

AND TOPOLOGY

TENSOR PRODUCT AND VARIANTS OF WEYL'S TYPE THEOREM FOR *p-w*-HYPONORMAL OPERATORS

M. H. M. RASHID

ABSTRACT. A Hilbert space operator T is said to be p-w-hyponormal with 0if $|T|^p \ge |T|^p \ge |T^*|^p$, where T is the Aluthge transform. In this paper we prove basic properties of these operators. Using these results, we also prove that if P is a Riesz idempotent for a non-zero isolated point λ of the spectrum of T, then P is self-adjoint. Among other things, we prove these operators are finitely ascensive and that, for non-zero p-w-hyponormal T and S, $T\otimes S$ is p-w-hyponormal if and only if T and S are p-w-hyponormal. Moreover, it is shown that property (gt) holds for f(T), where $f \in H_{nc}(\sigma(T))$.

Оператор T у гільбертовім просторі називається *p-w*-гіпонормальним, де $0 , якщо <math>|\widetilde{T}|^p \ge |T|^p \ge |\widetilde{T}^*|^p$, де \widetilde{T} – перетворення Алутге. В цій роботі досліджені основні властивості таких операторів. Показано також, що якщо Р ідемпотент Рісса, який відповідає ненульовій ізольованій точці λ спектру T, то оператор Р самоспряжений. Доведено, що ці оператори мають скінченний підйом і що для ненульових p-w-гіпонормальних T і $S, T \otimes S$ є p-w-гіпонормальним тоді й тільки тоді, коли T і S p-w-гіпонормальні. Крім того, доведено, що властивість (gt) має місце для f(T), де $f \in H_{nc}(\sigma(T))$.

1. INTRODUCTION

Let \mathcal{X} (or \mathcal{H}) be a complex Banach (Hilbert, respectively) space and $\mathcal{B}(\mathcal{X})$ (or $\mathcal{B}(\mathcal{H})$) be the set of all bounded linear operators on \mathcal{X} (\mathcal{H} , respectively). Every operator T can be decomposed into T = U|T| with a partial isometry U, where |T| is the square root of T^*T . If U is determined uniquely by the kernel condition $\ker(U) = \ker(|T|)$, then this decomposition is called the *polar decomposition*, which is one of the most important results in operator theory ([27], [32], [41] and [44]). In this paper, T = U|T| denotes the polar decomposition satisfying the kernel condition $\ker(U) = \ker(|T|)$.

Recall that an operator $T \in \mathcal{B}(\mathcal{H})$ is positive, T > 0, if $\langle Tx, x \rangle > 0$ for all $x \in \mathcal{H}$. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be hyponormal if $T^*T > TT^*$. Hyponormal operators have been studied by many authors and it is known that hyponormal operators have many interesting properties similar to those of normal operators [7, 22, 25, 28, 29, 38]. An operator T is said to be p-hyponormal if $(T^*T)^p \ge (TT^*)^p$ for $p \in (0,1]$ and an operator T is said to be log-hyponormal if T is invertible and log $|T| \ge \log |T^*|$. p-hyponormal and loghyponormal operators are defined as extension of hyponormal operator. Aluthge [6] defined the operator $\widetilde{T} = |T|^{1/2} U |T|^{1/2}$, called the Aluthge transformation of T. An operator T is said to be w-hyponormal if $|\widetilde{T}| \geq |T| \geq |\widetilde{T}^*|$. The operator $\widetilde{T}(s,t) = |T|^s U|T|^t$ is the generalized Aluthge transformation of T in [6]. The classes of log-hyponormal and w-hyponormal operators were introduced and their properties were studied in [8] and [9]. It is known that the square of a w-hyponormal operator is also w-hyponormal. In [9], Aluthge showed that the class of w-hyponormal operator properly contains the classes of *p*-hyponormal operators and log-hyponormal.

²⁰²⁰ Mathematics Subject Classification. 47B20, 47A63.

Keywords. Furuta inequality, Löwner-Heinz inequality, p-w-hyponormal, Tensor product; Weyl's Type theorems, property (gt).

