)) | ds
+1a|(Tan) 1) | " (tr, . (T32)(5)) — (b 5, (Ty) ()] ds
< Wb (.9) + 1t Ty, 2) + s T, D) | " gt 5)ds

+ (2] / bro(It1 — ta])p(s)ds
< wfo(f, g) + lle(Tlx,a) + lng(Tgx75)h(d3(||;vH))G

oo

+ Lada([|2]) ¢ (1 — t2]) A p(s)ds

< w) (f.€) + hw! (Tha,€) + lah(dy(ro)) Gw' (Tha, €)
+ Lada (ro) [Pl o (€)
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which implies that
wh(Tz,e) < wh(f,e)+hwh(Tiz,e) + lh(ds(ro)) Gw" (Thz,€)
+lada(ro)lpll; éro (<), (3.27)
where,
wh (f,€) =sup{|f(tr, 1, y) — fta,z1,y)| : t1,t2 € [0, L], 21 € [—dy(ro), d1(ro)],
y € [—da(ro)h(ds(ro))G, da(rg)h(ds(r9))G] and |t; —ta] < e},
Wi (T, ) = sup{|(Tiz)(t1) — (Tiz)(t2)| : t1,t2 € [0, L] and |t; —to] < €}
for i = 1,2. By (3.27) we get that
WwHTX,e) < o.)fo (f,e) + hwh(Th X, €) + Iah(d3(ro) ) Gw™ (Tu X, €)
+lada(ro)[Iplly ér, (€)- (3.28)
By uniform continuity of the function f on the set

[O, L] X [7d1 (7"0)7 d1 (7’0)} X [7d2 (To)h(dg (’I"()))G, dQ (To)h(dg (’I"()))G], it is easily deduced that
wh (f,e) = 0 as e = 0. Also, by (viii), ¢r,(¢) = 0 as ¢ — 0. Thus, (3.28) yields that

WH(TX) < Lhwf (T1X) + 1ah(ds(ro)) Gl (To X). (3.29)
If we take limit as L — oo, we have by (3.29) that
wo(TX) S lle(TlX) + lgh(dg(TQ))GWo(TQX). (330)

Further let us take a nonempty subset X of the ball B,,. From estimate (3.23) and the
conditions (ii4) and (iv), it is shown that

diam (T X)(t) < lydiam(Ty X)(t) + ladiam (T2 X) (t)h(||T32||) /000 g(t,s)ds

+tada(lyl) (0 Tse) + (T | gt s)ds

< lLydiam(T1 X)(t) + lodiam (T2 X) (t)h(ds(||z||))q(t)

+ lada([ly[]) [A(ds([|z]])) + R(ds(lly]))] a(t)

S lldlam(TlX)(t) + lelam(TQ )(t)h(dg(?"o)) (t)

+ 212d2(’l’0)h(d3<7’0))q(t) (331)

for all t € Ry. If we take limit superior as t — oo in (3.31) by considering lim;_,, ¢(t) = 0,
we have the inequality:
lim sup diam (7' X)(¢) < Iy lim sup diam(73 X)(¢). (3.32)
t—o0 t—o0
By linking (2.16), (3.30) and (3.32), we derive by assumption (vi) and the inequality
wo(X) < p(X) that

w(TX) < Lhp(TiX)+ Ity h(ds(ro))Gwo(X)
< limyg (X)) + a9 h(ds(ro) ) Gu(X)
= [llmro + l219roh(d3 (TO))G] /’('(X) (333)

Now let us observe that by assumption (vii) and (3.33) we have that T is a contraction
with respect to the measure of noncompactness . By Theorem 2.3 the operator T has at
least one fixed point x in the ball B,,. Obviously, every function x = x(t) being a fixed
point of the operator T' is a solution of (1.1). Further, keeping in mind Remark 2.4, we
conclude that the set Fix T of all fixed points of the operator 1" belonging to the ball B,
is a member of the ker u. Hence, in view of the description of the ker i we infer that all
of solutions of (1.1) belonging to the ball B,, are asymptotically stable on R. This step
completes the proof of our theorem. O
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4. EXAMPLES

Example 4.1. Consider the following integral equation:

sin( fo sinx (T dT—‘rg)

x(t)

