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ABSOLUTELY SUMMING POLYNOMIALS

JOILSON RIBEIRO AND FABRÍCIO SANTOS

Abstract. In this paper, we introduce an abstract approach to the notion of abso-
lutely summing polynomials, and we explore several of its properties, among them
that this class is a Banach ideal of homogeneous polynomials. As a consequence of
the abstract approach introduced in this paper, we show that in addition to obtaining
several previous results in different contexts as particular cases, it is possible to easily
create new classes of homogeneous polynomials that are absolutely summing.

Розвинуто абстрактний пiдхiд до поняття абсолютно пiдсумовуючих полiномiв.
Дослiджуються їхнi властивостi, зокрема, показано, що цей клас є банаховим
iдеалом однорiдних полiномiв. Наслiдком абстактного пiдходу є не тiльки
результати, отриманi ранiше для спецiальних випадкiв, але й можливiсть побудови
нових класiв абсолютно пiдсумовуючих полiномiв.

1. Introduction

There is a large number of classes of operators in the literature, see for example
[1, 2, 6, 9, 11, 14, 16, 18]. Most of these previous works have followed a very similar script,
trying to prove similar properties, of which we can highlight the following: characterize
the elements of space by inequalities, build a suitable norm in the space, and then show
that the normed space that has just been constructed is a Banach ideal of multilinear
operators. Some works have also explored the concept of the n-homogeneous polynomials
by seeking the same properties found for the space of multilinear applications.

Faced with so many coincidences, the concern arose to create an abstract class of
operators that could generalize as many as possible of those already existing in the
literature. Thinking in this direction, D. Serrano-Rodŕıguez in [19] introduced the
abstract class of \gamma -summing multilinear operators. This work shows that this class is a
Banach ideal of multilinear applications. However, it should be noted that the work of
abstraction is not an easy task. For example, Serrano-Rodŕıguez’s work [19] contained
small gaps, which were filled by the work of G. Botelho and J. Campos in [3].

Thus, following the natural script, the proposal of this work is, in a first moment, to
construct the abstract class of the absolutely \gamma -summing n -homogeneous polynomials.
Once the abstract ideal of multilinear applications [19] and the abstract ideal of polyno-
mials are now known, we will start to study the coherence and compatibility of the pair
in the sense of Pellegrino and Ribeiro [17].

We will use the letters E,E1, . . . , En, F,G,H to represent Banach spaces over the same
scalar-field \BbbK = \BbbR or \BbbC and E\prime for the topological dual of E. The closed unit ball of E
is denoted by BE . We use BAN to denote the class of all Banach spaces over \BbbK . Given
Banach spaces E and F , the symbol E

1
\lhook \rightarrow F means that E is a linear subspace of F

and \| x\| F \leq \| x\| E for every x \in E. By c00(E) we denote the set of all E-valued finite
sequences, which, as usual, can be regarded as infinite sequences by completing with zeros.
For every j \in \BbbN , ej = (0, . . . , 0, 1, 0, 0, . . . ) where 1 appears at the j-th coordinate. The
space of all continuous n-linear operators between E1, . . . , En and F is represented by
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\scrL n(E1, . . . , En;F ). If E1 = \cdot \cdot \cdot = En = E , we write only \scrL n(
nE;F ) and when n = 1, we

write \scrL (E;F ).
A mapping P : E \rightarrow F is said to be n-homogeneous polynomials if there is an A \in 

\scrL n(
nE;F ), such that P (x) = A(x)n for every x \in E, where A(x)n := A (x, n. . ., x). In

this case, we write P = \^A. By \v P we denote the unique symmetric continuous n-linear
operator associated to P. For each positive integer n, we denote by \scrP n the class of all
continuous n-homogeneous polynomials between Banach spaces.

An ideal of homogeneous polynomials \scrQ is a subclass of the class \scrP =
\infty \bigcup 

n=1
\scrP n of all

continuous homogeneous polynomials between Banach spaces, such that, for a positive
integer n, Banach spaces E and F , the components

\scrQ n(E;F ) := \scrP n(
nE;F ) \cap \scrP 

satisfy:
(Ma) \scrQ n(

nE;F ) is a linear subspace of \scrP n(
nE;F ), which contains the n-homogeneous

finite type polynomials, where an n-homogeneous polynomials is said finite type when

P (x) =

k\sum 
i=1

[\varphi i(x)]
nbi

with k \in \BbbN and \varphi i \in E\prime , bi \in F , i = 1, . . . , k.
(Mb) If P \in \scrQ n(

nE;F ), u \in \scrL (G;E) and v \in \scrL (F ;H), then

v \circ P \circ u \in \scrQ n(
nG;H).

Moreover, \scrQ is a (quasi-) normed multi-ideal if there is a function \| \cdot \| \scrQ : \scrQ  - \rightarrow [0,\infty )
satisfying

(M1) \| \cdot \| \scrQ restricted to \scrQ n(
nE;F ) is a (quasi-) norm, for all Banach spaces E and F.

(M2) \| Pn : \BbbK  - \rightarrow \BbbK : Pn(\lambda ) = \lambda n\| \scrQ = 1 for all n,
(M3) If P \in \scrQ n(

nE;F ), u \in \scrL (G;E) and v \in \scrL (F ;H), then

\| v \circ P \circ u\| \scrQ \leq \| v\| \| P\| \scrQ \| u\| n.

When all of the components \scrQ n(
nE;F ) are complete under this (quasi-) norm, \scrQ is

called the (quasi-) Banach homogeneous polynomials ideal. For a fixed homogeneous
polynomials ideal \scrQ and a positive integer n, the class

\scrQ n := \cup E,F\scrQ n (
nE;F )

is called of n-homogeneous polynomials ideal. For more details, see [12].
Throughout this paper, we will also use the definitions of finitely determined and linearly

stable sequence classes, which were recently introduced in the literature by Botelho and
Campos in [3], as follows.

Definition 1.1. \bullet A class of vector-valued sequences \gamma s, or simply a sequence class
\gamma s, is a rule that assigns to each E \in BAN a Banach space \gamma s(E) of E-valued
sequences; that is, \gamma s(E) is a vector subspace of E\BbbN with the coordinate wise
operations, such that:

c00(E) \subseteq \gamma s(E)
1
\lhook \rightarrow \ell \infty (E) and \| ej\| \gamma s(\BbbK ) = 1 for every j.