In [21], [31], and [20] Yang Changsen, Li Haiying introduced a class of p-w-hyponormal $(0 which means that if <math>|\tilde{T}|^p \ge |T|^p \ge |\tilde{T}^*|^p$. In [7], they showed that there exists an invertible operator whose integer powers are all p-w-hyponormal. As a generalization of class p-w-hyponormal (0 Li Haiying [30] introduced a new class called <math>(s, p)-w-hyponormal which mean that if $|\tilde{T}(s, s)|^p \ge |T|^{2sp} \ge |\tilde{T}^*(s, s)|^p$ $(s > 0, 0 . Clearly, if <math>s = \frac{1}{2}$, an (s, p)-w-hyponormal operator is p-w-hyponormal. That is to say, the class of (s, p)-w-hyponormal operators contains the class of p-w-hyponormal operators.

Throughout this paper, we shall denote the spectrum, the point spectrum and the isolated points of the spectrum of $T \in \mathcal{B}(\mathcal{H})$ by $\sigma(T), \sigma_p(T)$ and $iso\sigma(T)$, respectively. The range and the kernel of $T \in \mathcal{B}(\mathcal{H})$ will be denoted by $\mathcal{R}(T) = T\mathcal{H}$ and ker(T), respectively. We shall denote the set of all complex numbers and the complex conjugate of a complex number λ by \mathbb{C} and $\overline{\lambda}$, respectively. The closure of a set S will be denoted by \overline{S} and we shall henceforth shorten $T - \lambda I$ to $T - \lambda$.

In Section 2, we prove basic properties of p-w-hyponormal operators. Among other things, we prove these operators are finitely ascensive. Section 3 is devoted to characterize the quasinilpotent $H_0(T - \lambda) = \{x \in \mathcal{H} : \lim_{n \to \infty} ||(T - \lambda)^n x||^{\frac{1}{n}} = 0\}$ of p-w-hyponormal operators. Using the results established in Section 2, we also prove that if P is a Riesz idempotent for a non-zero isolated point λ of the spectrum of T, then P is self-adjoint and ker $(T - \lambda) = \mathcal{R}(P) = \text{ker}(T - \lambda)^*$. In Section 4, we prove that for non-zero p-whyponormal T and $S, T \otimes S$ is p-w-hyponormal if and only if T and S are p-w-hyponormal. Moreover, in Section 5, it is shown that property (gt) holds for f(T), and f is an analytic function defined on an open neighborhood of the spectrum of T such that f is non constant on each of the components of its domain.

2. Spectral Properties of *p*-*w*-hyponormal operators

To prove our main Theorems, we need the following results.

Lemma 2.1. [33, Hansen's Inequality] If $A, B \in \mathcal{B}(\mathcal{H})$ satisfy $A \ge 0$ and $||B|| \le 1$, then

 $(B^*AB)^{\alpha} \ge B^*A^{\alpha}B$ for all $\alpha \in (0,1]$.

Lemma 2.2. [34, Löwer-Heinz theorem] $A \ge B \ge 0$ ensure $A^{\alpha} \ge B^{\alpha}$ for any $\alpha \in [0, 1]$.

Theorem 2.3. [6] Let $T \in \mathcal{B}(\mathcal{H})$. If T is p-hyponormal, then the following hold:

- (i) \widetilde{T} is $(p + \frac{1}{2})$ -hyponormal for 0 ;
- (ii) \widetilde{T} is hyponormal for $\frac{1}{2} \leq p \leq 1$.

Proposition 2.4. ([21]) Let $T \in \mathcal{B}(\mathcal{H})$. Then the following conditions are equivalent to each other:

- (i) T is p-w-hyponormal;
- (ii) $|T|^p \ge (|T|^{\frac{1}{2}}|T^*||T|^{\frac{1}{2}})^{\frac{p}{2}}$ and $(|T^*|^{\frac{1}{2}}|T||T^*|^{\frac{1}{2}})^{\frac{p}{2}} \ge |T^*|^p;$
- (iii) $|\widetilde{T^*}^*|^p \ge |T^*|^p \ge |\widetilde{T^*}|^p$.

