TENSOR PRODUCT AND VARIANTS OF WEYL'S TYPE THEOREM FOR p - w-HYPONORMAL OPERATORS

M. H. M. RASHID

Abstract

A Hilbert space operator T is said to be p - w-hyponormal with $0<p \leq 1$ if $|\widetilde{T}|^{p} \geq|T|^{p} \geq\left|\widetilde{T}^{*}\right|^{p}$, where \widetilde{T} is the Aluthge transform. In this paper we prove basic properties of these operators. Using these results, we also prove that if P is a Riesz idempotent for a non-zero isolated point λ of the spectrum of T, then P is self-adjoint. Among other things, we prove these operators are finitely ascensive and that, for non-zero p-w-hyponormal T and $S, T \otimes S$ is p - w-hyponormal if and only if T and S are p-w-hyponormal. Moreover, it is shown that property ($g t$) holds for $f(T)$, where $f \in H_{n c}(\sigma(T))$.

Оператор T у гільбертовім просторі називається p - w-гіпонормальним, де $0<p \leq 1$, якщо $|\widetilde{T}|^{p} \geq|T|^{p} \geq|\widetilde{T}|^{p}$, де $\widetilde{T}-$ перетворення Алутге. В цій роботі досліджені основні властивості таких операторів. Показано також, що якщо P ідемпотент Picca, який відповідає ненульовій ізольованій точці λ спектру T, то оператор P самоспряжений. Доведено, що ці оператори мають скінченний підйом і що для ненульових p-w-гіпонормальних T і $S, T \otimes S$ є p - w-гіпонормальним тоді й тільки тоді, коли T і $S p$-w-гіпонормальні. Крім того, доведено, що властивість $(g t)$ має місце для $f(T)$, де $f \in H_{n c}(\sigma(T))$.

1. Introduction

Let \mathcal{X} (or $\mathcal{H})$ be a complex Banach (Hilbert, respectively) space and $\mathcal{B}(\mathcal{X})$ (or $\mathcal{B}(\mathcal{H})$) be the set of all bounded linear operators on \mathcal{X} (\mathcal{H}, respectively). Every operator T can be decomposed into $T=U|T|$ with a partial isometry U, where $|T|$ is the square root of $T^{*} T$. If U is determined uniquely by the kernel condition $\operatorname{ker}(U)=\operatorname{ker}(|T|)$, then this decomposition is called the polar decomposition, which is one of the most important results in operator theory ([27], [32], [41] and [44]). In this paper, $T=U|T|$ denotes the polar decomposition satisfying the kernel condition $\operatorname{ker}(U)=\operatorname{ker}(|T|)$.

Recall that an operator $T \in \mathcal{B}(\mathcal{H})$ is positive, $T \geq 0$, if $\langle T x, x\rangle \geq 0$ for all $x \in \mathcal{H}$. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be hyponormal if $T^{*} T \geq T T^{*}$. Hyponormal operators have been studied by many authors and it is known that hyponormal operators have many interesting properties similar to those of normal operators [7, 22, 25, 28, 29, 38]. An operator T is said to be p-hyponormal $\operatorname{if}\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$ for $p \in(0,1]$ and an operator T is said to be log-hyponormal if T is invertible and $\log |T| \geq \log \left|T^{*}\right|$. p-hyponormal and \log hyponormal operators are defined as extension of hyponormal operator. Aluthge [6] defined the operator $\widetilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$, called the Aluthge transformation of T. An operator T is said to be w-hyponormal if $|\widetilde{T}| \geq|T| \geq|\widetilde{T}|$. The operator $\widetilde{T}(s, t)=|T|^{s} U|T|^{t}$ is the generalized Aluthge transformation of T in [6]. The classes of log-hyponormal and w-hyponormal operators were introduced and their properties were studied in [8] and [9]. It is known that the square of a w-hyponormal operator is also w-hyponormal. In [9], Aluthge showed that the class of w-hyponormal operator properly contains the classes of p-hyponormal operators and log-hyponormal.

[^0]In [21], [31], and [20] Yang Changsen, Li Haiying introduced a class of p - w-hyponormal $(0<p<1)$ which means that if $|\widetilde{T}|^{p} \geq|T|^{p} \geq\left|\widetilde{T}^{*}\right|^{p}$. In [7], they showed that there exists an invertible operator whose integer powers are all p-w-hyponormal. As a generalization of class p-w-hyponormal $(0<p<1)$ Li Haiying [30] introduced a new class called (s, p) -w-hyponormal which mean that if $|\widetilde{T}(s, s)|^{p} \geq|T|^{2 s p} \geq|\widetilde{T}(s, s)|^{p}(s>0,0<p<1)$. Clearly, if $s=\frac{1}{2}$, an (s, p)-w-hyponormal operator is p-w-hyponormal. That is to say, the class of (s, p)-w-hyponormal operators contains the class of p - w-hyponormal operators.

Throughout this paper, we shall denote the spectrum, the point spectrum and the isolated points of the spectrum of $T \in \mathcal{B}(\mathcal{H})$ by $\sigma(T), \sigma_{p}(T)$ and $i s o \sigma(T)$, respectively. The range and the kernel of $T \in \mathcal{B}(\mathcal{H})$ will be denoted by $\mathcal{R}(T)=T \mathcal{H}$ and $\operatorname{ker}(T)$, respectively. We shall denote the set of all complex numbers and the complex conjugate of a complex number λ by \mathbb{C} and $\bar{\lambda}$, respectively. The closure of a set S will be denoted by \bar{S} and we shall henceforth shorten $T-\lambda I$ to $T-\lambda$.

In Section 2, we prove basic properties of p-w-hyponormal operators. Among other things, we prove these operators are finitely ascensive. Section 3 is devoted to characterize the quasinilpotent $H_{0}(T-\lambda)=\left\{x \in \mathcal{H}: \lim _{n \xrightarrow{\longrightarrow}}\left\|(T-\lambda)^{n} x\right\|^{\frac{1}{n}}=0\right\}$ of p-w-hyponormal operators. Using the results established in Section 2, we also prove that if P is a Riesz idempotent for a non-zero isolated point λ of the spectrum of T, then P is self-adjoint and $\operatorname{ker}(T-\lambda)=\mathcal{R}(P)=\operatorname{ker}(T-\lambda)^{*}$. In Section 4, we prove that for non-zero $p-w$ hyponormal T and $S, T \otimes S$ is p-w-hyponormal if and only if T and S are p - w-hyponormal. Moreover, in Section 5, it is shown that property $(g t)$ holds for $f(T)$, and f is an analytic function defined on an open neighborhood of the spectrum of T such that f is non constant on each of the components of its domain.

2. Spectral Properties of p-w-hyponormal operators

To prove our main Theorems, we need the following results.
Lemma 2.1. [33, Hansen's Inequality] If $A, B \in \mathcal{B}(\mathcal{H})$ satisfy $A \geq 0$ and $\|B\| \leq 1$, then

$$
\left(B^{*} A B\right)^{\alpha} \geq B^{*} A^{\alpha} B \quad \text { for all } \alpha \in(0,1] .
$$

Lemma 2.2. [34, Löwer-Heinz theorem] $A \geq B \geq 0$ ensure $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in[0,1]$.
Theorem 2.3. [6] Let $T \in \mathcal{B}(\mathcal{H})$. If T is p-hyponormal, then the following hold:
(i) \widetilde{T} is $\left(p+\frac{1}{2}\right)$-hyponormal for $0<p \leq \frac{1}{2}$;
(ii) \widetilde{T} is hyponormal for $\frac{1}{2} \leq p \leq 1$.

Proposition 2.4. ([21]) Let $T \in \mathcal{B}(\mathcal{H})$. Then the following conditions are equivalent to each other:
(i) T is p-w-hyponormal;
(ii) $|T|^{p} \geq\left(|T|^{\frac{1}{2}}\left|T^{*}\right||T|^{\frac{1}{2}}\right)^{\frac{p}{2}}$ and $\left(\left|T^{*}\right|^{\frac{1}{2}}|T|\left|T^{*}\right|^{\frac{1}{2}}\right)^{\frac{p}{2}} \geq\left|T^{*}\right|^{p}$;
(iii) $\left|{\widetilde{T^{*}}}^{*}\right|^{p} \geq\left|T^{*}\right|^{p} \geq\left|\widetilde{T^{*}}\right|^{p}$.

Theorem 2.5. ([30]) Let $T \in \mathcal{B}(\mathcal{H})$. The following conditions are equivalent:
(i) T is (s, p)-w-hyponormal;
(ii) $|T|^{2 s p} \geq\left(|T|^{s}\left|T^{*}\right|^{2 s}|T|^{s}\right)^{\frac{p}{2}}$ and $\left(\left|T^{*}\right|^{s}|T|^{2 s}\left|T^{*}\right|^{s}\right)^{\frac{p}{2}} \geq\left|T^{*}\right|^{2 s p}$;
(iii) $\left|\widetilde{T^{*}}(s, s)^{*}\right| \geq\left|T^{*}\right|^{2 s p} \geq\left|\widetilde{T}^{*}(s, s)\right|$.

Lemma 2.6. Let $T \in \mathcal{B}(\mathcal{H})$. If T is an invertible ($s, p)$-w-hyponormal operator, then so is T^{-1}.