\bullet A sequence class \gamma s is finitely determined if for every sequence (xj)
\infty 
j=1 \in E\BbbN ,

(xj)
\infty 
j=1 \in \gamma s(E) if, and only if, \mathrm{s}\mathrm{u}\mathrm{p}k \| (xj)

k
j=1\| \gamma s(E) < +\infty and, in this case,

\| (xj)
\infty 
j=1\| \gamma s(E) = \mathrm{s}\mathrm{u}\mathrm{p}

k
\| (xj)

k
j=1\| \gamma s(E).
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\bullet A sequence class \gamma s is said to be linearly stable if for every u \in \scrL (E;F ) it holds

(u (xj))
\infty 
j=1 \in \gamma s(F )

wherever (xj)
\infty 
j=1 \in \gamma s(E) and \| \^u : \gamma s(E) \rightarrow \gamma s(F )\| = \| u\| .

\bullet Given sequence classes \gamma s1 , . . . , \gamma sn , \gamma s, we say that \gamma s1(\BbbK ) \cdot \cdot \cdot \gamma sn(\BbbK )
1
\lhook \rightarrow \gamma s(\BbbK ) if\Bigl( 

\lambda 
(1)
j \cdot \cdot \cdot \lambda (n)

j

\Bigr) \infty 
j=1

\in \gamma s(\BbbK ) and\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( \lambda (1)
j \cdot \cdot \cdot \lambda (n)

j

\Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s(\BbbK )

\leq 
n\prod 

m=1

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( \lambda (m)
j

\Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma sm (\BbbK )

whenever
\Bigl( 
\lambda 
(m)
j

\Bigr) \infty 
j=1

\in \gamma sm(\BbbK ), m = 1, . . . , n.

Example 1.2. Let 1 \leq p < \infty . The correspondences below are linearly stable sequence
classes:

(a) The correspondence, E \mapsto \rightarrow \ell p(E), where

\ell p(E) =
\Bigl\{ 
(xj)

\infty 
j=1 \in E\BbbN ;

\infty \sum 
j=1

\| xj\| p < \infty 
\Bigr\} 
,

endowed with the norm
\bigm\| \bigm\| \bigm\| (xj)

\infty 
j=1

\bigm\| \bigm\| \bigm\| 
p
=
\Bigl( \infty \sum 
j=1

\| xj\| p
\Bigr) 1

p

.

(b) The correspondence, E \mapsto \rightarrow \ell wp (E), where

\ell wp (E) =
\Bigl\{ 
(xj)

\infty 
j=1 \in E\BbbN ;

\infty \sum 
j=1

| \varphi (xj)| p < \infty , for all \varphi \in E\prime 
\Bigr\} 
,

endowed with the norm
\bigm\| \bigm\| \bigm\| (xj)

\infty 
j=1

\bigm\| \bigm\| \bigm\| 
w,p

= \mathrm{s}\mathrm{u}\mathrm{p}
\varphi \in BE\prime 

\bigm\| \bigm\| \bigm\| (\varphi (xj))
\infty 
j=1

\bigm\| \bigm\| \bigm\| 
p
.

(c) The correspondence, E \mapsto \rightarrow \ell p\langle E\rangle , where

\ell p\langle E\rangle =\Bigl\{ 
(xj)

\infty 
j=1 \in E\BbbN ;

\infty \sum 
j=1

| \varphi j(xj)| < \infty , for all (\varphi j)
\infty 
j=1 \in \ell wp\ast (E

\prime ) with
1

p
+

1

p\ast 
= 1
\Bigr\} 
,

endowed with the norm
\bigm\| \bigm\| \bigm\| (xj)

\infty 
j=1

\bigm\| \bigm\| \bigm\| 
C,p

= \mathrm{s}\mathrm{u}\mathrm{p}
(\varphi j)\infty j=1\in B\ell wp\ast (E\prime )

\infty \sum 
j=1

| \varphi j(xj)| .

(d) The correspondence, E \mapsto \rightarrow \ell mid
p (E), where

\ell mid
p (E) =

\Bigl\{ 
(xj)

\infty 
j=1 \in \ell wp (E);

\infty \sum 
j,n=1

| \varphi n(xj)| p < \infty for all (\varphi n)
\infty 
n=1 \in \ell wp (E

\prime )
\Bigr\} 
,

endowed with the norm
\bigm\| \bigm\| (xj)

\infty 
j=1

\bigm\| \bigm\| 
mid,p

= \mathrm{s}\mathrm{u}\mathrm{p}
(\varphi n)\infty n=1\in B\ell wp (E\prime )

\Bigl( \infty \sum 
n=1

\infty \sum 
j=1

| \varphi n(xj)| p
\Bigr) 1

p

.

(e) The correspondence, E \mapsto \rightarrow \ell up(E), where

\ell up(E) =
\Bigl\{ 
(xj)

\infty 
j=1 \in \ell wp (E); \mathrm{l}\mathrm{i}\mathrm{m}

k\rightarrow \infty 

\bigm\| \bigm\| \bigm\| (xj)
\infty 
j=k

\bigm\| \bigm\| \bigm\| 
w,p

< \infty 
\Bigr\} 
,

endowed with the norm \| (xj)
\infty 
j=1\| u,p := \| (xj)

\infty 
j=1\| w,p.
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(f) The correspondence, E \mapsto \rightarrow Rad(E), where Rad(E) is the set of all almost uncondi-
tionally summable E-valued sequences, in the sense of [10, Chapter 12], endowed

with the norm \| (xj)
\infty 
j=1\| Rad(E) =

\biggl( \int 1

0

\bigm\| \bigm\| \bigm\| \sum \infty 
j=1 rj(t)xj

\bigm\| \bigm\| \bigm\| 2 dt\biggr) 1
2

, where (rj)
\infty 
j=1 are

the Rademacher functions.

In [3, 4], it has been shown that the items (a), (b), (c) and (d) of Example 1.2 are
finitely determined sequence classes.

2. Absolutely \gamma - summing polynomials

For this study, we will consider sequence class \gamma s, \gamma s1 , ..., \gamma sm to be finitely determined
and linearly stable, as defined in [3].

Definition 2.1. Let E and F be Banach spaces. An m-homogeneous polynomial
P : E  - \rightarrow F is said to be \gamma s,s1 - summing at a \in E, if

(P (a+ xj) - P (a))
\infty 
j=1 \in \gamma s(F )

whenever (xj)
\infty 
j=1 \in \gamma s1(E).