Theorem 2.5. ([30]) Let $T \in \mathcal{B}(\mathcal{H})$. The following conditions are equivalent:

- (i) T is (s, p)-w-hyponormal;
- (ii) $|T|^{2sp} \ge (|T|^s |T^*|^{2s} |T|^s)^{\frac{p}{2}}$ and $(|T^*|^s |T|^{2s} |T^*|^s)^{\frac{p}{2}} \ge |T^*|^{2sp}$;
- (iii) $|\tilde{T}^*(s,s)^*| \ge |T^*|^{2sp} \ge |\tilde{T}^*(s,s)|.$

Lemma 2.6. Let $T \in \mathcal{B}(\mathcal{H})$. If T is an invertible (s, p)-w-hyponormal operator, then so is T^{-1} .

Proof. Since $|T^{-1}| = |T^*|^{-1}$, $|T^{-1^*}| = |T|^{-1}$ and $T \ge I \iff T^{-1} \le I$. Applying (ii) of Theorem 2.5, we have

$$(|T^*|^s|T|^{2s}|T^*|^s)^{\frac{p}{2}} \ge |T^*|^{2sp}$$

$$\Rightarrow |T^*|^{-sp}(|T^*|^{\frac{1}{2}}|T||T^*|^s)^{\frac{p}{2}}|T^*|^{-sp} \ge I$$

$$\Rightarrow \left(|T^*|^{-sp}(|T^*|^s|T|^{2s}|T^*|^s)^{\frac{p}{2}}|T^*|^{-sp}\right)^{-1} \le I$$

$$\Rightarrow |T^*|^{sp}(|T^*|^s|T|^{2s}|T^*|^s)^{-\frac{p}{2}}|T^*|^{sp} \le I$$

$$\Rightarrow (|T^*|^{-s}|T|^{-2s}|T^*|^{-s})^{\frac{p}{2}} \le |T^*|^{-2sp}$$

$$\Rightarrow (|T^{-1}|^s|T^{-1^*}|^{2s}|T^{-1}|^s)^{\frac{p}{2}} \le |T^{-1}|^{2sp}.$$

Similarly

$$\begin{split} |T|^{2sp} &\geq (|T|^s |T^*|^{2s} |T|^s)^{\frac{p}{2}} \\ \Rightarrow (|T|^s |T^*|^{2s} |T|^s)^{-\frac{p}{4}} |T|^{2sp} (|T|^s |T^*|^{2s} |T|^s)^{-\frac{p}{4}} \geq I \\ \Rightarrow (|T|^s |T^*|^{2s} |T|^s)^{\frac{p}{4}} |T|^{-2sp} (|T|^s |T^*|^{2s} |T|^s)^{\frac{p}{4}} \leq I \\ \Rightarrow |T^{*^{-1}}|^{2sp} \leq (|T|^s |T^*|^{2s} |T|^s)^{-\frac{p}{2}} \\ \Rightarrow |T^{-1^*}|^{2sp} \leq (|T|^{-s} |T^*|^{-2s} |T|^{-s})^{\frac{p}{2}} \\ \Rightarrow |T^{-1^*}|^{2sp} \leq (|T^{-1^*} |^s |T^{-1}|^{2s} |T^{-1^*} |^s)^{\frac{p}{2}}. \end{split}$$

That is, T^{-1} is (s, p)-w-hyponormal operator.

Letting $s = \frac{1}{2}$ in Lemma 2.6, we have immediately

Corollary 2.7. Let $T \in \mathcal{B}(\mathcal{H})$. If T is an invertible p-w-hyponormal operator, $0 , then so is <math>T^{-1}$.

Lemma 2.8. If T is p-w-hyponormal, then \widetilde{T} is $\frac{p}{2}$ -hyponormal, $\widetilde{\widetilde{T}}$ is $\frac{p+1}{2}$ -hyponormal and $\widetilde{\widetilde{\widetilde{T}}}$ is hyponormal.