Proof. Since $\left|T^{-1}\right|=\left|T^{*}\right|^{-1},\left|T^{-1^{*}}\right|=|T|^{-1}$ and $T \geq I \Longleftrightarrow T^{-1} \leq I$. Applying (ii) of Theorem 2.5, we have

$$
\begin{aligned}
&\left(\left|T^{*}\right|^{s}|T|^{2 s}\left|T^{*}\right|^{s}\right)^{\frac{p}{2}} \geq\left|T^{*}\right|^{2 s p} \\
& \Rightarrow\left|T^{*}\right|^{-s p}\left(\left|T^{*}\right|^{\frac{1}{2}}|T|\left|T^{*}\right|^{s}\right)^{\frac{p}{2}}\left|T^{*}\right|^{-s p} \geq I \\
& \Rightarrow\left(\left|T^{*}\right|^{-s p}\left(\left|T^{*}\right|^{s}|T|^{2 s}\left|T^{*}\right|^{s}\right)^{\frac{p}{2}}\left|T^{*}\right|^{-s p}\right)^{-1} \leq I \\
& \Rightarrow\left|T^{*}\right|^{s p}\left(\left|T^{*}\right|^{s}|T|^{2 s}\left|T^{*}\right|^{s}\right)^{-\frac{p}{2}}\left|T^{*}\right|^{s p} \leq I \\
& \Rightarrow\left(\left|T^{*}\right|^{-s}|T|^{-2 s}\left|T^{*}\right|^{-s}\right)^{\frac{p}{2}} \leq\left|T^{*}\right|^{-2 s p} \\
& \Rightarrow\left(\left|T^{-1}\right|^{s}\left|T^{-1^{*}}\right|^{2 s}\left|T^{-1}\right|^{s}\right)^{\frac{p}{2}} \leq\left|T^{-1}\right|^{2 s p}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
|T|^{2 s p} & \geq\left(|T|^{s}\left|T^{*}\right|^{2 s}|T|^{s}\right)^{\frac{p}{2}} \\
& \Rightarrow\left(|T|^{s}\left|T^{*}\right|^{2 s}|T|^{s}\right)^{-\frac{p}{4}}|T|^{2 s p}\left(|T|^{s}\left|T^{*}\right|^{2 s}|T|^{s}\right)^{-\frac{p}{4}} \geq I \\
& \Rightarrow\left(|T|^{s}\left|T^{*}\right|^{2 s}|T|^{s}\right)^{\frac{p}{4}}|T|^{-2 s p}\left(|T|^{s}\left|T^{*}\right|^{2 s}|T|^{s}\right)^{\frac{p}{4}} \leq I \\
& \Rightarrow\left|T^{*-1}\right|^{2 s p} \leq\left(|T|^{s}\left|T^{*}\right|^{2 s}|T|^{s}\right)^{-\frac{p}{2}} \\
& \Rightarrow\left|T^{-1^{*}}\right|^{2 s p} \leq\left(|T|^{-s}\left|T^{*}\right|^{-2 s}|T|^{-s}\right)^{\frac{p}{2}} \\
& \Rightarrow\left|T^{-1^{*}}\right|^{2 s p} \leq\left(\left|T^{-1^{*}}\right|^{s}\left|T^{-1}\right|^{2 s}\left|T^{-1^{*}}\right|^{s}\right)^{\frac{p}{2}} .
\end{aligned}
$$

That is, T^{-1} is (s, p)-w-hyponormal operator.
Letting $s=\frac{1}{2}$ in Lemma 2.6, we have immediately
Corollary 2.7. Let $T \in \mathcal{B}(\mathcal{H})$. If T is an invertible p-w-hyponormal operator, $0<p \leq 1$, then so is T^{-1}.
Lemma 2.8. If T is p-w-hyponormal, then \widetilde{T} is $\frac{p}{2}$-hyponormal, $\widetilde{\widetilde{T}}$ is $\frac{p+1}{2}$-hyponormal and $\widetilde{\widetilde{T}}$ is hyponormal.
Proof. The definition of p-w-hyponormal clearly implies that \widetilde{T} is $\frac{p}{2}$-hyponormal. Since \widetilde{T} is $\frac{p}{2}$-hyponormal, $\widetilde{\widetilde{T}}$ is $\frac{p+1}{2}$-hyponormal by Theorem 2.3 , again by Theorem $2.3 \widetilde{\widetilde{T}}$ is hyponormal.

An operator T is said to be normaloid if $\|T\|=r(T)$, where $r(T)$ is the spectral radius of T. The equality $\|T\|=r(T)$ was shown to hold in [51] for hyponormal operators, in [6] for p-hyponormal and in [8]. The next theorem shows that the equality holds for p-w-hyponormal operators.

Theorem 2.9. Let $T \in \mathcal{B}(\mathcal{H})$. If T is p-w-hyponormal, then $\|\widetilde{\widetilde{T}}\|=\|\widetilde{\widetilde{T}}\|=\|\widetilde{T}\|=$ $\|T\|=r(T)$. That is, T is normaloid.
Proof. Since $\widetilde{\widetilde{T}}$ is hyponormal, $\|\widetilde{\widetilde{T}}\|=r(\underset{\widetilde{T}}{\widetilde{T}})$ by [51, Theorem 1]. The result follows by [8, Corollary 2.3] since $\sigma(T)=\sigma(\widetilde{T})=\sigma(\widetilde{\widetilde{T}})=\sigma(\widetilde{\widetilde{T}})$.

Theorem 2.10. Let $T \in \mathcal{B}(\mathcal{H})$ be p-w-hyponormal operator. Then T is
(a) normal if $\sigma(T)$ is an arc or if $\sigma(T)$ has only a finite number of limit points;
(b) self-adjoint if $\sigma(T) \subset \mathbb{R}$;
(c) unitary if $\sigma(T)$ is contained in the unit circle.

Proof. (a) If $\sigma(T)$ is an arc, then $\sigma(\widetilde{\widetilde{T}})$ is an arc by [8, Corollary 2.3]. The hyponormality of $\widetilde{\widetilde{T}}^{\text {implies }} \underset{\widetilde{T}}{\widetilde{\widetilde{T}}}$ is normal [51, Theorem 4]. Applying [31, Theorem 4.4] to $\widetilde{\widetilde{T}}$, we obtain $\widetilde{\widetilde{T}}=\widetilde{\widetilde{T}}$ and thus $\widetilde{\widetilde{T}}$ is normal. Applying the same theorem to \widetilde{T} firstly and to T secondly yields $\widetilde{\widetilde{T}}=\widetilde{T}$ and $T=\widetilde{T}$ and hence T is normal.
(b) If $\sigma(T) \subset \mathbb{R}$, then $\sigma(\widetilde{T}) \subset \mathbb{R}$ by [8, Corollary 2.3]. The p-hyponormality of \widetilde{T} implies that \widetilde{T} is self-adjoint and $\widetilde{T}=T$, so the result.
(c) Both T and T^{-1} are p - w-hyponormal and their spectra are subsets of $\mathbb{T}=\{\lambda \in \mathbb{C}$: $|\lambda|=1\}$. Consequently, by Theorem $2.9\|T\|=\left\|T^{-1}\right\|=1$, and so T is a unitary.

Corollary 2.11. A compact p-w-hyponormal operator is normal.
Theorem 2.12. Let $T \in \mathcal{B}(\mathcal{H})$ be p-w-hyponormal operator. If the planar Lebesgue measure $m_{2}(\sigma(T))$ of $\sigma(T)$ is 0 , then T is normal.

Proof. Since \widetilde{T} is $\frac{p}{2}$-hyponormal by Lemma 2.8, and $\sigma(\widetilde{T})=\sigma(T)$ by [8, Corollary 2.3], we have $m_{2}(\sigma(\widetilde{T}))=0$. Hence \widetilde{T} is normal by Putnam's inequality [54, Corollary]. Thus T is normal by [31, Theorem 4.4].

Let $\bar{W}(S)$ denotes the closure of the numerical range of the operator S. In [50] showed that if T is hyponormal, $T=S^{-1} T^{*} S$ and $0 \notin \bar{W}(S)$, then T is self-adjoint. The next theorem gives an extension of Sheh's result to p-w-hyponormal operators.

Theorem 2.13. Let $T \in \mathcal{B}(\mathcal{H})$ be p-w-hyponormal operator. If $T=S^{-1} T^{*} S$ and $0 \notin \bar{W}(S)$, then T is self-adjoint.

Proof. If $T=S^{-1} T^{*} S$ and $0 \notin \bar{W}(S)$, then it follows from [39, Theorem 1] that $\sigma(T) \subset \mathbb{R}$. Since a p-w-hyponormal operator T with $\sigma(T) \subset \mathbb{R}$ is self-adjoint, the result follows.

A complex number λ is said to be in the point spectrum $\sigma_{p}(T)$ of an operator T if there is a non-zero vector x for which $(T-\lambda) x=0$. If in addition, $\left(T^{*}-\bar{\lambda}\right) x=0$, then λ to be in the joint point spectrum $\sigma_{j p}(T)$ of T. In general, one has $\sigma_{j p}(T) \subset \sigma_{p}(T)$. It is known the equality holds for p-hyponormal [6].

If T is hyponormal, it is easy to see [51, Lemma 2] that T posses the property that $T x=\lambda x$ implies $T^{*} x=\bar{\lambda} x$. This property clearly implies $\sigma_{p}(T)=\sigma_{j p}(T)$ if T is hyponormal. In the sequel, we show that p - w-hyponormal also possess this property provided $\lambda \neq 0$. Consequently the non-zero points of $\sigma_{p}(T)$ and $\sigma_{j p}(T)$ are identical if T is p-w-hyponormal.

Theorem 2.14. Let $T \in \mathcal{B}(\mathcal{H})$ be p-w-hyponormal operator. If $T x=\lambda x, \lambda \neq 0$, then $T^{*} x=\bar{\lambda} x$.

Proof. Since \widetilde{T} is $\frac{p}{2}$-hyponormal by Lemma $2.8, \widetilde{T}$ possesses the property that $\widetilde{T} x=\lambda x$ implies $\widetilde{T^{*}} x=\bar{\lambda} x$. It follows from [8, Lemma 3.1] that T possesses the same property.

Corollary 2.15. If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal operator, then $\sigma_{p}(T) \backslash\{0\}=\sigma_{j p}(T) \backslash$ $\{0\}$.

Corollary 2.16. Let $T \in \mathcal{B}(\mathcal{H})$ be p-w-hyponormal operator with $T x=\lambda x$, $T y=\mu y$ and $\lambda \neq \mu$. Then $\langle x, y\rangle=0$.

Proof. Without loss of generality, assume $\mu \neq 0$. Then $T^{*} y=\bar{\mu} y$ by Theorem 2.14. Thus,

$$
\mu\langle x, y\rangle=\left\langle x, T^{*} y\right\rangle=\langle T x, y\rangle=\lambda\langle x, y\rangle
$$

Since $\lambda \neq \mu,\langle x, y\rangle=0$.