The space of all m-homogeneous polynomials \gamma s,s1 - summing at a, as denoted by
\scrP (a)
\gamma s,s1

(mE;F ), is a linear subspace of the \scrP (mE;F ). When a = 0, we write only
\scrP \gamma s,s1

(mE;F ). The space of all m-homogeneous polynomials \gamma s,s1-summing at every
point will be denoted by \scrP (ev)

\gamma s,s1
(mE;F ).

Example 2.2. (a) When we consider \gamma s = \ell p and \gamma s1 = \ell wq , we obtain the class of
(p, q)-summing homogeneous polynomials, where an n-homogeneous polynomial is said
(p, q)-summing at a \in E when

(P (a+ xj) - P (a))
\infty 
j=1 \in \ell p(F )

whenever (xj)
\infty 
j=1 \in \ell wq (E). For more details, see [14].

(b) When we consider \gamma s = \ell p\langle \rangle and \gamma s1 = \ell p, we obtain the class of p-summing
absolutely Cohen n-homogeneous polynomials, where an n-homogeneous polynomials is
said p-summing absolutely Cohen at a \in E when

(P (a+ xj) - P (a))
\infty 
j=1 \in \ell p\langle F \rangle 

whenever (xj)
\infty 
j=1 \in \ell p(E). This class was explored in details in the thesis [7].

(c) When we consider \gamma s = Rad and \gamma s1 = \ell up , we obtain the class of almost (p)-
summing n-homogeneous polynomials, where an n-homogeneous polynomials is said
almost (p)-summing at a \in E when

(P (a+ xj) - P (a))
\infty 
j=1 \in Rad(F )

whenever (xj)
\infty 
j=1 \in \ell up(E). For more details about this class, see [16]. In the paper [3]

was showed that the classes Rad and \ell up are not finitely determined. Thus, this definition
can be applied in classes more general than those cited so far.

By using the Polarization Formula [10, Corollary 1.6] we can easily prove the following
result:

Proposition 2.3. P \in \scrP (ev)
\gamma s,s1

(mE;F ) if, and only if, \v P is \gamma s,s1-summing in every point
(a1, . . . , am) \in E \times m\cdot \cdot \cdot \times E, according to [19, Definition 3].

The following lemma, whose proof can be obtained by using Proposition 2.3 and [2,
Lemma 2], it is essential for the proof of the main result of this section.
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Lemma 2.4. If P \in \scrP (ev)
\gamma s,s1

(mE;F ) and a \in E, then there is a constant Ca > 0, such
that \bigm\| \bigm\| \bigm\| (P (a+ xj) - P (a))

\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(F )

\leq Ca,

for all (xj)
\infty 
j=1 \in \gamma s1(E) and

\bigm\| \bigm\| \bigm\| (xj)
\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s1

(E)
\leq 1.

The next result is a characterization by inequality of the operators in \scrP (ev)
\gamma s,s1

(mE;F ).
The same is very important because from it we can extract a norm that makes \scrP (ev)

\gamma s,s1
(mE;F )

a Banach space. The proof was inspired on [1] and [14].

Theorem 2.5. Let P \in \scrP (mE;F ). The following assertions are equivalents:

(a) P \in \scrP (ev)
\gamma s,s1

(mE;F );
(b) There is C > 0 satisfying\bigm\| \bigm\| \bigm\| (P (b+ xj) - P (b))

\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(F )

\leq C

\biggl( 
\| b\| +

\bigm\| \bigm\| \bigm\| (xj)
\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s1

(E)

\biggr) m

(2.1)

for all b \in E and (xj)
\infty 
j=1 \in \gamma s1(E).

(c) There is C > 0 satisfying\bigm\| \bigm\| \bigm\| (P (b+ xj) - P (b))
n
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(F )

\leq C

\biggl( 
\| b\| +

\bigm\| \bigm\| \bigm\| (xj)
n
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s1

(E)

\biggr) m

for all n \in \BbbN and x1, \cdot \cdot \cdot , xn, b \in E.

Proof. (b) \Rightarrow (c) is immediate. Using the fact that the sequence classes considered are
finitely determined, it follows that (c) \Rightarrow (a).

Therefore, it remains to prove that (a) \Rightarrow (b).
Let G = E \times \gamma s1(E). For each P \in \scrP (ev)

\gamma s,s1
(mE;F ), set the following application

\eta \gamma s,s1
(P ) : G  - \rightarrow \gamma s(F )

given by
\eta \gamma s,s1

(P )
\Bigl( \Bigl( 

b, (xj)
\infty 
j=1

\Bigr) \Bigr) 
= (P (b+ xj) - P (b))

\infty 
j=1 .

\eta \gamma s,s1
(P ) is an m-homogeneous polynomial. Indeed, for each

T \in 
ev\prod 

\gamma s,s1,...,sm

(E1, . . . , En;F ),

we can consider the continuous m-linear operator,

\Phi (T ) : G1 \times \cdot \cdot \cdot \times Gm \rightarrow \gamma s(F )

where Gi = Ei \times \gamma si(Ei), i = 1, . . . ,m, given by

\Phi (T )

\biggl( 
a1,
\Bigl( 
x
(1)
j

\Bigr) \infty 
j=1

, . . . , am,
\Bigl( 
x
(m)
j

\Bigr) \infty 
j=1

\biggr) 
=
\Bigl( 
T
\Bigl( 
a1 + x

(1)
j , . . . , am + x

(m)
j

\Bigr) 
 - T (a1, . . . , am)

\Bigr) \infty 
j=1

.

For more details, see demonstration of [19, Theorem 2]. In this way,

\eta \gamma s,s1
(P )

\Bigl( \Bigl( 
b, (xj)

\infty 
j=1

\Bigr) \Bigr) 
=
\bigl( 
\v P (b+ xj)

m  - \v P (b)m
\bigr) 
= \Phi ( \v P )

\Bigl( \Bigl( 
b, (xj)

\infty 
j=1

\Bigr) \Bigr) m
.