Proof. The definition of *p*-*w*-hyponormal clearly implies that \tilde{T} is $\frac{p}{2}$ -hyponormal. Since \tilde{T} is $\frac{p}{2}$ -hyponormal, $\tilde{\tilde{T}}$ is $\frac{p+1}{2}$ -hyponormal by Theorem 2.3, again by Theorem 2.3 $\tilde{\tilde{T}}$ is hyponormal.

An operator T is said to be normaloid if ||T|| = r(T), where r(T) is the spectral radius of T. The equality ||T|| = r(T) was shown to hold in [51] for hyponormal operators, in [6] for p-hyponormal and in [8]. The next theorem shows that the equality holds for p-w-hyponormal operators.

Theorem 2.9. Let $T \in \mathcal{B}(\mathcal{H})$. If T is p-w-hyponormal, then $\left\| \widetilde{\widetilde{T}} \right\| = \left\| \widetilde{\widetilde{T}} \right\| = \left\| \widetilde{\widetilde{T}} \right\| = \left\| \widetilde{T} \right\| = \|T\| = r(T)$. That is, T is normaloid.

Proof. Since $\tilde{\widetilde{T}}$ is hyponormal, $\|\tilde{\widetilde{T}}\| = r(\tilde{\widetilde{T}})$ by [51, Theorem 1]. The result follows by [8, Corollary 2.3] since $\sigma(T) = \sigma(\widetilde{T}) = \sigma(\widetilde{\widetilde{T}}) = \sigma(\widetilde{\widetilde{T}})$.

Theorem 2.10. Let $T \in \mathcal{B}(\mathcal{H})$ be p-w-hyponormal operator. Then T is

- (a) normal if $\sigma(T)$ is an arc or if $\sigma(T)$ has only a finite number of limit points;
- (b) self-adjoint if $\sigma(T) \subset \mathbb{R}$;
- (c) unitary if $\sigma(T)$ is contained in the unit circle.

90

Proof. (a) If $\sigma(T)$ is an arc, then $\sigma(\tilde{T})$ is an arc by [8, Corollary 2.3]. The hyponormality of $\tilde{\tilde{T}}$ implies $\tilde{\tilde{T}}$ is normal [51, Theorem 4]. Applying [31, Theorem 4.4] to $\tilde{\tilde{T}}$, we obtain $\tilde{\tilde{T}} = \tilde{\tilde{T}}$ and thus $\tilde{\tilde{T}}$ is normal. Applying the same theorem to \tilde{T} firstly and to T secondly yields $\tilde{\tilde{T}} = \tilde{T}$ and $T = \tilde{T}$ and hence T is normal.

(b) If $\sigma(T) \subset \mathbb{R}$, then $\sigma(\tilde{T}) \subset \mathbb{R}$ by [8, Corollary 2.3]. The *p*-hyponormality of \tilde{T} implies that \tilde{T} is self-adjoint and $\tilde{T} = T$, so the result.

(c) Both T and T^{-1} are p-w-hyponormal and their spectra are subsets of $\mathbb{T} = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$. Consequently, by Theorem 2.9 $||T|| = ||T^{-1}|| = 1$, and so T is a unitary. \Box

Corollary 2.11. A compact p-w-hyponormal operator is normal.

Theorem 2.12. Let $T \in \mathcal{B}(\mathcal{H})$ be p-w-hyponormal operator. If the planar Lebesgue measure $m_2(\sigma(T))$ of $\sigma(T)$ is 0, then T is normal.

Proof. Since \widetilde{T} is $\frac{p}{2}$ -hyponormal by Lemma 2.8, and $\sigma(\widetilde{T}) = \sigma(T)$ by [8, Corollary 2.3], we have $m_2(\sigma(\widetilde{T})) = 0$. Hence \widetilde{T} is normal by Putnam's inequality [54, Corollary]. Thus T is normal by [31, Theorem 4.4].

Let $\overline{W}(S)$ denotes the closure of the numerical range of the operator S. In [50] showed that if T is hyponormal, $T = S^{-1}T^*S$ and $0 \notin \overline{W}(S)$, then T is self-adjoint. The next theorem gives an extension of Sheh's result to p-w-hyponormal operators.