Let $\sigma_{a}(T)$ denotes the approximate point spectrum of the operator T. In [56], Xia proved that if T is semi-hyponormal, then $\sigma(T)=\left\{\lambda: \bar{\lambda} \in \sigma_{a}\left(T^{*}\right)\right\}$. The next proposition shows that if T is p-w-hyponormal, the non-zero points of $\sigma(T)$ and $\left\{\lambda: \bar{\lambda} \in \sigma_{a}\left(T^{*}\right)\right\}$ are identical.
Proposition 2.17. If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal operator, then

$$
\sigma(T) \backslash\{0\}=\left\{\lambda: \bar{\lambda} \in \sigma_{a}\left(T^{*}\right)\right\} \backslash\{0\} .
$$

Proof. In [56], it was shown that for any operator T, the equality $\sigma(T)=\sigma_{p}(T) \cup\{\lambda$: $\left.\bar{\lambda} \in \sigma_{a}\left(T^{*}\right)\right\}$ holds. If T is p-w-hyponormal, then Corollary 2.15 implies $\sigma_{p}(T) \backslash\{0\}=$ $\sigma_{j p}(T) \backslash\{0\} \subset\left\{\lambda: \bar{\lambda} \in \sigma_{p}\left(T^{*}\right)\right\} \backslash\{0\}$. Since $\sigma_{p}\left(T^{*}\right) \subset \sigma_{a}\left(T^{*}\right)$, the result follows.

Here and elsewhere in this paper, for $A \subset \mathbb{C}$, iso A denotes the set of all isolated points of A and $\operatorname{acc} A$ denotes the set of all points of accumulation of A.

A bounded linear operator T is said to be isoloid if iso $\sigma(T) \subset \sigma_{p}(T)$.
Theorem 2.18. Let $T \in \mathcal{B}(\mathcal{H})$ be p-w-hyponormal. If λ is an isolated point in $\sigma(T)$, then $\lambda \in \sigma_{p}(T)$. That is, T is isoloid.
Proof. Since $\sigma(T)=\sigma(\widetilde{\widetilde{T}}), \lambda$ is an isolated point of $\sigma(\widetilde{\widetilde{T}})$. the hyponormality of $\widetilde{\widetilde{T}}$ implies that $\lambda \in \sigma_{p}(\widetilde{\widetilde{T}})$ by [51, Theorem 2]. It follows from the fact T is invertible if and only if \widetilde{T} is invertible that $\sigma_{p}(T)=\sigma_{p}(\widetilde{T})=\sigma_{p}(\widetilde{\widetilde{T}})=\sigma_{p}(\widetilde{\widetilde{T}})$. Thus, $\lambda \in \sigma_{p}(T)$ and the proof is complete.

Recall that a complex number λ is said to be in the approximate point spectrum $\sigma_{a}(T)$ of the operator T if there is a sequence $\left\{x_{n}\right\}$ of unit vectors in \mathcal{H} such that $(T-\lambda) x_{n}=0$. If in addition, $\left(T^{*}-\bar{\lambda}\right) x_{n}=0$, then λ is said to be in the joint approximate point spectrum $\sigma_{j a}(T)$ of T. Clearly, one has $\sigma_{j a}(T) \subset \sigma_{a}(T)$. It is known [9] that if T is w-hyponormal, then $\sigma_{j a}(T) \backslash\{0\}=\sigma_{a}(T) \backslash\{0\}$. Here we show that if T is p - w-hyponormal, then the same result holds.
Theorem 2.19. [12] Given a Hilbert space \mathcal{H}, there exists a Hilbert space $\mathcal{K} \supset \mathcal{H}$ and a map $\phi: \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{K})$ such that
(a) ϕ is a faithful $*$-representation of the algebra $\mathcal{B}(\mathcal{H})$ on \mathcal{K},
(b) $\phi(A) \geq 0$ for any $A \geq 0$ in $\mathcal{B}(\mathcal{H})$, and
(c) $\sigma_{a}(T)=\sigma_{a}(\phi(T))=\sigma_{p}(\phi(T))$ for any $T \in \mathcal{B}(\mathcal{H})$.

We also need the following corollary which Xia observed in [56].
Corollary 2.20. Let $\phi: \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{K})$ be the Berberian's faithful $*$-representation. For any operator $T \in \mathcal{B}(\mathcal{H}), \sigma_{j p}(\phi(T))=\sigma_{j a}(T)$.
Theorem 2.21. If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal, then $\sigma_{j a}(T) \backslash\{0\}=\sigma_{a}(T) \backslash\{0\}$.
Proof. Let ϕ be the representation of Berberian. First, we show that $\phi(T)$ is p - w hyponormal. In view of Proposition 2.4, we need only establish

$$
|\phi(T)|^{p} \geq\left(|\phi(T)|^{\frac{1}{2}}\left|\phi(T)^{*}\right||\phi(T)|^{\frac{1}{2}}\right)^{\frac{p}{2}}
$$

and

$$
\left(\left|\phi(T)^{*}\right|^{\frac{1}{2}}\left|\phi(T) \| \phi(T)^{*}\right|^{\frac{1}{2}}\right)^{\frac{p}{2}} \geq\left|\phi(T)^{*}\right|^{p} .
$$

Part (a) and (b) of Theorem 2.19 imply

$$
|\phi(T)|^{p}=\phi\left(|T|^{p}\right) \geq \phi\left(\left(|T|^{\frac{1}{2}}\left|T^{*}\right||T||T|^{\frac{1}{2}}\right)^{\frac{p}{2}}\right)=\left(|\phi(T)|^{\frac{1}{2}}\left|\phi(T)^{*}\right||\phi(T)|^{\frac{1}{2}}\right)^{\frac{p}{2}},
$$

and similarly,

$$
\left(\left|\phi(T)^{*}\right|^{\frac{1}{2}}\left|\phi(T) \| \phi(T)^{*}\right|^{\frac{1}{2}}\right)^{\frac{p}{2}} \geq\left|\phi(T)^{*}\right|^{p} .
$$

Thus, $\phi(T)$ is p-w-hyponormal. Now, by part(c) of Theorem 2.19, we have

$$
\begin{aligned}
\sigma_{a}(T) \backslash\{0\} & =\sigma_{a}(\phi(T)) \backslash\{0\} \\
& =\sigma_{p}(\phi(T)) \backslash\{0\} \\
& =\sigma_{j p}(\phi(T)) \backslash\{0\} \quad \text { by Corollary } 2.15 \\
& =\sigma_{j a}(T) \backslash\{0\}
\end{aligned}
$$

where the last equality follows from Corollary 2.20 . The proof is complete.
Corollary 2.22. If $T \in \mathcal{B}(\mathcal{H})$ is an invertible p-w-hyponormal, then $\sigma_{a}(T)=\sigma_{j a}(T)$.
Lemma 2.23. (Hölder-McCarthy Inequality) Let $A \geq 0$. Then the following assertions hold.
(i) $\left\langle A^{r} x, x\right\rangle \geq\langle A x, x\rangle^{r}\|x\|^{2(1-r)}$ for $r>1$ and $x \in \mathcal{H}$.
(ii) $\left\langle A^{r} x, x\right\rangle \leq\langle A x, x\rangle^{r}\|x\|^{2(1-r)}$ for $r \in[0,1]$ and $x \in \mathcal{H}$.

Theorem 2.24. If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal, $0<p \leq 1$. Then

$$
\operatorname{ker}(T-\lambda)^{2}=\operatorname{ker}(T-\lambda) \text { for all } \lambda \in \mathbb{C} \backslash\{0\} .
$$

Proof. Since $\operatorname{ker}(T-\lambda) \subset \operatorname{ker}(T-\lambda)^{2}$ is clear, we need only show that $\operatorname{ker}(T-\lambda)^{2} \subset$ $\operatorname{ker}(T-\lambda)$. For simplicity, write $K=\operatorname{ker}(T-\lambda)^{2}$ and denote by F the closure of $(T-\lambda) K$. Let $x \in K$. The hypothesis implies

$$
(T-\lambda)^{*}(T-\lambda) x=0,
$$

and consequently,

$$
(T-\lambda)^{*} F=0
$$

If $z \in \mathcal{H}$, write $z=w+y$, where $w \in F$ and $y \in F^{\perp}$. Then $(T-\lambda)^{*} z=(T-\lambda)^{*} y$, and hence

$$
\left\langle(T-\lambda)^{*} z, x\right\rangle=\left\langle(T-\lambda)^{*} y, x\right\rangle=\langle y,(T-\lambda) x\rangle .
$$

for all $x \in K$. Therefore, $\mathcal{R}(T-\lambda)^{*} \subset K^{\perp}$, and consequently,

$$
\operatorname{ker}(T-\lambda)^{2}=K^{\perp \perp} \subset\left(\mathcal{R}(T-\lambda)^{*}\right)^{\perp}=\operatorname{ker}(T-\lambda)
$$

Corollary 2.25. If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal for $0<p \leq 1$, then $T-\lambda$ has finite ascent for all $\lambda \in \mathbb{C} \backslash\{0\}$.

3. Quasinilpotent part of p - w-hyponormal operators

Lemma 3.1. [48, Lemma 2.22] Let $T \in \mathcal{B}(\mathcal{H})$ be a p-w-hyponormal operator for some $0<p \leq 1$ and let \mathcal{M} an invariant subspace of T. Then the restriction $\left.T\right|_{\mathcal{M}}$ is also a p-w-hyponormal operator.

Lemma 3.2. [48, Lemma 2.24] Let $T \in \mathcal{B}(\mathcal{H})$ be a p-w-hyponormal operator, let \mathcal{M} be an invariant subspace for T and a reduced subspace for \widetilde{T} such that $\left.\widetilde{T}\right|_{\mathcal{M}}$ the restriction of \widetilde{T} to \mathcal{M} is an injective normal operator, then $\left.T\right|_{\mathcal{M}}=\left.\widetilde{T}\right|_{\mathcal{M}}$ and \mathcal{M} reduces T.