To show that \eta \gamma s,s1
(P ) is continuous, we will consider, for all k \in \BbbN and (xj)

\infty 
j=1 \in 

\gamma s1(F ), the set

Fk,(xj)
\infty 
j=1

=

\biggl\{ 
b \in E :

\bigm\| \bigm\| \bigm\| \eta \gamma s,s1
(P )

\Bigl( \Bigl( 
b, (xj)

\infty 
j=1

\Bigr) \Bigr) \bigm\| \bigm\| \bigm\| 
\gamma s(F )

\leq k

\biggr\} 
.
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Note that the set Fk,(xj)
\infty 
j=1

is closed for all b \in E and (xj)
\infty 
j=1 \in B\gamma s1 (F ). Indeed, for each

n \in \BbbN , let

Fk,(xj)
n
j=1

=

\biggl\{ 
b \in E :

\bigm\| \bigm\| \bigm\| \eta \gamma s,s1
(P )

\Bigl( \Bigl( 
b, (xj)

n
j=1

\Bigr) \Bigr) \bigm\| \bigm\| \bigm\| 
\gamma s(F )

\leq k

\biggr\} 
.

So,
Fk,(xj)

\infty 
j=1

=
\bigcap 
n\in \BbbN 

Fk,(xj)
n
j=1

. (2.2)

For each (xj)
\infty 
j=1 \in B\gamma s1 (E), and fixed k \in \BbbN , we can define

Dk : E  - \rightarrow [0,\infty )

given by

Dk(b) =
\bigm\| \bigm\| \bigm\| (P (b+ xj) - P (b))

n
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(F )

.

It following the same ideas as [19, Theorem 2], we can see that Dk is a continuous
application. So, each Fk,(xj)

n
j=1

is closed because

Fk,(xj)
n
j=1

= D - 1
k ([0, k]).

Therefore, from (2.2) it follows that Fk,(xj)
\infty 
j=1

is closed because it is the intersection of
closed sets.

Let
Fk =

\bigcap 
(xj)

\infty 
j=1\in B\gamma u

s1
(E)

Fk,(xj)
\infty 
j=1

.

By the Lemma (2.4) it follows that

E =
\bigcup 
k\in \BbbN 

Fk.

Using the Baire Category Theorem, we know that there is a constant k0 \in \BbbN such that
Fk0

has an interior point. Let b be in the interior of Fk0
. Thus there is 0 < \epsilon < 1 such

that \bigm\| \bigm\| \bigm\| \eta \gamma s,s1
(P )

\Bigl( 
c, (xj)

\infty 
j=1

\Bigr) \bigm\| \bigm\| \bigm\| 
\gamma s(F )

\leq k0 (2.3)

whenever \| c - b\| < \epsilon and (xj)
\infty 
j=1 \in B\gamma s1

(E). Note that, if\bigm\| \bigm\| \bigm\| \Bigl( v, (xj)
\infty 
j=1

\Bigr) \bigm\| \bigm\| \bigm\| < \epsilon 

we have that
\| v\| < \epsilon and

\bigm\| \bigm\| \bigm\| (xj)
\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s1

(E)
< \epsilon < 1.

So, by (2.3) it follows that\bigm\| \bigm\| \bigm\| \eta \gamma s,s1
(P )

\Bigl( 
b+ v, (xj)

\infty 
j=1

\Bigr) \bigm\| \bigm\| \bigm\| 
\gamma s(F )

\leq k0.

Therefore, \eta \gamma s,s1
(P ) is bounded in the open ball of radius \epsilon centered at\bigl( 

b, (0)\infty j=1

\bigr) 
\in G,

and we conclude that \eta \gamma s,s1
(P ) is continuous. Therefore,\bigm\| \bigm\| \bigm\| (P (b+ xj) - P (b))

\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(F )

=
\bigm\| \bigm\| \bigm\| \eta \gamma s,s1

(P )
\Bigl( \Bigl( 

b, (xj)
\infty 
j=1

\Bigr) \Bigr) \bigm\| \bigm\| \bigm\| 
\gamma s(F )

\leq 
\bigm\| \bigm\| \eta \gamma s,s1

(P )
\bigm\| \bigm\| \biggl( \| b\| + \bigm\| \bigm\| \bigm\| (xj)

\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s1 (E)

\biggr) m

. (2.4)
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\square 

By straightforward computations, we can get the following result.

Corollary 2.6. The infimum of the constants C > 0 that satisfy the inequality (2.1)
defines a norm in \scrP (ev)

\gamma s,s1
(mE;F ), that will be denoted by \pi (ev)(\cdot ).

It is not difficult to see that

Remark 2.7. \pi (ev)(P ) =
\bigm\| \bigm\| \eta \gamma s,s1

(P )
\bigm\| \bigm\| .

An alternative way of constructing a normed space of the polynomials associated by\prod (ev)
s,s1

is to consider the set

\scrP \prod ev
\gamma s,s1

:=
\bigl\{ 
P \in \scrP ; \v P is \gamma s,s1 - summing in every point

\bigr\} 
.

and, in this set, to use the norm inherited from the ideal of multilinear applications
\prod ev

\gamma s,s1
,

that is,
\| P\| \scrP \prod ev

\gamma s,s1

:= \| \v P\| \prod ev
\gamma s,s1

= \pi ev( \v P ).

The advantage of this approach is that it is already established in the literature (see, for
example, [2, page 46]) that this set, with this norm, is a Banach ideal of n-homogeneous
polynomials.

But then, one question arises: What is the relationship between the norms \pi (ev)(P )
and \| P\| \scrP \prod ev

\gamma s,s1

? The answer of this question is given in the next proposition.

Proposition 2.8. The norm \pi (ev)(\cdot ), defined in Corollary 2.6, satisfies the relation

\pi (ev)(P ) \leq \pi ev( \v P ) \leq mm

m!
\pi (ev)(P )

for any P \in \scrP (ev)
\gamma s,s1

(mE;F ).

Proof. If P \in \scrP (ev)
\gamma s,s1

(mE;F ), then, by Proposition 2.3, \v P is \gamma s,s1 -summing in every point.
In this way, for any (xj)

\infty 
j=1 \in \gamma s1(E) and a \in E, we have\bigm\| \bigm\| \bigm\| (P (a+ xj) - P (a))

\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(F )

=
\bigm\| \bigm\| \bigm\| \bigl( \v P (a+ xj)

m  - \v P (a)m
\bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(F )

\leq \pi ev( \v P )

\biggl( 
\| a\| +

\bigm\| \bigm\| \bigm\| (xj)
\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s1

(E)

\biggr) m

,

from which it follows that \pi (ev)(P ) \leq \pi ev( \v P ).
For the other inequality, we will use the same tools that appear in the demonstration of

[19, Theorem 2]. Let G = E \times \gamma s1(E) be gifted with sum norm and \Phi :
\prod ev

\gamma s,s1
(Em;F ) \rightarrow 

\scrL (G, m. . ., G; \gamma s(F )) be defined by

\Phi (T )

\biggl( \biggl( 
a1,
\Bigl( 
x
(1)
j

\Bigr) \infty 
j=1

\biggr) 
, . . . ,

\biggl( 
am,

\Bigl( 
x
(m)
j

\Bigr) \infty 
j=1

\biggr) \biggr) 
=
\Bigl( 
T
\Bigl( 
a1 + x

(1)
j , . . . , am + x

(m)
j

\Bigr) 
 - T (a1, . . . , am)

\Bigr) \infty 
j=1

.