_1
7 <1 + |z(t) [ sina(r)dr ) (1+1)
1
YT (4.34)
(‘ fo +1)(s2+1) ds’ + 1)
where ¢t € R,.. Notice that (4.34) is a special case of (1.1) if we put
sin (tm + E) 1
f t,x,y) = 2 + )
R (AT (RY
(T)0) =) [ simatrn, (T)(0) = 220, Ta)0) =20
0
and u(t, s,x) = %
It is verified that the assumptions of Theorem 3.3 are satisfied.
Indeed, f is continuous on R4 x R x R and the function ¢t — f(¢,0,0) = 7(1+t) +

a member of the space BC(R,R).
Since

1
)
S T |1x1|)(1 FRPR) (11 + el =1 ~Jan]sim (02 + )|
+(1 + |x1]) |sin (ta:l + g) — sin (t:cg + g) D

1
T+ )1+ |z1[)(1 + |22])

sin (twl + g) sin (txz + g)

|[f(t21,y) = f(t,22,9)] = L+]za] L1+ 2o

IN

§|$1*~Tz|Jr (1 + [z1|)|z1 — 2ot

IN

Zlz1 — a2

and
‘

for all t € Ry and z,21,2,y,y1,y2 € R, we can take the constants {; and [y satisfying
(i) as Iy = 2 and I = .
Ty, T» and T3 are the continuous operators on the space BC(R4,R). Further for all

x € BC(R4,R) and t € R, the inequalities

|f(t,2,90) = [t 2, 42)] 21y — ol

<

[(Thz)(8)] =

1
|2l < Jlal,

x(t) /011“ sinz(1)dr

(Toa)(t)] < |22(t)] < Jl]f?
and
(Tya) (1) < |2°(t)] < ||
hold. So, the assumption (ii7) is satisfied with dy(t) = t, da(t) = 2 and d3(t) = 3.
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Now notice that the function w is continuous on the set Ry x Ry x R. Moreover, we
get that

(u(t, 5,2)| = x+1 |z + 1

o (t+1)(s2+1)] ~ (t+1)(s2+1)
for all t,s € Ry and z € R. Thus, according to the assumption (iv) we may put
g(t,s) = m and h(t) =t + 1. Further we get

0o © ds 71'
q(t) = /0 g(t, s)ds = /0 (t+1)(s2+1) - 2(t+1)

and, obviously, we have that

and ¢(t) - 0 as t — oo.
Now if we consider the Values di(r) = r,da(r) = r? and d3(r) = r3 together with
F =sup{|f (¢,0,0)] : t > 0} = 13, the inequality
lldl( ) + lgdg('f’)h( 3(7"))G+ F § r
in the assumption (v) takes the following form:
2r  riq

) 15
P+ —= < 4.
7+82( +)+56_r (4.35)

The number 7 chosen as 0.429816 < r¢ < 0.962102 satisfies (4.35).

Apart from this, fixing a nonempty and bounded subset X of the ball B, , let z € X,
€>0,L>0andt,s €0, L] such that |t —s| <e.

Without loss of generality, we assume that ¢t < s. So,

1
i+s

(Tv2)(#) — (Tha)(s) = (1) /O ™ sina(r)dr — 2(s) /0 sin o (r)dr

= (z(t) — z(s)) /m sin x(7)dr

+ z(s) </o " sinz(r )dT—/01+ sin z( )

= (z(t) — :v(s))/OHf sinz(7)dT + x(s) </+ sma:(7‘)d7‘>
which yields that |
(Ti)t) — T)o)] < 1) = (o) o] | 12 -~
<|z(t) — x(s)| + rolt — s (4.36)
for all t, s € [0, L] such that |t — s| < e. Besides, it is clear that
(Ta)(t) — (Tax)(s)| = [a*(t) — 2*(s)]
= [z() +z(s)]x(t) — z(s)]
< 2rolx(t) — z(s)| (4.37)

for all ¢, s € [0, L] such that |t — s| <e.
From estimates (4.36), (4.37) and in the view of the (2.15), we get that