Two important subspaces in local spectral theory and Fredholm theory are defined in the sequel. The quasi-nilpotent part of an operator $T \in \mathcal{B}(\mathcal{H})$ is the set

$$
H_{0}(T)=\left\{x \in \mathcal{H}: \lim _{n \longrightarrow \infty}\left\|T^{n} x\right\|^{\frac{1}{n}}=0\right\} .
$$

Clearly, $\operatorname{ker} T^{n} \subseteq H_{0}(T)$ for every $n \in \mathbb{N}$. If $T \in \mathcal{B}(\mathcal{H})$, the analytic core $K(T)$ is the set of all $x \in \mathcal{H}$ such that there exists a constant $c>0$ and a sequence of elements $x_{n} \in \mathcal{H}$
such that $x_{0}=x, T x_{n}=x_{n-1}$, and $\left\|x_{n}\right\| \leq c^{n}\|x\|$ for all $n \in \mathbb{N}$. Note that by Theorem 2.2 of [4], $T \in \mathcal{B}(\mathcal{H})$ is polaroid if and only if there exists $p:=p(\lambda-T) \in \mathbb{N}$ such that

$$
\begin{equation*}
H_{0}(\lambda-T)=\operatorname{ker}(\lambda-T)^{p} \quad \text { for all } \quad \lambda \in \operatorname{iso} \sigma(T) \tag{3.1}
\end{equation*}
$$

We note that $H_{0}(T-\lambda)$ and $K(T-\lambda)$ are generally non-closed hyper-invariant subspaces of $T-\lambda$ such that $\operatorname{ker}(T-\lambda)^{p} \subseteq H_{0}(T-\lambda)$ for all $p=0,1, \cdots$ and $(T-\lambda) K(T-\lambda)=$ $K(T-\lambda)$. Recall that if $\lambda \in \operatorname{iso} \sigma(T)$, then $H_{0}(T-\lambda)=\mathcal{X}_{T}(\{\lambda\})$, where $\mathcal{X}_{T}(\{\lambda\})$ is the global spectral subspace consisting of all $x \in \mathcal{H}$ for which there exists an analytic function $f: \mathbb{C} \backslash\{\lambda\} \longrightarrow \mathcal{H}$ that satisfies $(T-\mu) f(\mu)=x$ for all $\mu \in \mathbb{C} \backslash\{\lambda\}$, see [1].

Let $H_{n c}(\sigma(T))$ denote the set of all analytic functions, defined on an open neighborhood of $\sigma(T)$, such that f is non constant on each of the components of its domain. Define, by the classical functional calculus, $f(T)$ for every $f \in H_{n c}(\sigma(T))$. Following [26] We say that $T \in \mathcal{B}(\mathcal{H})$ has the single-valued extension property (SVEP) at point $\lambda \in \mathbb{C}$ if for every open neighborhood U_{λ} of λ, the only analytic function $f: U_{\lambda} \longrightarrow \mathcal{H}$ which satisfies the equation $(T-\mu) f(\mu)=0$ is the constant function $f \equiv 0$. It is well-known that $T \in \mathcal{B}(\mathcal{H})$ has SVEP at every point of the resolvent $\rho(T):=\mathbb{C} \backslash \sigma(T)$. Moreover, from the identity Theorem for analytic function it easily follows that $T \in \mathcal{B}(\mathcal{H})$ has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum. In particular, T has SVEP at every isolated point of $\sigma(T)$. In [42, Proposition 1.8], Laursen proved that if T is of finite ascent, then T has SVEP.
Definition 3.3. [19] An operator T is said to have Bishop's property (β) at $\lambda \in \mathbb{C}$ if for every open neighborhood G of λ, the function $f_{n} \in H_{n c}(G)$ with $(T-\lambda) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G implies that $f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, where $\operatorname{Hol}(G)$ means the space of all analytic functions on G. When T has Bishop's property (β) at each $\lambda \in \mathbb{C}$, simply say that T has property (β).
Theorem 3.4. [20] If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal, then T has property (β) and hence has SVEP.

Theorem 3.5. Let $T \in \mathcal{B}(\mathcal{H})$ be p-w-hyponormal. Then $H_{0}(T-\lambda I)=\operatorname{ker}(T-\lambda I$ for $\lambda \in \mathbb{C}$.

Proof. Let $F \subset \mathbb{C}$ be closed set. Define the global spectral subspace by

$$
\mathcal{X}_{T}(F)=\{x \in \mathcal{H}: \text { there is analytic } f(z):(T-z) f(z)=x \text { on } \mathbb{C} \backslash F\} .
$$

It is known that $H_{0}(T-\lambda)=\mathcal{X}_{T}(\{\lambda\})$ by [1, Theorem 2.20]. As T has Bishop's property (β) by Theorem 3.4, $\mathcal{X}_{T}(F)$ is closed and $\sigma\left(\left.T\right|_{\mathcal{X}_{T}(F)}\right) \subset F$ by [43, Proposition 1.2.19]. Hence $H_{0}(T-\lambda I)$ is closed and $\left.T\right|_{H_{0}(T-\lambda I)}$ is p-w-hyponormal by Theorem 3.1. Since $\sigma\left(\left.T\right|_{H_{0}(T-\lambda I)}\right) \subset\{\lambda\},\left.T\right|_{H_{0}(T-\lambda I)}$ is normal by Corollary 2.12. If $\sigma\left(\left.T\right|_{H_{0}(T-\lambda I)}\right)=\emptyset$, then $H_{0}(T-\lambda I)=\{0\}$ and $\operatorname{ker}(T-\lambda I)=\{0\}$. If $\sigma\left(\left.T\right|_{H_{0}(T-\lambda I)}\right)=\{\lambda\}$, then $\left.T\right|_{H_{0}(T-\lambda I)}=\lambda I$ and $H_{0}(T-\lambda I) \subset \operatorname{ker}(T-\lambda I)$.

Remark 3.6. If $\lambda \neq 0$, then $H_{0}(T-\lambda I)=\operatorname{ker}(T-\lambda I) \subset \operatorname{ker}(T-\lambda I)^{*}$. Moreover, if $\lambda \in \sigma(T) \backslash\{0\}$ is an isolated point then $H_{0}(T-\lambda I)=\operatorname{ker}(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{*}$.
Lemma 3.7. Let $T \in \mathcal{B}(\mathcal{H})$ be p-w-hyponormal. Let $\lambda \in \mathbb{C}$. Assume that $\sigma(T)=\{\lambda\}$. Then $T=\lambda I$

Proof. We consider two cases:
Case (I). $(\lambda=0)$: Since T is p - w-hyponormal, T is normaloid. Therefore $T=0$.
Case (II). $(\lambda \neq 0)$: Here T is invertible, and since T is p - w-hyponormal, we see that T^{-1} is also p - w-hyponormal. Therefore T^{-1} is normaloid. On the other hand, $\sigma\left(T^{-1}\right)=\left\{\frac{1}{\lambda}\right\}$, so $\|T\|\left\|T^{-1}\right\|=\left|\lambda \| \frac{1}{\lambda}\right|=1$. It follows that T is convexoid, so $W(T)=\{\lambda\}$. Therefore $T=\lambda$.

Two classical quantities associated with a linear operator T are the ascent $p:=p(T)$, defined as the smallest non-negative integer p (if it does exist) such that $\operatorname{ker} T^{p}=\operatorname{ker} T^{p+1}$, and the descent $q:=q(T)$, defined as the smallest non-negative integer q (if it does exists) such that $\mathcal{R}\left(T^{q}\right)=\mathcal{R}\left(T^{q+1}\right)$. It is well-known that if $p(T-\lambda)$ and $q(T-\lambda)$ are both finite then $p(T-\lambda)=q(T-\lambda)$ and λ is a pole of the the function resolvent $\lambda \longrightarrow(T-\lambda)^{-1}$, in particular λ is an isolated point of the spectrum $\sigma(T)$, see Proposition 38.3 and Proposition 50.2 of Heuser [35].

A bounded operator $T \in \mathcal{B}(\mathcal{H})$ defined on a Banach space is said to be polaroid if every isolated point of the spectrum $\sigma(T)$ is a pole of the resolvent. The following result has been proved in [3, Theorem 2.4].
Theorem 3.8. For an operator $T \in \mathcal{B}(\mathcal{H})$ the following statements are equivalent:
(i) T is polaroid;
(ii) there exists $f \in H_{n c}(\sigma(T))$ such that $f(T)$ is polaroid;
(iii) $f(T)$ is polaroid for every $f \in H_{n c}(\sigma(T))$.

Theorem 3.9. If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal operator, $0<p \leq 1$, then T is polaroid.
Proof. We show that for every isolated point λ of $\sigma(T)$ we have $p(T-\lambda)=q(T-\lambda)<\infty$. Let λ be an isolated point of $\sigma(T)$, and denote by P_{λ} denote the spectral projection associated with $\{\lambda\}$. Then $\mathcal{M}:=K(T-\lambda)=\operatorname{ker} P_{\lambda}$ and $\mathcal{N}:=H_{0}(T-\lambda)=P_{\lambda}(\mathcal{H})$, see $[1$, Theorem 3.74]. Therefore, $H=H_{0}(T-\lambda) \oplus K(T-\lambda)$. Furthermore, since $\sigma\left(\left.T\right|_{\mathcal{N}}\right)=\{\lambda\}$, while $\sigma\left(\left.T\right|_{\mathcal{M}}\right)=\sigma(T) \backslash\{\lambda\}$, so the restriction $\left.T\right|_{\mathcal{N}}-\lambda$ is quasi-nilpotent and $\left.T\right|_{\mathcal{N}}-\lambda$ is invertible. Since $\left.T\right|_{\mathcal{N}}-\lambda$ is p-w-hyponormal, then Lemma 3.7 implies that $\left.T\right|_{\mathcal{N}}-\lambda$ is nilpotent. In other words, $\left.T\right|_{\mathcal{N}}-\lambda$ is an operator of Kato Type.

Now, both T and the dual T^{*} have SVEP at λ, since λ is isolated in $\sigma(T)=\sigma\left(T^{*}\right)$, and this implies, by Theorem 3.16 and Theorem 3.17 of [1], that both $p(T-\lambda)$ and $q(T-\lambda)$ are finite. Therefore, λ is a pole of the resolvent.