In [19] it was proved that \pi ev( \v P ) = \| \Phi ( \v P )\| . Using the Polarization Formula and
that \eta \gamma s,s1

(P ) is an m-homogeneous polymonial, defined in the proof of Theorem 2.5, we
obtain

\| \Phi ( \v P )\| \leq mm

m!
\| \eta \gamma s,s1

(P )\| 
Therefore, it follows from Remark 2.7 that

\pi (ev)(P ) \leq \pi ev( \v P ) \leq mm

m!
\pi (ev)(P ). \square 
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The inequality established in this proposition was already expected, since there is in
the literature a relationship between the norm of the an m-homogeneous polynomial P
and the symmetric m-linear application associate to P , by.

\| P\| \leq 
\bigm\| \bigm\| \v P\bigm\| \bigm\| \leq mm

m!
\| P\| 

which was shown in [15, Theorem 2.2]. This same shows that the constant mm/m! is the
best possible solution. For more details, see [15, example 2I].

We also emphasize that the Proposition 2.3 is of great importance because through it
we have that \scrP (ev)

\gamma s,s1
is a homogeneous polynomials ideal. We now need proof that this is a

normed homogeneous polynomials ideal and complete (Banach), with the norm \pi (ev)(\cdot ).
Using standard computations, it is not difficult to show the following result.

Proposition 2.9. (a) Let id\BbbK : \BbbK  - \rightarrow \BbbK be given by id\BbbK (x) = xm and suppose that

\gamma s1(\BbbK )
m\cdot \cdot \cdot \gamma s1(\BbbK )

1
\lhook \rightarrow \gamma s(\BbbK ).

Then, id\BbbK \in \scrP (ev)
\gamma s,s1

(m\BbbK ;\BbbK ) and \pi (ev)(id\BbbK ) = 1.

(b) The space \scrP (ev)
\gamma s,s1

(mE;F ) is complete under the norm \pi (ev)(\cdot ).

Theorem 2.10.
\Bigl( 
\scrP (ev)
\gamma s,s1

, \pi (ev)(\cdot )
\Bigr) 

is a Banach ideal of homogeneous polynomial between
Banach spaces.

Proof. Let u \in \scrL (G;E), P \in \scrP (mE;F ), t \in \scrL (F ;H) and a \in G. Given that \scrP (ev)
\gamma s,s1

is a
homogeneous polynomials ideal, then t \circ P \circ u \in \scrP (ev)

\gamma s,s1
(mG;H). Now, if (xj)

\infty 
j=1 \in \gamma s1(G),

then it follows from the linear stability of \gamma s and \gamma s1 that\bigm\| \bigm\| \bigm\| \bigl( t \circ P \circ u(a+ xj) - t \circ P \circ u(a)
\bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(H)

\leq \| t\| 
\bigm\| \bigm\| \bigm\| (P (u(a+ xj)) - P (u(a)))

\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(F )

= \| t\| 
\bigm\| \bigm\| \bigm\| (P (u(a) + u(xj)) - P (u(a)))

\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(F )

\leq \| t\| \pi (ev)(P )

\biggl( 
\| u(a)\| +

\bigm\| \bigm\| \bigm\| (u(xj))
\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s1

(E)

\biggr) m

\leq \| t\| \pi (ev)(P )\| u\| 
\biggl( 
\| a\| +

\bigm\| \bigm\| \bigm\| (xj)
\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s1

(G)

\biggr) m

.

So, \scrP (ev)
\gamma s,s1

satisfies the ideal property and

\pi (ev)(t \circ P \circ u) \leq \| t\| \pi (ev)(P )\| u\| .

Therefore, it follows from Proposition 2.9 that
\Bigl( 
\scrP (ev)
\gamma s,s1

, \pi (ev)(\cdot )
\Bigr) 

is a homogeneous poly-
nomial ideal Banach between Banach spaces. \square 

The results of this section show us several properties about the homogeneous polynomial
classes shown in Example 2.2. Among other advantages, we obtain that this class is a
Banach ideal of homogeneous polynomials. However, since Rad and \ell up are not linearly
stable, we cannot claim that the class of item (c) of Example 2.2 satisfies the equivalence
(a) and (b) of Theorem 2.5. For more detail, see [3].

3. Coherence and compatibility

In this section, we will study the coherence and the compatibility of the pairs formed by
the ideals of \gamma -summing multilinear applications and \gamma -summing homogeneous polynomials.
This concept that was introduced in the literature by Pellegrino and Ribeiro in [17], and
their definitions are presented below.
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We will consider the sequence (\scrU k,\scrM k)
N
k=1, where each \scrU k is a (quasi-) normed ideal of

k-homogeneous polynomials and each \scrM k is a (quasi-) normed ideal of k-linear mappings.
The parameter N can eventually be infinity.

Definition 3.1 (Compatible pair of ideals). Let \scrU be a normed operator ideal and
N \in (\BbbN  - \{ 1\} ) \cup \{ \infty \} . A sequence (\scrU n,\scrM n)

N
n=1, with \scrU 1 = \scrM 1 = \scrU , is compatible with

\scrU if there exists positive constants \alpha 1, \alpha 2, \alpha 3 such that for all Banach spaces E and F ,
the following conditions hold for all n \in \{ 2, \cdot \cdot \cdot , N\} :

(CP1) If k \in \{ 1, . . . , n\} , T \in \scrM n(E1, . . . , En;F ) and aj \in Ej for all j \in \{ 1, . . . , n\} \setminus \{ k\} ,
then Ta1,...,ak - 1,ak+1,...,an

\in \scrU (Ek;F ) and\bigm\| \bigm\| Ta1,...,ak - 1,ak+1,...,an

\bigm\| \bigm\| \leq \alpha 1 \| T\| \scrM n
\| a1\| \cdot \cdot \cdot \| ak - 1\| \| ak+1\| \cdot \cdot \cdot \| an\| .