Theorem 2.13. Let $T \in \mathcal{B}(\mathcal{H})$ be p-w-hyponormal operator. If $T = S^{-1}T^*S$ and $0 \notin \overline{W}(S)$, then T is self-adjoint.

Proof. If $T = S^{-1}T^*S$ and $0 \notin \overline{W}(S)$, then it follows from [39, Theorem 1] that $\sigma(T) \subset \mathbb{R}$. Since a *p*-*w*-hyponormal operator *T* with $\sigma(T) \subset \mathbb{R}$ is self-adjoint, the result follows. \Box

A complex number λ is said to be in the point spectrum $\sigma_p(T)$ of an operator T if there is a non-zero vector x for which $(T - \lambda)x = 0$. If in addition, $(T^* - \overline{\lambda})x = 0$, then λ to be in the joint point spectrum $\sigma_{jp}(T)$ of T. In general, one has $\sigma_{jp}(T) \subset \sigma_p(T)$. It is known the equality holds for p-hyponormal [6].

If T is hyponormal, it is easy to see [51, Lemma 2] that T posses the property that $Tx = \lambda x$ implies $T^*x = \overline{\lambda}x$. This property clearly implies $\sigma_p(T) = \sigma_{jp}(T)$ if T is hyponormal. In the sequel, we show that p-w-hyponormal also possess this property provided $\lambda \neq 0$. Consequently the non-zero points of $\sigma_p(T)$ and $\sigma_{jp}(T)$ are identical if T is p-w-hyponormal.

Theorem 2.14. Let $T \in \mathcal{B}(\mathcal{H})$ be p-w-hyponormal operator. If $Tx = \lambda x$, $\lambda \neq 0$, then $T^*x = \overline{\lambda}x$.

Proof. Since \widetilde{T} is $\frac{p}{2}$ -hyponormal by Lemma 2.8, \widetilde{T} possesses the property that $\widetilde{T}x = \lambda x$ implies $\widetilde{T^*x} = \overline{\lambda}x$. It follows from [8, Lemma 3.1] that T possesses the same property. \Box

Corollary 2.15. If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal operator, then $\sigma_p(T) \setminus \{0\} = \sigma_{jp}(T) \setminus \{0\}$.

Corollary 2.16. Let $T \in \mathcal{B}(\mathcal{H})$ be *p*-*w*-hyponormal operator with $Tx = \lambda x$, $Ty = \mu y$ and $\lambda \neq \mu$. Then $\langle x, y \rangle = 0$.

Proof. Without loss of generality, assume $\mu \neq 0$. Then $T^*y = \overline{\mu}y$ by Theorem 2.14. Thus,

$$\langle x, y \rangle = \langle x, T^*y \rangle = \langle Tx, y \rangle = \lambda \langle x, y \rangle.$$

Since $\lambda \neq \mu$, $\langle x, y \rangle = 0$.

M. H. M. RASHID

Let $\sigma_a(T)$ denotes the approximate point spectrum of the operator T. In [56], Xia proved that if T is semi-hyponormal, then $\sigma(T) = \{\lambda : \overline{\lambda} \in \sigma_a(T^*)\}$. The next proposition shows that if T is *p*-*w*-hyponormal, the non-zero points of $\sigma(T)$ and $\{\lambda : \overline{\lambda} \in \sigma_a(T^*)\}$ are identical.

Proposition 2.17. If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal operator, then

$$\sigma(T) \setminus \{0\} = \{\lambda : \lambda \in \sigma_a(T^*)\} \setminus \{0\}.$$

Proof. In [56], it was shown that for any operator T, the equality $\sigma(T) = \sigma_p(T) \cup \{\lambda : \overline{\lambda} \in \sigma_a(T^*)\}$ holds. If T is p-w-hyponormal, then Corollary 2.15 implies $\sigma_p(T) \setminus \{0\} = \sigma_{jp}(T) \setminus \{0\} \subset \{\lambda : \overline{\lambda} \in \sigma_p(T^*)\} \setminus \{0\}$. Since $\sigma_p(T^*) \subset \sigma_a(T^*)$, the result follows. \Box

Here and elsewhere in this paper, for $A \subset \mathbb{C}$, iso *A* denotes the set of all isolated points of *A* and acc *A* denotes the set of all points of accumulation of *A*.