4. Riesz idempotent of w-hyponormal

Let $T \in \mathcal{B}(\mathcal{H})$ and $\lambda \in \sigma(T)$ be an isolated of $\sigma(T)$. then there exists a closed disc \mathbf{D}_{λ} centered λ which satisfies $\mathbf{D}_{\lambda} \cap \sigma(T)=\{\lambda\}$. The operator

$$
P=\frac{1}{2 \pi i} \int_{\partial \mathbf{D}_{\lambda}}(T-\lambda I)^{-1} d \lambda
$$

is called the Riesz idempotent with respect to λ which has properties that

$$
P^{2}=P, P T=T P, \operatorname{ker}(T-\lambda I) \subset \mathcal{R}(P) \quad \text { and } \quad \sigma\left(\left.T\right|_{\mathcal{R}(P)}\right)=\{\lambda\}
$$

In [51], Stampfli proved that if T is hyponormal and $\lambda \in \sigma(T)$ is isolated, then the Riesz idempotent P with respect to λ is self-adjoint and satisfies

$$
\mathcal{R}(P)=\operatorname{ker}(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{*}
$$

In this paper we extend these result to the case of ap-w-hyponormal operator.
Theorem 4.1. Let $T \in \mathcal{B}(\mathcal{H})$ be a p-w-hyponormal operator and λ be a non-zero isolated point of $\sigma(T)$. Let \mathbf{D}_{λ} denote the closed disc which centered λ such that $\mathbf{D}_{\lambda} \cap \sigma(T)=\{\lambda\}$. Then the Riesz idempotent $P=\frac{1}{2 \pi i} \int_{\partial \mathbf{D}_{\lambda}}(T-\lambda I)^{-1} d \lambda$ satisfies that

$$
\mathcal{R}(P)=\operatorname{ker}(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{*}
$$

In particular P is self-adjoint.
Proof. Since p-w-hyponormal operators are isoloid by Corollary 2.18. Then every isolated point of $\sigma(T)$ of T is an eigenvalue of T. Then the range of Riesz idempotent $P=$
$\frac{1}{2 \pi i} \int_{\partial \mathbf{D}_{\lambda}}(T-\lambda I)^{-1} d \lambda$ is an invariant closed subspace of T and $\sigma\left(\left.T\right|_{\mathcal{R}(P)}\right)=\{\lambda\}$. Here \mathbf{D}_{λ} is a closed disc with its center λ such that $\mathbf{D}_{\lambda} \cap \sigma(T)=\{\lambda\}$.

If $\lambda=0$, then $\sigma\left(\left.T\right|_{\mathcal{R}(P)}\right)=\{0\}$. Since $\left.T\right|_{\mathcal{R}(P)}$ is p - w-hyponormal by Theorem 3.1, $\left.T\right|_{\mathcal{R}(P)}=0$ by Lemma 3.7. Therefore, 0 is an eigenvalue of T.

If $\lambda \neq 0$, then $\left.T\right|_{\mathcal{R}(P)}$ is an invertible p - w-hyponormal operator and hence $\left(\left.T\right|_{\mathcal{R}(P)}\right)^{-1}$ is also w-hyponormal. We see that $\left\|\left.T\right|_{\mathcal{R}(P)}\right\|=|\lambda|$ and $\left\|\left(\left.T\right|_{\mathcal{R}(P)}\right)^{-1}\right\|=\frac{1}{|\lambda|}$. Let $x \in \mathcal{R}(P)$ be arbitrary vector. Then

$$
\|x\| \leq\left\|\left(\left.T\right|_{\mathcal{R}(P)}\right)^{-1}\right\|\left\|\left.T\right|_{\mathcal{R}(P)} x\right\|=\frac{1}{|\lambda|}\left\|\left.T\right|_{\mathcal{R}(P)} x\right\| \leq \frac{1}{|\lambda|}|\lambda|\|x\|=\|x\| .
$$

This implies that $\left.\frac{1}{\lambda} T\right|_{\mathcal{R}(P)}$ is unitary with its spectrum $\sigma\left(\left.\frac{1}{\lambda} T\right|_{\mathcal{R}(P)}\right)=\{1\}$. Hence $\left.T\right|_{\mathcal{R}(P)}=\lambda I$ and λ is an eigenvalue of T. Therefore, $\mathcal{R}(P)=\operatorname{ker}(T-\lambda I)$. Since $\operatorname{ker}(T-\lambda I) \subset \operatorname{ker}(T-\lambda I)^{*}$ by Proposition 2.14, it suffices to show that $\operatorname{ker}(T-\lambda I)^{*} \subset$ $\operatorname{ker}(T-\lambda I)$. Since $\operatorname{ker}(T-\lambda I)$ is a reducing subspace of T by Proposition 2.14 and the restriction of a p-w-hyponormal to its reducing subspace is also p - w-hyponormal operator, we see that T is of the form $T=T^{\prime} \oplus \lambda I$ on $\mathcal{H}=\operatorname{ker}(T-\lambda I) \oplus \operatorname{ker}(T-\lambda I)^{\perp}$, where T^{\prime} is a p - w-hyponormal operator with $\operatorname{ker}\left(T^{\prime}-\lambda I\right)=\{0\}$. since $\lambda \in \sigma(T)=\sigma\left(T^{\prime}\right) \cup\{\lambda\}$ is isolated, the only two cases occur. One is $\lambda \notin \sigma\left(T^{\prime}\right)$ and the other is that λ is an isolated point of $\sigma\left(T^{\prime}\right)$. The latter case, however, does not occur otherwise we have $\lambda \in \sigma_{p}\left(T^{\prime}\right)$ and this contradicts the fact that $\operatorname{ker}\left(T^{\prime}-\lambda I\right)=\{0\} \cdot \operatorname{ker}(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{*}$ is immediate from the injectivity of $T^{\prime}-\lambda I$ as an operator on $\operatorname{ker}(T-\lambda I)^{\perp}$.

Next, we show that P is self-adjoint. Since $\mathcal{R}(P)=\operatorname{ker}(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{*}$, we have $\left((T-z I)^{*}\right)^{-1} P=\overline{(z-\lambda)^{-1}} P$. Hence

$$
\begin{aligned}
P^{*} P & =-\frac{1}{2 i \pi} \int_{\partial \mathbf{D}_{\lambda}}\left((T-z I)^{*}\right)^{-1} P d \bar{z} \\
& =-\frac{1}{2 i \pi} \int_{\partial \mathbf{D}_{\lambda}} \overline{(z-\lambda)^{-1}} P d \bar{z} \\
& =\overline{\left(\frac{1}{2 i \pi} \int_{\partial \mathbf{D}_{\lambda}} \frac{1}{z-\lambda} d \bar{z}\right)} P \\
& =P P^{*} .
\end{aligned}
$$

In the following we give an example T of p-w-hyponormal operator which has properties that 0 is an isolated point of $\sigma(T)$, the Riesz idempotent with respect to 0 is not self-adjoint and $\operatorname{ker}(T) \neq \operatorname{ker}\left(T^{*}\right)$.
Example 4.2. Let $\mathcal{H}=\oplus_{n=0}^{\infty} \mathbb{C}^{2}$ and define an operator T on \mathcal{H} by

$$
T\left(\cdots \oplus x_{-2} \oplus x_{-1} \oplus x_{0}^{(0)} \oplus x_{1} \oplus \cdots\right)=\cdots \oplus A x_{-2} \oplus A^{(0)} x_{-1} \oplus B x_{0} \oplus B x_{1} \oplus \cdots,
$$

where $A=\left(\begin{array}{ll}1 / 8 & 1 / 8 \\ 1 / 8 & 1 / 8\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)$. Then T is p - w-hyponormal with $0<p \leq 1$ and $\sigma(T)=\{0\} \cup\left\{z: \frac{1}{4} \leq|z| \leq 1\right\}$. Moreover $P \mathcal{H}=\operatorname{ker}(T), P$ is not self-adjoint and $\operatorname{ker}(T) \neq \operatorname{ker}\left(T^{*}\right)$, where P is the Riesz idempotent with respect to 0 .
Proof. Let $x=\cdots \oplus x_{-2} \oplus x_{-1} \oplus x_{0}^{(0)} \oplus x_{1} \oplus \cdots$, we have

$$
\begin{aligned}
T^{*} x & =\left(\cdots \oplus A x_{0} \oplus B^{(0)} x_{1} \oplus B x_{2} \oplus \cdots\right), \\
|T| x & =\left(\oplus_{n<0} A x_{n}\right) \oplus\left(\oplus_{n \geq 0} B x_{n}\right), \\
|\widetilde{T}| x & =\left(\oplus_{n<-1} A x_{n}\right) \oplus\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2} x_{-1} \oplus\left(\oplus_{n \geq 0} B x_{n}\right), \\
\left|(\widetilde{T})^{*}\right| x & =\left(\oplus_{n<0} A x_{n}\right) \oplus\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2} x_{0} \oplus\left(\oplus_{n \geq 1} B x_{n}\right) .
\end{aligned}
$$

Since $\left(A^{\frac{1}{2}} B A^{\frac{1}{2}}\right)^{\frac{p}{2}}=2^{\frac{p}{2}} A$ and $\left(B^{\frac{1}{2}} A B^{\frac{1}{2}}\right)^{\frac{p}{2}}=(B A B)^{\frac{p}{2}}=\frac{1}{8^{\frac{p}{2}}} B$,

$$
\begin{aligned}
\left\langle\left(|\widetilde{T}|^{p}-|T|^{p}\right) x, x\right\rangle & =\left\langle\left(\left(A^{\frac{1}{2}} B A^{\frac{1}{2}}\right)^{\frac{p}{2}}-A\right) x_{-1}, x_{-1}\right\rangle \geq 0 \\
\left\langle\left(|T|^{p}-\left|(\widetilde{T})^{*}\right|^{p}\right) x, x\right\rangle & =\left\langle\left(B-(B A B)^{\frac{p}{2}}\right) x_{0}, x_{0}\right\rangle \geq 0
\end{aligned}
$$