(CP2) If P \in \scrU n(
nE;F ) and a \in E, then Pan - 1 \in \scrU (E;F ) and

\| Pan - 1\| \scrU \leq \alpha 2 \mathrm{m}\mathrm{a}\mathrm{x}
\Bigl\{ \bigm\| \bigm\| \v P\bigm\| \bigm\| \scrM n

, \| P\| \scrU n

\Bigr\} 
\| a\| n - 1.

(CP3) If u \in \scrU (En;F ), \gamma j \in E\prime 
j for all j = 1, . . . , n - 1, then

\gamma 1 \cdot \cdot \cdot \gamma n - 1u \in \scrM n(E1, . . . , En;F )

and
\| \gamma 1 \cdot \cdot \cdot \gamma n - 1u\| \scrM n

\leq \alpha 3\| \gamma 1\| \cdot \cdot \cdot \| \gamma n - 1\| \| u\| \scrU .

(CP4) If u \in \scrU (E;F ) and \gamma \in E\prime , then \gamma (n - 1)u \in \scrU n(
nE;F ).

(CP5) P belongs to \scrU n(
nE;F ) if, and only if, \v P belongs to \scrM n(

nE;F ).

Definition 3.2 (Coherent pair of ideals). Let \scrU be a normed operator ideal and let
N \in \BbbN \cup \{ \infty \} . A sequence (\scrU k,\scrM k)

N
k=1, with \scrU 1 = \scrM 1 = \scrU , is coherent if there

exist positive constants \beta 1, \beta 2, \beta 3 such that for all Banach spaces E and F the following
conditions hold for k = 1, . . . , N  - 1 :

(CH1) If T \in \scrM k+1 (E1, . . . , Ek+1;F ) and aj \in Ej for j = 1, . . . , k + 1, then

Taj \in \scrM k (E1, . . . , Ej - 1, Ej+1, . . . , Ek+1;F )

and \bigm\| \bigm\| Taj

\bigm\| \bigm\| 
\scrM k

\leq \beta 1 \| T\| \scrM k+1
\| aj\| .

(CH2) If P \in \scrU k+1

\bigl( 
k+1E;F

\bigr) 
, a \in E, then Pa belongs to \scrU k

\bigl( 
kE;F

\bigr) 
and

\| Pa\| \scrU k
\leq \beta 2 \mathrm{m}\mathrm{a}\mathrm{x}

\Bigl\{ \bigm\| \bigm\| \v P\bigm\| \bigm\| \scrM k+1
, \| P\| \scrU k+1

\Bigr\} 
\| a\| .

(CH3) If T \in \scrM k(E1, . . . , Ek;F ), \gamma \in E\prime 
k+1, then

\gamma T \in \scrM k+1(E1, . . . , Ek+1;F )

and
\| \gamma T\| \scrM k+1

\leq \beta 3\| \gamma \| \| T\| \scrM k
.

(CH4) If P \in \scrU k

\bigl( 
kE;F

\bigr) 
and \gamma \in E\prime , then \gamma P \in \scrU k+1

\bigl( 
k+1E;F

\bigr) 
.

(CH5) For all k = 1, . . . , N , P belongs to \scrU k(
kE;F ) if, and only if, \v P belongs to

\scrM k(
kE;F ).

In this section, we will denote the Banach \gamma s,s1-summing m-linear operators ideal
and the Banach \gamma s,s1-summing m-homogeneous polynomials ideal by

\Bigl( \prod m,ev
\gamma s,s1

;\pi m,ev(\cdot )
\Bigr) 

and
\Bigl( 
\scrP m,(ev)
\gamma s,s1

;\pi m,(ev)(\cdot )
\Bigr) 
, respectively. The reason for this is to evidence the linear-

ity/homogeneity of the components of the ideal.

We will study the coherence and the compatibility of the pair
\Bigl( 
\scrP m,(ev)
\gamma s,s1

,
\prod m,(ev)

\gamma s,s1

\Bigr) N
m=1

with the ideal of all absolutely \gamma s,s1-summing linear operators
\prod 

\gamma s,s1
.
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Remark 3.3. For any Banach spaces E and F ,
1,ev\prod 
\gamma s,s1

(E;F ) = \scrP 1,(ev)
\gamma s,s1

(E;F ) =
\prod 
\gamma s,s1

(E;F ).

In the next two propositions, we will check the conditions (CH1) and (CH2) of
Definition 3.2

Proposition 3.4. For each T \in 
\prod m+1,ev

\gamma s,s1
(E1, . . . , Em+1;F ) and (a1, . . . , am+1) \in E1 \times 

\cdot \cdot \cdot \times Em+1,

Tak
(x1, . . . , xk - 1, xk+1, . . . , xm+1) := T (x1, . . . , xk - 1, ak, xk+1, . . . , xm+1)

belongs to
\prod m,ev

\gamma s,s1
(E1, . . . , Ek - 1, Ek+1, . . . , Em+1;F ) and

\pi m,ev(Tak
) \leq \pi m+1,ev(T )\| ak\| .

Proof. Let T \in 
\prod m+1,ev

\gamma s,s1
(E1, . . . , Em+1;F ) and (a1, . . . , am+1) \in E1 \times \cdot \cdot \cdot \times Em+1,\Bigl( 

x
(n)
j

\Bigr) \infty 
j=1

\in \gamma s1(En), for n = 1, . . . , k  - 1, k + 1, . . . ,m + 1. We will do the compu-

tations only for k = 1. The remaining cases are similar. Thus, for each bi \in Ei and\bigl( 
xi
j

\bigr) \infty 
j=1

\in \gamma s1(Ei), i = 2, . . . ,m, consider the null-sequence
\Bigl( 
x
(1)
j

\Bigr) \infty 
j=1

\in \gamma s1(E1); that is,

x
(1)
j = 0 for every j \in \BbbN . Then,\Bigl( 

Ta1(b2 + x
(2)
j , . . . , bm+1 + x

(m+1)
j ) - Ta1

(b2, . . . , bm+1)
\Bigr) \infty 
j=1

=
\Bigl( 
T (a1 + x

(1)
j , b2 + x

(2)
j , . . . , bm+1 + x

(m+1)
j ) - T (a1, b2, . . . , bm+1)

\Bigr) \infty 
j=1

\in \gamma s(F ).