OJO(T1X) S wO(X), (438)
UJO(TQX) S 2TOWO(X). (439)
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Inequality (4.39) implies that the second inequality of assumption (vi) is satisfied with
the constant v, = 2ry.
Furthermore, the estimate

|(Th2)(t) — (Thy) ()] = |x(¢) /0m sinz(7)dr — y(t) /0m siny(7)dr

((t) — y(b) /0 T sina(r)dr

() /0 T (sina(r) — siny(r)) dr
< lx(t) - y(®) / ™ sina(r)|dr

+ |y (t)] /om |sinz(7) — siny(7)|dr

o=yl + 5 vl e = ]
T 1+t vy 14¢ yillz =y
1
<13 (2rg + 2r0) (4.40)
holds for all ,y € X and ¢t € R;. Using (4.40), we have the equality:
lim sup diam (77, X)) (¢t) = 0. (4.41)
t—o0
From (2.16), (4.38) and (4.41), we get that:
WTLX) < wo(X) < pu(X). (1.42)
So, we derive by (4.42) that the first inequality of assumption (vi) is satisfied with
my, = 1.
The inequality of assumption (vii) is equivalent to:
2 2rgm, 4
-+ —= 1 1. 4.43
2 20T ) < (4.43)

The inequality (4.43) holds for 0.429816 < rg < 0.962102.
Additionally, for all ¢1,t9,s € R} and € R with |z| < rg we have that:

|u(te, s,x) — ulta, s,x)] = ‘ v+l - v+l ‘

(ti+1)(s2+1)  (t2+1)(s2+1)
w1 1 1

T 241 t1+1_t2+1’

P T S 2]

T2+ 1+ D)t +1)

< %'tl — .

If we put ¢, (t) =t and p(s) = ;gi}, the assumption (viii) is satisfied.

Finally, for all ¢, s € Ry and z,y € R with |z| < ro,|y| < 79, we get that:

|U(t, 87'1:) - U(t, S7y)‘ =

r+1—-y—1 |z — vyl
< .
(t+1)(s2+1)| ~ 1+ s2

If we take 0, (t) =t and k(s) = ﬁ, the assumption (ix) is satisfied.

Since all of the assumptions of Theorem 3.3 are fullfilled, we deduce that the integral
equation (4.34) has at least one solution belonging to the ball B, of the space BC(R,R).
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Taking into account Remark 2.4 and the measure of noncompactness p given by (2.16),
we infer easily that any solutions of (4.34) which belong to the ball B, are asymptotically
stable on R as defined in Definition 2.2.

Example 4.2. Let us consider the following integral equation:

() = =+ —In(e+exp (— z())

3(1+t) 14
( Osms :v(7)d7'>3

-———ds
exp(t +s+1)

, (4.44)

1 o0
+gcos \/:c2(t)+2/
0

where t € R;. Observe that

ft,z,y) = !

3(1+1)

+ Lot o+ 2
etz 7 oSy,

(Ty2)(t) = exp (= [2(t)]) , (Tow)(t) = V/a2(8) + 2, (Tsa)(t) = / " a(ryr

13

and U(t,S,I’) = W

It is clear that the function f : Ry x R x R — R is continuous and the function
t — f(t,0,0) = ﬁ + 12 is a member of the space BC(R4,R).

Without loss of generality we can suppose that |z1| < |x2|. So, there exists a number
€ € (|z1], |z2|) satisfying the inequality

|f(t,x1,y)—f(t,a:2,y)| = (€+‘$1|)—1D(€+‘$2|)|

1
— |In
14
_ L
14(e+¢)

for all t € R} and y € R. Taking into account (4.45), we have that

‘1‘1 — IQ‘ (445)

1
|f(t,$1,y) - f(taany” < ﬂ |I1 —$2|

for all t € Ry and z1, 29,y € R.
Besides, we can easily see that the inequality

1 1
|f(t,z,y1) — f(t, 2, y2)| = 3 |cos y1 — cosya| < o ly1 — 2

holds for all t € Ry and z,y1,y2 € R.
Therefore, we can chose the nonnegative constants /3 and [y satisfying the condition
(i) of Theorem 3.3 as Iy = {5 and I = 1.
It is clear that Ty, Ty and T3 are the continuous operators on the space BC(Ry,R).

Moreover for all z € BC(R1,R) and t € Ry, we get that:
[(Thz)(8)] = lexp (= [z(®))] < 1,
(T32)(0) = |Va2®) +2| < Vel +2

and

< [sint| [lz]] < [l=[].