Hence T is p-w-hyponormal.
(i) Let $\mathcal{H}_{+}=\left\{(T-\lambda) x \mid x \in \mathcal{H}, x=\cdots \oplus 0 \oplus x_{0} \oplus x_{1} \oplus x_{2} \oplus \cdots\right\}, \mathcal{H}_{-}=\{(T-\lambda) x \mid x \in$ $\left.\mathcal{H}, x=\cdots \oplus x_{-4} \oplus x_{-3} \oplus 0 \oplus \cdots\right\}$, and $\mathcal{H}_{0}=\{(T-\lambda) x \mid x \in \mathcal{H}, x=\cdots \oplus 0 \oplus$ $\left.x_{-2} \oplus x_{-1} \oplus 0 \oplus \cdots\right\}$. Then $\mathcal{H}_{+} \perp \mathcal{H}_{-}$. We remark that $4 A$ is unitary equivalent to B. By Lemma 12 of [55], \mathcal{H}_{+}and \mathcal{H}_{-}are closed for $\lambda<\frac{1}{4}$. Since \mathcal{H}_{0} is finite dimensional, $\mathcal{R}(T-\lambda)=\left(\mathcal{H}_{+} \oplus \mathcal{H}_{-}\right)+\mathcal{H}_{0}$ is closed.
(ii) It is easy to check that

$$
\begin{aligned}
\operatorname{ker}(T) & =\left\{\left.\left[\oplus_{n \leq-1} c_{n}\binom{1}{-1}\right] \oplus\left[\oplus_{n \geq 0} c_{n}\binom{0}{1}\right] \right\rvert\,\left\{c_{n}\right\} \in \ell^{2}(\mathbb{Z})\right\}, \\
\operatorname{ker}\left(T^{*}\right) & =\left\{\left.\left[\oplus_{n \leq 0} c_{n}\binom{1}{-1}\right] \oplus\left[\oplus_{n \geq 1} c_{n}\binom{0}{1}\right] \right\rvert\,\left\{c_{n}\right\} \in \ell^{2}(\mathbb{Z})\right\} .
\end{aligned}
$$

Hence, $\operatorname{ker}(T) \neq \operatorname{ker}\left(T^{*}\right)$.
(iii) If $0<\lambda<1 / 4$, it easy to check that $\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}=\{0\}$. Since $\mathcal{R}(T-\lambda)$ is closed by [55, Lemma 12], we have $\mathcal{R}(T-\lambda)=\overline{\mathcal{R}(T-\lambda)}=\left[\operatorname{ker}(T-\lambda)^{*}\right]^{\perp}=\mathcal{H}$ and therefore $\lambda \notin \sigma(T)$.
(iv) If $\frac{1}{4}<\lambda<1$, we have

$$
\operatorname{ker}(T-\lambda)^{*}=\mathbb{C}\left(\left[\oplus_{n<0} \frac{1}{2(4 \lambda)^{|n|}}\binom{1}{1}\right] \oplus\left[\oplus_{n \geq 0} \lambda^{n}\binom{1}{1}\right]\right)
$$

(v) It follows from (iii) and (iv) that $\sigma(T)=\{0\} \cup\left\{\lambda \in \mathbb{C}\left|\frac{1}{4} \leq|\lambda| \leq 1\right\}\right.$.
(vi) Since T is paranormal, we have $\mathcal{R}(P)=\operatorname{ker}(T)$ by the proof of [55, Lemma 6]. Suppose that P is self-adjoint. Then $\mathcal{R}(P) \perp \mathcal{R}(I-P)$, so that $T=0 \oplus S$ for some paranormal operator on $\mathcal{R}(I-P)$ with $\mathcal{R}(S)=\{0\}$. Since S is isoloid, $0 \notin \sigma(S)$. Hence $\operatorname{ker}(T)=\mathcal{R}(P)=\operatorname{ker}\left(T^{*}\right)$. This contradicts $(i i)$.

5. Tensor Product

Let \mathcal{H} and \mathcal{K} denote the Hilbert spaces. For given non-zero operators $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K}), T \otimes S$ denotes the tensor product on the product space $\mathcal{H} \otimes \mathcal{K}$. The normaloid property is invariant under tensor products [53]. $T \otimes S$ is normal if and only if T and S are normal [23, 40]. There exist paranormal operators T and S such that $T \otimes S$ is not paranormal [52]. In [37], I.H.Kim showed that for non-zero $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, $T \otimes S$ is log-hyponormal if and only if T and S are log-hyponormal. This result was extended to p-quasihyponormal operators, w-hyponormal operators, class A operators and class $A(k)$ in [37], [36], and [47] respectively. In this section, we prove an analogous result for p - w-hyponormal operators.
Remark 5.1. Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be non-zero operators, then we have
(i) $(T \otimes S)^{*}(T \otimes S)=T^{*} T \otimes S^{*} S$
(ii) $|T \otimes S|^{t}=|T|^{t} \otimes|S|^{t}$ for any positive real t.

Lemma 5.2. ([40]) Let $T_{1}, T_{2} \in \mathcal{B}(\mathcal{H}), S_{1}, S_{2} \in \mathcal{B}(\mathcal{K})$ be non-negative operators. If T_{1} and S_{1} are non-zero, then the following assertions are equivalent:
(a) $T_{1} \otimes S_{1} \leq T_{2} \otimes S_{2}$
(b) there exists $c>0$ such that $T_{1} \leq c T_{2}$ and $S_{1} \leq c^{-1} S_{2}$.

Theorem 5.3. Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be non-zero operators and let $0<p \leq 1$. Then $T \otimes S$ is p-w-hyponormal if and only if T and S is p-w-hyponormal.
Proof. We shall use the fact that the function $T \longrightarrow \widetilde{T}$ has the property $\widetilde{T \otimes S}=\widetilde{T} \otimes \widetilde{S}$. It follows from Remark 5.1 that

$$
\begin{equation*}
|\widetilde{T \otimes S}|^{p}=|\widetilde{T}|^{p} \otimes|\widetilde{S}|^{p} \geq|T \otimes S|^{p}=|T|^{p} \otimes|S|^{p} \geq \mid\left(\left.\widetilde{T \otimes S}^{*}\right|^{p}=\left|\widetilde{T}^{*}\right|^{p} \otimes\left|\widetilde{S}^{*}\right|^{p}\right. \tag{5.2}
\end{equation*}
$$

Inequality 5.2 holds if and only if

$$
\begin{align*}
& \left(|\widetilde{T}|^{p}-|T|^{p}\right) \otimes|\widetilde{S}|^{p}+|T|^{p}\left(|\widetilde{S}|^{p}-|S|^{p}\right) \geq 0 \text { and } \\
& \left(|T|^{p}-\left|\widetilde{T}^{*}\right|^{p}\right) \otimes|S|^{p}+\left|\widetilde{T}^{*}\right|^{p}\left(|S|^{p}-\left|\widetilde{S}^{*}\right|^{p}\right) \geq 0 \tag{5.3}
\end{align*}
$$

or, equivalently, if and only if

$$
\begin{align*}
& \left(|\widetilde{T}|^{p}-|T|^{p}\right) \otimes|S|^{p}+|\widetilde{T}|^{p}\left(|\widetilde{S}|^{p}-|S|^{p}\right) \geq 0 \text { and } \\
& \left(|T|^{p}-\left|\widetilde{T}^{*}\right|^{p}\right) \otimes\left|\widetilde{S}^{*}\right|^{p}+|T|^{p}\left(|S|^{p}-\left|\widetilde{S}^{*}\right|^{p}\right) \geq 0 \tag{5.4}
\end{align*}
$$

So, the sufficency is clear.
To prove the necessity, suppose that $T \otimes S$ is p - w-hyponormal. Then

$$
|\widetilde{T}|^{p} \otimes|\widetilde{S}|^{p} \geq|T|^{p} \otimes|S|^{p}
$$

Therefore, by Lemma 5.2, there exists a $c \in \mathbb{R}^{+}$such that

$$
c|\widetilde{T}|^{p} \geq|T|^{p} \text { and } c^{-1}|\widetilde{S}|^{p} \geq|S|^{p}
$$

Consequently,

$$
\left.\left.\left\||T|^{p}\right\|^{2}=\left.\sup _{\|x\|=1}\langle | T\right|^{2 p} x, x\right\rangle \leq\left.\sup _{\|x\|=1}\langle c| \widetilde{T}\right|^{2 p} x, x\right\rangle \leq c\left\|| |^{p}\right\|^{2}
$$

and

$$
\left.\left.\left\||S|^{p}\right\|^{2}=\left.\sup _{\|x\|=1}\langle | S\right|^{2 p} x, x\right\rangle \leq\left.\sup _{\|x\|=1}\left\langle c^{-1}\right| \widetilde{S}\right|^{2 p} x, x\right\rangle \leq c^{-1}\left\||S|^{p}\right\|^{2}
$$

Thus, $c=1$ and

$$
\begin{equation*}
|\widetilde{T}|^{p} \geq|T|^{p} \text { and }|\widetilde{S}|^{p} \geq|S|^{p} \tag{5.5}
\end{equation*}
$$

Now we just to show that $|T|^{p} \geq\left|\widetilde{T}^{*}\right|^{p}$ and $|S|^{p} \geq\left|\widetilde{S}^{*}\right|^{p}$. Let $x \in \mathcal{H}$ and $y \in \mathcal{K}$ be arbitrary. Then, from inequalities (5.3) and (5.4), we have

$$
\begin{equation*}
\left.\left.\left.\left\langle\left(|T|^{p}-\left|\widetilde{T}^{*}\right|^{p}\right) x, x\right\rangle\langle | S\right|^{p} y, y\right\rangle+\left.\langle | \widetilde{T}^{*}\right|^{p} x, x\right\rangle\left\langle\left(|S|^{p}-\left|\widetilde{S}^{*}\right|^{p}\right) y, y\right\rangle \geq 0 \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left.\left\langle\left(|T|^{p}-\left|\widetilde{T}^{*}\right|^{p}\right) x, x\right\rangle\langle | \widetilde{S}^{*}\right|^{p} y, y\right\rangle+\left\langle\|\left. T\right|^{p} x, x\right\rangle\left\langle\left(|S|^{p}-\left|\widetilde{S}^{*}\right|^{p}\right) y, y\right\rangle \geq 0 \tag{5.7}
\end{equation*}
$$

Suppose that $|T|^{p}-\left|\widetilde{T}^{*}\right|^{p}$ is not a positive operator. Then there is a $x_{0} \in \mathcal{H}$ such that

$$
\left\langle\left(|T|^{p}-\left|\widetilde{T}^{*}\right|^{p}\right) x_{0}, x_{0}\right\rangle=\alpha<0 \text { and }\left\langle\mid \widetilde{T}^{*} x_{0}, x_{0}\right\rangle=\beta>0
$$

From inequality (5.6) we get

$$
(\alpha+\beta)\left\||S|^{p} y\right\| \geq \beta\left\|\left|\widetilde{S}^{*}\right|^{p} y\right\|
$$

That is,

$$
(\alpha+\beta)\left\||S|^{p}\right\| \geq \beta\left\|\left|\widetilde{S}^{*}\right|^{p}\right\|
$$

Since, by inequality $(5.5),|\widetilde{S}|^{p} \geq|S|^{p}$, we have also

$$
(\alpha+\beta)\|S\|^{p}=(\alpha+\beta)\left\||S|^{p}\right\| \geq \beta\left\|\left|\widetilde{S}^{*}\right|^{p}\right\|=\beta\left\||\widetilde{S}|^{p}\right\| \geq \beta\|S\|^{p}
$$

This is a contradiction. Hence, $|T|^{p} \geq\left|\widetilde{T}^{*}\right|^{p}$. A similar argument shows, by using inequality (5.7), that $|S|^{p} \geq\left|\widetilde{S}^{*}\right|^{p}$.