Thus, Ta1
\in 
\prod m,ev

\gamma s,s1
(E2, . . . , Em+1;F ). So,\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( Ta1(b2 + x

(2)
j , . . . , bm+1 + x

(m+1)
j ) - Ta1(b2, ..., bm+1)

\Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s(F )

\leq \pi m+1,ev(T )\| a1\| 
\Bigl( 
\| b2\| +

\bigm\| \bigm\| \bigm\| \bigl( x(2)
j

\bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s1

(E1)

\Bigr) 
\cdot \cdot \cdot 
\Bigl( 
\| bm+1\| +

\bigm\| \bigm\| \bigm\| \bigl( x(m+1)
j

\bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s1

(Em)

\Bigr) 
.

Therefore,
\pi m,ev(Ta1

) \leq \pi m+1,ev(T )\| a1\| . \square 

It follows from Proposition 3.4 the following result.

Proposition 3.5. For each P \in \scrP m+1,(ev)
\gamma s,s1

(m+1E,F ) and a \in E, so Pa belongs to
\scrP m,(ev)
\gamma s,s1

(mE,F ) and
\pi m,ev(Pa) \leq \pi m+1,ev( \v P )\| a\| ,

where
Pa(x) := \v P (a, x, m. . ., x).

The next definition contains an important property that will be used to prove (CH3)
and (CH4) of Definition 3.2.

Definition 3.6. Let E be a Banach space and \gamma s be a sequence class. We say that the
sequence class \gamma s is \BbbK -closed when, for any (xj)

\infty 
j=1 \in \gamma s (\BbbK ) and (yj)

\infty 
j=1 \in \gamma s (E), the

sequence (zj)
\infty 
j=1 \in \gamma s (E), where zj = xjyj and\bigm\| \bigm\| \bigm\| (zj)\infty j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(E)

\leq 
\bigm\| \bigm\| \bigm\| (xj)

\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(\BbbK )

\bigm\| \bigm\| \bigm\| (yj)\infty j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(E)

Example 3.7. The sequence classes \ell p\langle \cdot \rangle , \ell p(\cdot ), \ell mid
p (\cdot ) and \ell wp (\cdot ) are \BbbK -closed.
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Definition 3.8. Let \gamma s and \gamma s1 be sequence classes. We say that \gamma s and \gamma s1 are finitely
coincident, when for all finite-dimensional linear space E, we have \gamma s(E) = \gamma s1(E) and\bigm\| \bigm\| \bigm\| (xj)

\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(E)

=
\bigm\| \bigm\| \bigm\| (xj)

\infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s1

(E)
.

Remark 3.9. In the next two propositions we will assume that the sequence class \gamma s is
\BbbK -closed and \gamma s and \gamma s1 are finitely coincident.

Proposition 3.10. Let T \in 
\prod m,ev

\gamma s,s1
(E1, ..., Em;F ) and \varphi \in E\prime 

m+1, so

\varphi T \in 
\prod m+1,ev

\gamma s,s1

(E1, . . . , Em+1;F )

and
\pi m+1,ev(\varphi T ) \leq \| \varphi \| \pi m,ev(T ).

Proof. We will do only the case m = 2. The other cases are analogous. Let T \in \prod 2,ev
\gamma s,s1

(E1, E2;F ), \varphi \in E\prime 
3 and

\Bigl( 
x
(i)
j

\Bigr) \infty 
j=1

\in \gamma s1(Ei), ai \in Ei, i = 1, 2, 3. Thus, because

\gamma s is linearly stable, finitely determined, \BbbK -closed, and because \gamma s and \gamma s1 are finitely
coincident, it follows immediately that\Bigl( 

\varphi T
\Bigl( 
a1 + x

(1)
j , a2 + x

(2)
j , a3 + x

(3)
j

\Bigr) 
 - \varphi T (a1, a2, a3)

\Bigr) \infty 
j=1

\in \gamma s(F )

and,\bigm\| \bigm\| \bigm\| \bigl( \varphi T \bigl( a1 + x
(1)
j , a2 + x

(2)
j , a3 + x

(3)
j

\bigr) 
 - \varphi T (a1, a2, a3)

\bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| 
\gamma s(F )

\leq 
\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( T \Bigl( a1, x(2)

j

\Bigr) \Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s(F )

\Biggl( 
| \varphi (a3)| +

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( \varphi \Bigl( x(3)
j

\Bigr) \Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s1

(\BbbK )

\Biggr) 
+

+

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( T \Bigl( x(1)
j , a2

\Bigr) \Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s(F )

\Biggl( 
| \varphi (a3)| +

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( \varphi \Bigl( x(3)
j

\Bigr) \Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s1

(\BbbK )

\Biggr) 
+

+

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( T \Bigl( x(1)
j , x

(2)
j

\Bigr) \Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s(F )

\Biggl( 
| \varphi (a3)| +

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( \varphi \Bigl( x(3)
j

\Bigr) \Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s1

(\BbbK )

\Biggr) 
+

+ \| T (a1, a2)\| 
\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( \varphi \Bigl( x(3)

j

\Bigr) \Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s1 (\BbbK )

\leq \pi ev(T )\| a1\| 
\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( x(2)

j

\Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s1

(E2)

\| \varphi \| 

\Biggl( 
\| a3\| +

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( x(3)
j

\Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s1

(E3)

\Biggr) 
+

+\pi ev(T )\| a2\| 
\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( x(1)

j

\Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s1

(E1)

\| \varphi \| 

\Biggl( 
\| a3\| +

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( x(3)
j

\Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s1

(E3)

\Biggr) 
+

+\pi ev(T )

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( x(1)
j

\Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s1

(E1)

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( x(2)
j

\Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s1

(E2)

\| \varphi \| 

\Biggl( 
\| a3\| +

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( x(3)
j

\Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s1

(E3)

\Biggr) 
+

+\pi ev(T )\| a1\| \| a2\| \| \varphi \| 
\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( x(3)

j

\Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s1

(E3)

= \| \varphi \| \pi ev(T )

\Biggl( 
3\prod 

i=1

\Biggl( 
\| ai\| +

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( x(i)
j

\Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s1

(Ei)

\Biggr) 
 - \| a1\| \| a2\| \| a3\| 

\Biggr) 
.

Consequently,



ABSOLUTELY SUMMING POLYNOMIALS 85\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( \varphi T \Bigl( a1 + x
(1)
j , a2 + x

(2)
j , a3 + x

(3)
j

\Bigr) 
 - \varphi T (a1, a2, a3)

\Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s(F )

\leq \| \varphi \| \pi ev(T )

3\prod 
i=1

\Biggl( 
\| ai\| +

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( x(i)
j

\Bigr) \infty 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| 
\gamma s1

(Ei)

\Biggr) 
.