A bounded linear operator T is said to be isoloid if $iso\sigma(T) \subset \sigma_p(T)$.

Theorem 2.18. Let $T \in \mathcal{B}(\mathcal{H})$ be p-w-hyponormal. If λ is an isolated point in $\sigma(T)$, then $\lambda \in \sigma_p(T)$. That is, T is isoloid.

Proof. Since $\sigma(T) = \sigma(\tilde{\widetilde{T}})$, λ is an isolated point of $\sigma(\tilde{\widetilde{T}})$. the hyponormality of $\tilde{\widetilde{T}}$ implies that $\lambda \in \sigma_p(\tilde{\widetilde{T}})$ by [51, Theorem 2]. It follows from the fact T is invertible if and only if \widetilde{T} is invertible that $\sigma_p(T) = \sigma_p(\widetilde{T}) = \sigma_p(\tilde{\widetilde{T}}) = \sigma_p(\tilde{\widetilde{T}})$. Thus, $\lambda \in \sigma_p(T)$ and the proof is complete.

Recall that a complex number λ is said to be in the approximate point spectrum $\sigma_a(T)$ of the operator T if there is a sequence $\{x_n\}$ of unit vectors in \mathcal{H} such that $(T - \lambda)x_n = 0$. If in addition, $(T^* - \overline{\lambda})x_n = 0$, then λ is said to be in the joint approximate point spectrum $\sigma_{ja}(T)$ of T. Clearly, one has $\sigma_{ja}(T) \subset \sigma_a(T)$. It is known [9] that if T is *w*-hyponormal, then $\sigma_{ja}(T) \setminus \{0\} = \sigma_a(T) \setminus \{0\}$. Here we show that if T is *p*-*w*-hyponormal, then the same result holds.

Theorem 2.19. [12] Given a Hilbert space \mathcal{H} , there exists a Hilbert space $\mathcal{K} \supset \mathcal{H}$ and a map $\phi : \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{K})$ such that

- (a) ϕ is a faithful *-representation of the algebra $\mathcal{B}(\mathcal{H})$ on \mathcal{K} ,
- (b) $\phi(A) \geq 0$ for any $A \geq 0$ in $\mathcal{B}(\mathcal{H})$, and
- (c) $\sigma_a(T) = \sigma_a(\phi(T)) = \sigma_p(\phi(T))$ for any $T \in \mathcal{B}(\mathcal{H})$.

We also need the following corollary which Xia observed in [56].

Corollary 2.20. Let $\phi : \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{K})$ be the Berberian's faithful *-representation. For any operator $T \in \mathcal{B}(\mathcal{H}), \sigma_{jp}(\phi(T)) = \sigma_{ja}(T)$.

Theorem 2.21. If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal, then $\sigma_{ja}(T) \setminus \{0\} = \sigma_a(T) \setminus \{0\}$.

Proof. Let ϕ be the representation of Berberian. First, we show that $\phi(T)$ is *p*-w-hyponormal. In view of Proposition 2.4, we need only establish

$$|\phi(T)|^{p} \ge (|\phi(T)|^{\frac{1}{2}} |\phi(T)^{*}| |\phi(T)|^{\frac{1}{2}})^{\frac{p}{2}}$$

and

$$(|\phi(T)^*|^{\frac{1}{2}}|\phi(T)||\phi(T)^*|^{\frac{1}{2}})^{\frac{p}{2}} \ge |\phi(T)^*|^p.$$

Part (a) and (b) of Theorem 2.19 imply

$$|\phi(T)|^p = \phi(|T|^p) \ge \phi((|T|^{\frac{1}{2}}|T^*||T||T|^{\frac{1}{2}})^{\frac{p}{2}}) = (|\phi(T)|^{\frac{1}{2}}|\phi(T)^*||\phi(T)|^{\frac{1}{2}})^{\frac{p}{2}},$$

and similarly,

$$(|\phi(T)^*|^{\frac{1}{2}}|\phi(T)||\phi(T)^*|^{\frac{1}{2}})^{\frac{p}{2}} \ge |\phi(T)^*|^p$$