6. Weyl's Type theorems

Let us denote by $\alpha(T)$ the dimension of the kernel and by $\beta(T)$ the codimension of the range. Recall that the operator $T \in \mathcal{B}(\mathcal{X})$ is said to be upper semi-Fredholm, $T \in S F_{+}(\mathcal{X})$, if the range of $T \in \mathcal{B}(\mathcal{X})$ is closed and $\alpha(T)<\infty$, while $T \in \mathcal{B}(\mathcal{X})$ is said to be lower semi-Fredholm, $T \in S F_{-}(\mathcal{X})$, if $\beta(T)<\infty$. An operator $T \in \mathcal{B}(\mathcal{X})$ is said to be semi-Fredholm if $T \in S F_{+}(\mathcal{X}) \cup S F_{-}(\mathcal{X})$ and Fredholm if $T \in S F_{+}(\mathcal{X}) \cap S F_{-}(X)$. If T is semi-Fredholm then the index of T is defined by ind $(\mathrm{T})=\alpha(\mathrm{T})-\beta(\mathrm{T})$.

A bounded linear operator T acting on a Banach space \mathcal{X} is Weyl if it is Fredholm of index zero and Browder if T is Fredholm of finite ascent and descent. The Weyl spectrum $\sigma_{W}(T)$ and Browder spectrum $\sigma_{b}(T)$ of T are defined by

$$
\begin{aligned}
\sigma_{W}(T) & =\{\lambda \in \mathbb{C}: T-\lambda I \text { is not Weyl }\} \\
\sigma_{b}(T) & =\{\lambda \in \mathbb{C}: T-\lambda I \text { is not Browder }\}
\end{aligned}
$$

Let $E^{0}(T)=\{\lambda \in$ iso $\sigma(T): 0<\alpha(T-\lambda)<\infty\}$ and let $\pi^{0}(T):=\sigma(T) \backslash \sigma_{b}(T)$ all Riesz points of T. According to Coburn [24], Weyl's theorem holds for T if $\Delta(T)=\sigma(T) \backslash$ $\sigma_{W}(T)=E^{0}(T)$, and that Browder's theorem holds for T if $\Delta(T)=\sigma(T) \backslash \sigma_{W}(T)=\pi^{0}(T)$.

Let $S F_{+}^{-}(\mathcal{X})=\left\{T \in S F_{+}\right.$: ind $\left.(T) \leq 0\right\}$. The upper semi Weyl spectrum is defined by $\sigma_{S F_{+}^{-}}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda \notin S F_{+}^{-}(\mathcal{X})\right\}$. According to Rakočević [49], an operator $T \in \mathcal{B}(\mathcal{X})$ is said to satisfy a-Weyl's theorem if $\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=E_{a}^{0}(T)$, where

$$
E_{a}^{0}(T)=\left\{\lambda \in \text { iso } \sigma_{\mathrm{a}}(\mathrm{~T}): 0<\alpha(\mathrm{T}-\lambda \mathrm{I})<\infty\right\}
$$

It is known [49] that an operator satisfying a-Weyl's theorem satisfies Weyl's theorem, but the converse does not hold in general.

For $T \in \mathcal{B}(\mathcal{X})$ and a non negative integer n define $T_{[n]}$ to be the restriction T to $\mathcal{R}\left(T^{n}\right)$ viewed as a map from $\mathcal{R}\left(T^{n}\right)$ to $\mathcal{R}\left(T^{n}\right)$ (in particular $T_{[0]}=T$). If for some integer n the range space $\mathcal{R}\left(T^{n}\right)$ is closed and $T_{[n]}$ is an upper (resp., lower) semi-Fredholm operator, then T is called upper (resp., lower) semi-B-Fredholm operator. In this case index of T is defined as the index of semi- B-Fredholm operator $T_{[n]}$. A semi- B-Fredholm operator is an upper or lower semi-Fredholm operator [18]. Moreover, if $T_{[n]}$ is a Fredholm operator then T is called a B-Fredholm operator [13]. An operator T is called a B-Weyl operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum $\sigma_{B W}(T)$ is defined by $\sigma_{B W}(T)=\{\lambda \in \mathbb{C}: T-\lambda$ is not B-Weyl operator $\}$ [14]. Let $E(T)$ be the set of all eigenvalues of T which are isolated in $\sigma(T)$. According to [15], an operator $T \in \mathcal{B}(\mathcal{X})$ is said to satisfy generalized Weyl's theorem, if $\sigma(T) \backslash \sigma_{B W}(T)=E(T)$. In general, generalized Weyl's theorem implies Weyl's theorem but the converse is not true [17]. Following [14], we say that T satisfies generalized Browders's theorem, if $\sigma(T) \backslash \sigma_{B W}(T)=\pi(T)$, where $\pi(T)$ is the set of poles of T.

Let $S B F_{+}^{-}(\mathcal{X})$ denote the class of all is upper B-Fredholm operators such that ind $(\mathrm{T}) \leq$ 0 . The upper B-Weyl spectrum $\sigma_{S B F_{+}^{-}}(T)$ of T is defined by

$$
\sigma_{S B F_{+}^{-}}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda \notin S B F_{+}^{-}(\mathcal{X})\right\}
$$

Following [17], we say that generalized a-Weyl's theorem holds for $T \in \mathcal{B}(\mathcal{X})$ if $\Delta_{a}^{g}(S)=$ $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E_{a}(T)$, where $E_{a}(T)=\left\{\lambda \in i \operatorname{sog}_{a}(T): \alpha(T-\lambda)>0\right\}$ is the set of all eigenvalues of T which are isolated in $\sigma_{a}(T)$ and that $T \in \mathcal{B}(\mathcal{X})$ obeys generalized a-Browder's theorem if $\Delta_{a}^{g}(T)=\pi_{a}(T)$. It is proved in [10, Theorem 2.2] that generalized a-Browder's theorem is equivalent to a-Browder's theorem, and it is known from [17, Theorem 3.11] that an operator satisfying generalized a-Weyl's theorem satisfies a Weyl's theorem, but the converse does not hold in general and under the assumption
$E_{a}(T)=\pi_{a}(T)$ it is proved in [16, Theorem 2.10] that generalized a-Weyl's theorem is equivalent to a-Weyl's theorem. Following [46], we say that $T \in \mathcal{B}(\mathcal{X})$ possesses property (t) if $\Delta_{+}(T)=\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=E^{0}(T)$. In Proposition 2.7 of [46], it is shown that property (t) implies Weyl's theorem, but the converse is not true in general. We say that $T \in \mathcal{B}(\mathcal{X})$ possesses property $(g t)$ if $\Delta_{+}^{g}(T)=\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T)$. Property (gt) has been introduced and studied in [46]. Property $(g t)$ extends property (t) to the context of B-Fredholm theory, and it is proved in [46] that an operator possessing property $(g t)$ possesses property (t) but the converse is not true in general.

Lemma 6.1. If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal operator with $0<p \leq 1$, then T and T^{*} satisfy Weyl's theorem.

Proof. Since T is p-w-hyponormal, then T has SVEP by Theorem 3.4. Then T satisfies Browder's theorem if and only if T^{*} satisfies Browder's theorem if and only if $\pi^{0}(T)=$ $\sigma(T) \backslash \sigma_{w}(T) \subseteq E^{0}(T)$ and $\pi^{0}\left(T^{*}\right)=\sigma\left(T^{*}\right) \backslash \sigma_{w}\left(T^{*}\right) \subseteq E^{0}\left(T^{*}\right)$. If $\bar{\lambda} \in E^{0}\left(T^{*}\right)$, then T has SVEP at λ and T^{*} has SVEP at $\bar{\lambda}$ and $0<p(T-\lambda)^{*}=q(T-\lambda)<\infty$. Thus the ascent and descent of $T-\lambda$ are finite and hence equal, see [35]. Then $T-\lambda$ is a Fredholm of index 0 and also $(T-\lambda)^{*}$ is a Fredholm of index 0 , then $E^{0}(T) \subseteq \pi^{0}(T)$ and $E^{0}\left(T^{*}\right) \subseteq \pi^{0}\left(T^{*}\right)$. This implies that both T and T^{*} satisfy Weyl's theorem.

Lemma 6.2. If T or T^{*} is p-w-hyponormal operator with $0<p \leq 1$, then both T and T^{*} satisfy generalized Weyl's theorem.

Proof. If T or T^{*} is p-w-hyponormal, then T is polaroid by Theorem 3.9 also T^{*} is polaroid, and generalized Weyl's theorem for T, or T^{*} are equivalent, see [2, Theorem 3.7]. The assertion then follows from [2, Theorem 3.3].

Definition 6.3. Let $T \in \mathcal{B}(\mathcal{X})$. Then we say that
(i) T possess property (w) if $\sigma_{a}(T) \backslash \sigma_{S F_{-}^{+}}(T)=E^{0}(T)$ [5];
(ii) T possess property $(g w)$ if $\sigma_{a}(T) \backslash \sigma_{S B F_{-}^{+}}(T)=E(T)$ [11];
(iii) T possess property (b) if $\sigma_{a}(T) \backslash \sigma_{S F_{-}^{+}}(T)=\pi^{0}(T)[45]$;
(iv) T possess property $(g b)$ if $\sigma_{a}(T) \backslash \sigma_{S B F_{-}^{+}}(T)=\pi(T)$ [45].

Theorem 6.4. Suppose that $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal with $0<p \leq 1$ and $f \in$ $H_{n c}(\sigma(T))$. Then
(i) property (t) holds for $f\left(T^{*}\right)$, or equivalently property (w), property (R), property (b), Weyl's theorem, a-Weyl's theorem hold for $f\left(T^{*}\right)$.
(ii) property $(g t)$ holds for $f\left(T^{*}\right)$, or equivalently property $(g w)$, property $(g b)$, generalized Weyl's theorem, generalized a-Weyl's theorem hold for $f\left(T^{*}\right)$.