() (1) = ’ / " e(rydr

Hence the assumption (4i7) is satisfied with d; (¢t) = 1, da(t) = Vt? + 2 and ds(t) = t.
The function u(t, s, z) is continuous on the set Ry x Ry x R. Further, it is clear that
3 |z[?

x
exp(t+s+1)| exp(t+s+1)

lu(t, s, z)| =
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for all t,s € R} and x € R. Thus the functions appearing in the assumption (iv) have
the form g(t,s) = exp(—t — 1) exp(—s) and h(t) = t3. Clearly we have that:

q(t) = /Ooo g(t,s)ds = exp(—t — 1) /OOO exp(—s)ds = exp(—t — 1),

G =sup{|q(t)] : t >0} =sup{exp(—-t—1):t >0} = %

and ¢(t) = 0 as t — oo.
F =sup{|f(t,0,0)] : t >0} = 12T and the assumption (v) which has the form:

210
1 ViTres 127
L yrrer 2o, (4.46)
14 Be 210

By computation we see that the number ry € [0.719716,1.92146] is the solution of the
inequality (4.46).

Moreover the operators T; and T5 satisfy the assumption (vi). Indeed for e > 0, L > 0,
lz]] < 7o and t,s € [0, L] such that |t — s| < e.

Without loss of generality, assuming that |x(t)| < |z(s)|, we obtain that

[(Thz)(t) — (Twx)(s)] = lexp (= |x(t)]) —exp (= |z(s)])]
[ =@ = [=(s)] |

exp p
< e(t) - a(s)], (4.47)

where p € (lz(t)], |2(s)])-
Besides, without loss of generality, assuming that
x(t) < x(s), we get that

(Ta2)(t) — (TBea)(s)] = |Va2O+2 - Va2(5)+2|
[2(t) — 2(5)|2I¢
24/€2 42
|x(t) — x(s)], (4.48)

IN

where € € (z(t), z(s)).
In the view of (2.15), we have by (4.47) and (4.48) that:

wo(TlX) < wo (X) (449)
and
CU()(TQX) < OJ()(X). (450)

Fixing a nonempty and bounded subset X of the ball B, for z,y € X, by taking y(t)
and (Thy)(¢) instead of x(s) and (Tyx)(s) in (4.47), respectively, we get that:

[(Thz)(t) — (Twy) ()] < |2(t) — y ()] (4.51)
Using (4.51), we have that:
lim sup diam (77 X)(¢) < limsup diamX (¢). (4.52)

From (2.16), (4.49) and (4.52), we derive that:
(11 X) < p(X). (4.53)

So, it is shown by (4.53) and (4.50) that the inequalities of assumption (vi) are satisfied
with the constants m,, =1 and ¥,, = 1.
Next we have that the inequality of assumption (vii) corresponds to

gta <1 (4.54)
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and (4.54) holds for ¢ € [0.719716, 1.92146].
Further, without loss of generality, we assume that ¢; < ¢, for all ¢1,%5,s € Ry and
x € R with |z| < 7o, we have that

x3 x3
u(t1,s,x) —ulte, s,z = —
[t ) (t2 ) exp(t1 +s+1) exp(t2+8+1)’
z? 1 1
exp(s+1) |exp(t1)  exp(ta)
x3 lexp(ta) — exp(t1)|

exp(s+1) exp(ty +t2)
z®  Jta —ti]exp(§)
exp(s+1) exp(t +t2)

RN
exp(s+1) > 0
where ¢ € (t1,t2). If we put ¢, (t) = r§ t and p(s) = Wlsﬂ)’ the assumption (viii) is
satisfied.
Finally, it is clear that the inequality
3 y?

t —u(t = B
u(t, s, =) — u(t, s, y)| exp(t+s+1) exp(t+s+1)

|z —yl |22 + 2y + 12|
exp(t+s+1)
3réle — yl
exp(s +1)
holds for all ¢,s € Ry and z,y € R with |z| < rg,|y| < ro. If we take n,,(t) = 3r3t and
k(s) = Wiﬂ)’ the assumption (ix) is satisfied.
The result follows from Theorem 3.3.

IN

Remark 4.3. The nonlinear integral equations (4.34) and (4.44) can’t be derived from
the integral equations (1.2)-(1.14) examined in [1,4-6,10,15,17,20,21,23,26-33].
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