Thus, $\phi(T)$ is p-w-hyponormal. Now, by part(c) of Theorem 2.19, we have

$$\sigma_{a}(T) \setminus \{0\} = \sigma_{a}(\phi(T)) \setminus \{0\}$$
$$= \sigma_{p}(\phi(T)) \setminus \{0\}$$
$$= \sigma_{jp}(\phi(T)) \setminus \{0\} \qquad \text{by Corollary 2.15}$$
$$= \sigma_{ja}(T) \setminus \{0\}$$

where the last equality follows from Corollary 2.20. The proof is complete.

Corollary 2.22. If $T \in \mathcal{B}(\mathcal{H})$ is an invertible *p*-*w*-hyponormal, then $\sigma_a(T) = \sigma_{ia}(T)$.

Lemma 2.23. (Hölder-McCarthy Inequality) Let $A \ge 0$. Then the following assertions hold.

- (i) $\langle A^r x, x \rangle \ge \langle Ax, x \rangle^r \|x\|^{2(1-r)}$ for r > 1 and $x \in \mathcal{H}$. (ii) $\langle A^r x, x \rangle \le \langle Ax, x \rangle^r \|x\|^{2(1-r)}$ for $r \in [0, 1]$ and $x \in \mathcal{H}$.

Theorem 2.24. If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal, 0 . Then

$$\ker(T-\lambda)^2 = \ker(T-\lambda) \text{ for all } \lambda \in \mathbb{C} \setminus \{0\}.$$

Proof. Since ker $(T - \lambda) \subset \text{ker}(T - \lambda)^2$ is clear, we need only show that ker $(T - \lambda)^2 \subset$ $\ker(T-\lambda)$. For simplicity, write $K = \ker(T-\lambda)^2$ and denote by F the closure of $(T-\lambda)K$. Let $x \in K$. The hypothesis implies

$$(T - \lambda)^* (T - \lambda)x = 0,$$

and consequently,

$$(T-\lambda)^*F = 0$$

If $z \in \mathcal{H}$, write z = w + y, where $w \in F$ and $y \in F^{\perp}$. Then $(T - \lambda)^* z = (T - \lambda)^* y$, and hence

$$\langle (T-\lambda)^* z, x \rangle = \langle (T-\lambda)^* y, x \rangle = \langle y, (T-\lambda)x \rangle.$$

for all $x \in K$. Therefore, $\mathcal{R}(T-\lambda)^* \subset K^{\perp}$, and consequently,

$$\ker(T-\lambda)^2 = K^{\perp\perp} \subset (\mathcal{R}(T-\lambda)^*)^{\perp} = \ker(T-\lambda).$$

Corollary 2.25. If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal for $0 , then <math>T - \lambda$ has finite ascent for all $\lambda \in \mathbb{C} \setminus \{0\}$.

3. QUASINILPOTENT PART OF *p*-*w*-HYPONORMAL OPERATORS

Lemma 3.1. [48, Lemma 2.22] Let $T \in \mathcal{B}(\mathcal{H})$ be a p-w-hyponormal operator for some $0 and let <math>\mathcal{M}$ an invariant subspace of T. Then the restriction $T|_{\mathcal{M}}$ is also a *p*-*w*-*hyponormal operator.*

Lemma 3.2. [48, Lemma 2.24] Let $T \in \mathcal{B}(\mathcal{H})$ be a p-w-hyponormal operator, let \mathcal{M} be an invariant subspace for T and a reduced subspace for \widetilde{T} such that $\widetilde{T}|_{\mathcal{M}}$ the restriction of \widetilde{T} to \mathcal{M} is an injective normal operator, then $T|_{\mathcal{M}} = \widetilde{T}|_{\mathcal{M}}$ and \mathcal{M} reduces T.