Proof. Since T has SVEP by Theorem 3.4 and polaroid by 3.9. The assertions then follows from Theorem 3.6 (ii) and Theorem 3.7 (ii) of [46].

Theorem 6.5. Suppose that $T^{*} \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal with $0<p \leq 1$ and $f \in$ $H_{n c}(\sigma(T))$. Then
(i) property (t) holds for $f(T)$, or equivalently property (w), property (R), property (b), Weyl's theorem, a-Weyl's theorem hold for $f(T)$.
(ii) property $(g t)$ holds for $f(T)$, or equivalently property $(g w)$, property $(g b)$, generalized Weyl's theorem, generalized a-Weyl's theorem hold for $f(T)$.

Proof. Since T has SVEP by Theorem 3.4 and polaroid by Theorem 3.9. The assertions then follows from Theorem 3.6 (i) and Theorem 3.7 (i) of [46].

References

[1] P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Functional Analysis Mathematics, vol. 1, Springer Netherlands, 2004, doi:10.1007/1-4020-2525-4.
[2] P. Aiena, E. Aponte, and E. Bazan, Weyl type theorems for left and right polaroid operators, Integr. Equ. Oper. Theory 66 (2010), no. 1, 485-495, doi:10.1007/s00020-009-1738-2.
[3] P. Aiena, J.R. Guillen, and P. Peña, A unifying approch to Weyl type theorems for Banach space operators, Integr. Equ. Oper. Theory 77 (2013), 371—384, doi:10.1007/s00020-013-2097-6.
[4] P. Aiena, M. Chö, and M. Gonzǎlez, Polaroid type operator under quasiaffinities, J. Math. Anal. Appl. 371 (2010), no. 2, 485-495, doi:10.1016/j.jmaa.2010.05.057.
[5] P. Aiena and P. Peña, Variations on Weyl's theorem, J. Math. Anal. Appl. 324 (2006), no. 1, 566-579, doi:10.1016/j.jmaa.2005.11.027.
[6] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integr. Equ. Oper. Theory 13 (1990), 307-315, doi:10.1007/BF01199886.
[7] A. Aluthge and D. Wang, An operator inequality which implies paranormality, Math. Ineq. Appl. 2 (1999), no. 1, 113-119, doi:10.7153/mia-02-09.
[8] A. Aluthge and D. Wang, w-hyponormal operators, Integr. Equ. Oper. Theory 36 (2000), 1-10.
[9] A. Aluthge and D. Wang, w-hyponormal operators II, Integr. Equ. Oper. Theory 37 (2000), 324-331, doi:10.1007/BF01194481.
[10] M. Amouch and H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasg. Math. J. 48 (2006), 179-185, doi:10.1017/S0017089505002971.
[11] M. Amouch and M. Berkani, on the property ($g w$), Mediterr. J. Math 5 (2008), 371-378, doi: 10.1007/s00009-008-0156-z.
[12] S. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), no. 1, 111-114, doi:10.2307/2033783.
[13] M. Berkani, On a class of quasi-Fredholm operators, Proc. Amer. Math. Soc. 34 (1999), no. 2, 244-249, doi:10.1007/BF01236475.
[14] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), no. 2, 596-603, doi:10.1016/S0022-247X (02) 00179-8.
[15] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1717-1723, doi:10.2307/2699766.
[16] M. Berkani, On the equivalence of Weyl's theorem and generalized Weyl's theorem, Acta Math Sinica 23 (2007), 103-110, doi:10.1007/s10114-005-0720-4.
[17] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), no. 1, 359-376.
[18] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasg. Math. J. 43 (2001), 457-465, doi:10.1017/S0017089501030075.
[19] E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), no. 2, 379-397, doi:euclid.pjm/1103039262.
[20] Y. Changsen and L. Haiying, On p-w-hyponormal operators, Chinese Quart. J. Math 20 (2005), no. 1, 79-84.
[21] Y. Changsen and L. Haiying, A note on p-w-hyponormal operators, Acta Math Sinica (Chinese) 49 (2006), no. 1, 19-28.
[22] M. Chō and T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application, Integr. equ. oper. theory 53 (2005), 497-508, doi:10.1007/ s00020-004-1332-6.
[23] J. chuan Hou, On tensor products of operators, Acta Mathematica Sinica 9 (1993), 195-202, doi:10.1007/BF02560050.
[24] L. Coburn, Weyl's theorem for non-normal operators, Michigan. Math. J. 13 (1966), no. 3, 285-288, doi:10.1307/mmj/1031732778.
[25] J.B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, SpringerVerlag New York, 1990, doi:10.1007/978-1-4757-3828-5.
[26] J.K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61-69, doi:euclid.pjm/1102905839.
[27] M. Fujii, S. Izumino, and R. Nakamoto, classes of operators determined by the Heinz-Kato-Furuta inequality and the Hölder-McCarthy inequality, Nihonkai Math. J. 5 (1994), no. 1, 61-67.
[28] T. Furuta, On the class of paranormal operators, Proc. Jaban. Acad. 43 (1967), no. 7, 594-598, doi:10.3792/pja/1195521514.
[29] T. Furuta, M. Ito, and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. Jpn. 1 (1999), 389-403.
[30] L. Haiying, Powers of an invertible (s, p)-w-hyponormal operator, Acta Math. Sci. 28 (2008), no. 2, 282-288, doi:10.1016/S0252-9602(08)60028-4.
[31] L. Haiying and Y. Chang-sen, Several properties of p-w-hyponormal operator, Chin. Quart. J. Math. 23 (2008), no. 2, 195-201.
[32] P.R. Halmos, A Hilbert space problem book, Graduate Texts in Mathematics, vol. 19, SpringerVerlag New York, 1982, doi:10.1007/978-1-4615-9976-0.
[33] F. Hansen, An equality, Math. Ann. 246 (1980), 249-250.
[34] E. Heinz, Beiträge zur störungstheorie der spektralzerlegung, Math. Ann. 123 (1951), 415-438.
[35] H. Heuser, Functional analysis, vol. 1, Wiley, 1982.
[36] I.H.Jeon and I.H.Kim, On operators satisfying $T^{*}\left|T^{2}\right| T \geq T^{*}|T|^{2} T$, Linear Algebra Appl. 418 (1993), no. 2-3, 854-862, doi:10.1016/j.laa.2006.02.040.
[37] I.H.Kim, Tensor products of log-hyponormal operators, Bull. Korean Math. Soc. 42 (2005), no. 2, 269-277, doi:10.4134/BKMS.2005.42.2.269.
[38] I.H. Jeon, J. Lee, and A. Uchiyama, On p-quasihyponormal operators and quasisimilarity, Math. Ineq. Appl. 6 (2003), no. 2, 309-315, doi:10.7153/mia-06-29.
[39] J.P.Williams, Operators similar to their adjoints, Proc. Amer. Math. Soc. 20 (1969), no. 1, 121-23, doi:10.2307/2035972.
[40] J.Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc. 124 (1996), no. 1, 135-140, doi:10.1090/S0002-9939-96-03017-1.
[41] I. Jung, E. Ko, and C. Pearcu, Aluthge transforms of operators, Integr equ oper theory 37 (2000), 437-448, doi:10.1007/BF01192831.
[42] K.B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336, doi: 10.2140/pjm.1992.152.323.
[43] K.B. Laursen and M.M. Neumann, An introduction to local spectral theory, London Mathematical Society Monographs, Clarendon Press, 2000.
[44] M.Y. Lee and S.H. Lee, On a class of operators related to paranormal operators, J. Korean Math. Soc. 44 (2007), no. 1, 25-34, doi:10.4134/JKMS.2007.44.1.025.
[45] M.H.M.Rashid, Property (gb) and perturbations, J. Math. Anal. Appl. 383 (2011), no. 1, 82-94, doi:10.1016/j.jmaa.2011.05.001.
[46] M.H.M.Rashid, Properties (t) and ($g t$) for bounded linear operators, Mediterr. J. Math 11 (2014), no. 2, 729-744, doi:10.1007/s00009-013-0313-x.
[47] M.H.M.Rashid, On operators satisfying $T^{m}\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} T^{m} \geq T^{m *}|T|^{2} T^{m}$, Commun. Korean Math. Soc. 32 (2017), no. 3, 661-676, doi:10.4134/CKMS.c160191.
[48] M.H.M.Rashid, Quasinormality and Fuglede-Putnam theorem for (s, p)-w-hyponormal operators, Linear Multilinear Algebra 65 (2017), no. 8, 1600-1616, doi:10.1080/03081087.2016. 1248346.
[49] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919.
[50] I. Sheth, On hyponormal operators, Proc. Amer. Math. Soc. 17 (1966), no. 5, 998-1000, doi: 10.2307/2036076.
[51] J. Stampfli, Hyponormal operatorsand spectral density, Trans. Amer. Math. Soc. 117 (1965), 469-476, doi:10.2307/1994219.
[52] T.Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), no. 3-4, 169-178.
[53] T.Saito, Hyponormal operators and related topics, Lecture Notes in Mathematics, vol. 247, Springer, Berlin, Heidelberg, 1971, doi:10.1007/BFb0058557.
[54] A. Uchiyama, Berger-Shaw's theorem for p-hyponormal operators, Integr equ oper theory 33 (1999), 221-230, doi:10.1007/BF01233965.
[55] A. Uchiyama and K. Tanahashi, On the Riesz idempotent of class A, Math. Ineq. Appl. 5 (2002), no. 2, 291-298, doi:10.7153/mia-05-32.
[56] D. Xia, Spectral theory of hyponormal operators, Operator Theory: Advances and Applications, vol. 10, Birkhäuser Basel, 1983, doi:10.1007/978-3-0348-5435-1.
M. H. M. RASHID: malik_okasha@yahoo.com

Dept. of Mathematics \& Statistics, Faculty of Science P.O. Box(7), Mu'tah University, Mu'tah-Jordan

[^0]: 2020 Mathematics Subject Classification. 47B20, 47A63.
 Keywords. Furuta inequality, Löwner-Heinz inequality, p-w-hyponormal, Tensor product; Weyl's Type theorems, property ($g t$).