Therefore \varphi T \in 
\prod m+1,ev

\gamma s,s1
(E1, . . . , Em+1;F ) and

\pi m+1,ev(\varphi T ) \leq \| \varphi \| \pi m,ev(T ).

\square 

Using the same idea of Proposition 3.10, we get the following result.

Proposition 3.11. Let P \in \scrP m,(ev)
\gamma s,s1

(mE,F ) and \varphi \in E\prime . Then

\varphi P \in \scrP m+1,(ev)
\gamma s,s1

(m+1E;F )

and
\pi m+1,(ev)(\varphi P ) \leq \| \varphi \| \pi m,ev( \v P ).

By Propositions 3.4, 3.5, 3.10, 3.11 and 2.3, the pair\biggl( \Bigl( 
\scrP m,(ev)
\gamma s,s1

, \pi m,(ev)(\cdot )
\Bigr) 
,

\biggl( \prod m,ev

\gamma s,s1

, \pi m,ev(\cdot )
\biggr) \biggr) \infty 

m=1

is coherent. Since \beta 1 = 1, \beta 2 = 1 and \beta 3 = 1, it follows by [17, Remark 3.3] that the pair\Bigl( \Bigl( 
\scrP m,(ev)
\gamma s,s1

, \pi m,(ev)(\cdot )
\Bigr) 
,
\Bigl( \prod m,ev

\gamma s,s1
, \pi m,ev(\cdot )

\Bigr) \Bigr) \infty 
m=1

is compatible with
\prod 

\gamma s,s1
. So, we have

the following result.

Theorem 3.12. The sequence
\Bigl( \Bigl( 

\scrP m,(ev)
\gamma s,s1

, \pi m+1,(ev)(\cdot )
\Bigr) 
,
\Bigl( \prod m,ev

\gamma s,s1
, \pi m,ev(\cdot )

\Bigr) \Bigr) \infty 
m=1

is co-
herent and compatible with

\prod 
\gamma s,s1

.

It is important to point out that to obtain the proof of Proposition 2.3, 3.4 and 3.5
it is only necessary that the sequence classes be linearly stable and finitely determined.
However, to demonstrate the propositions 3.10 and 3.11, extra properties were required
for the classes involved; more specifically, the sequence classes should be finitely coincident
and the arrival sequence class should be \BbbK -closed. These conditions do not appear to be
very restrictive because the main classes of the summing ideals existing in the literature
are recovered by our work. The next section illustrates our arguments.

4. Applications

For any Banach space E, we will denote \ell p\langle E\rangle , \ell p(E) and \ell wp (E) the spaces of Cohen
strongly p-summing, absolutely p-summing and weakly p-summable E-valued sequences,
respectively. In 2014 S. Karn and D. Sinha [13] introduced the space \ell mid

p (E), which
was studied in more details by G. Botelho, J. Campos and J. Santos in [4]. This paper
established the inclusions

\ell p\langle E\rangle \subset \ell p(E) \subset \ell mid
p (E) \subset \ell wp (E). (4.5)

The nature of many operators in the literature is to "improve" the convergence of
series. For example, we can cite the absolutely summing operators that transform weakly
p-summable sequences into absolutely p-summable sequences. Thinking in this direction,
we can define several classes of operators that improve the convergence of the series. In
the next two examples, we will present classes that are already known and which are
particular cases of our work. In the other examples, we present a few classes of operators
that are not yet available in the literature, although they can easily be obtained through
the construction presented in this work.
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Example 4.1. (a) Let \scrP m,ev
(p,q) be the space of absolutely summing n-homogeneous

polynomials and
\prod m,ev

(p,q) be the space of absolutely summing multilinear operators.
For more details about this classes, see [1]. It immediately follows that the pair\biggl( \Bigl( 

\scrP m,ev
(p,q) , \| \cdot \| ev2

\Bigr) 
,

\biggl( \prod m,ev

(p,q)
, \| \cdot \| ev2(p,q)

\biggr) \biggr) \infty 

m=1

is coherent and compatible with
\prod 

(p,q).
(b) Let \scrP m,ev

Coh,p be the space of the n-homogeneous polynomials Cohen strongly p-
summing everywhere and \scrL m,ev

Coh,p be the space of the multilinears operators Cohen
strongly p-summing everywhere. For more details about this classes, see [7, 19].
It immediately follows that the pair

\Bigl( \Bigl( 
\scrP m,ev
Coh,p, \pi 

m,ev
\Bigr) 
,
\Bigl( 
\scrL m,ev
Coh,p, \pi 

m,ev
Coh,p

\Bigr) \Bigr) \infty 
m=1

is
coherent and compatible with \scrD p.

Note that, the classes of multilinears operator/ homogeneous polynomials that are
defined in these two examples consider applications that transform weakly strongly p-
summable sequences in strongly p-summable sequences and strongly p-summable sequences
in Cohen strongly p-summable. However, due to the inclusions given in (4.5), we can
introduce several classes of multilinear operators and homogeneous polynomials that are
yet not found in the literature. In this way, this approach establishes an interesting result
for this classes. We can consider these examples:

Example 4.2. (a) The classes of multilinears operators and homogeneous polynomi-
als that transform mid p-summable sequences in strongly p-summable operators.
In other words, to consider \gamma s = \ell p and \gamma s1 = \ell mid

p . We denote these classes as
multilinear operators and homogeneous polynomials mid strongly p-summing.

(b) The classes of multilinears operators and homogeneous polynomials that transform
weakly absolutely p-summable sequences in mid p-summable operators. In other
words, to consider \gamma s = \ell mid

p and \gamma s1 = \ell wp . We denote these classes as multilinear
operators and homogeneous polynomials weakly mid p-summing.

(c) The classes of multilinears operators and homogeneous polynomials that transform
weakly strongly p-summable and mid p-sommable sequences in Cohen strongly
p-summable operators. In other words, to consider \gamma s = \ell p\langle \cdot \rangle and \gamma s1 = \ell wp , \ell 

mid
p .

We denote these classes as multilinear operators and homogeneous polynomials
weakly Cohen p-summing and mid Cohen p-summing, respectively.

The abstract approach introduced in this paper unifies the way we treat homogeneous
polynomial classes that transform sequence spaces. Moreover, one of the advances of this
work is to have theories already well established in the literature (see Example 4.1) and
also to obtain new classes, as shown in Example 4.2.
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