Two important subspaces in local spectral theory and Fredholm theory are defined in the sequel. The quasi-nilpotent part of an operator $T \in \mathcal{B}(\mathcal{H})$ is the set

$$H_0(T) = \{ x \in \mathcal{H} : \lim_{n \longrightarrow \infty} \|T^n x\|^{\frac{1}{n}} = 0 \}.$$

Clearly, ker $T^n \subseteq H_0(T)$ for every $n \in \mathbb{N}$. If $T \in \mathcal{B}(\mathcal{H})$, the analytic core K(T) is the set of all $x \in \mathcal{H}$ such that there exists a constant c > 0 and a sequence of elements $x_n \in \mathcal{H}$

such that $x_0 = x$, $Tx_n = x_{n-1}$, and $||x_n|| \le c^n ||x||$ for all $n \in \mathbb{N}$. Note that by Theorem 2.2 of [4], $T \in \mathcal{B}(\mathcal{H})$ is polaroid if and only if there exists $p := p(\lambda - T) \in \mathbb{N}$ such that

$$H_0(\lambda - T) = \ker(\lambda - T)^p \quad \text{for all} \quad \lambda \in \mathrm{iso}\sigma(T).$$
(3.1)

We note that $H_0(T-\lambda)$ and $K(T-\lambda)$ are generally non-closed hyper-invariant subspaces of $T-\lambda$ such that $\ker(T-\lambda)^p \subseteq H_0(T-\lambda)$ for all $p=0,1,\cdots$ and $(T-\lambda)K(T-\lambda) =$ $K(T-\lambda)$. Recall that if $\lambda \in \operatorname{iso}\sigma(T)$, then $H_0(T-\lambda) = \mathcal{X}_T(\{\lambda\})$, where $\mathcal{X}_T(\{\lambda\})$ is the global spectral subspace consisting of all $x \in \mathcal{H}$ for which there exists an analytic function $f: \mathbb{C} \setminus \{\lambda\} \longrightarrow \mathcal{H}$ that satisfies $(T-\mu)f(\mu) = x$ for all $\mu \in \mathbb{C} \setminus \{\lambda\}$, see [1].

Let $H_{nc}(\sigma(T))$ denote the set of all analytic functions, defined on an open neighborhood of $\sigma(T)$, such that f is non constant on each of the components of its domain. Define, by the classical functional calculus, f(T) for every $f \in H_{nc}(\sigma(T))$. Following [26] We say that $T \in \mathcal{B}(\mathcal{H})$ has the single-valued extension property (SVEP) at point $\lambda \in \mathbb{C}$ if for every open neighborhood U_{λ} of λ , the only analytic function $f : U_{\lambda} \longrightarrow \mathcal{H}$ which satisfies the equation $(T - \mu)f(\mu) = 0$ is the constant function $f \equiv 0$. It is well-known that $T \in \mathcal{B}(\mathcal{H})$ has SVEP at every point of the resolvent $\rho(T) := \mathbb{C} \setminus \sigma(T)$. Moreover, from the identity Theorem for analytic function it easily follows that $T \in \mathcal{B}(\mathcal{H})$ has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum. In particular, T has SVEP at every isolated point of $\sigma(T)$. In [42, Proposition 1.8], Laursen proved that if T is of finite ascent, then T has SVEP.

Definition 3.3. [19] An operator T is said to have $Bishop's property (\beta)$ at $\lambda \in \mathbb{C}$ if for every open neighborhood G of λ , the function $f_n \in H_{nc}(G)$ with $(T - \lambda)f_n(\mu) \to 0$ uniformly on every compact subset of G implies that $f_n(\mu) \to 0$ uniformly on every compact subset of G, where Hol(G) means the space of all analytic functions on G. When T has Bishop's property (β) at each $\lambda \in \mathbb{C}$, simply say that T has property (β).

Theorem 3.4. [20] If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal, then T has property (β) and hence has SVEP.

Theorem 3.5. Let $T \in \mathcal{B}(\mathcal{H})$ be p-w-hyponormal. Then $H_0(T - \lambda I) = \ker(T - \lambda I)$ for $\lambda \in \mathbb{C}$.

Proof. Let $F \subset \mathbb{C}$ be closed set. Define the global spectral subspace by

$$\mathcal{X}_T(F) = \{x \in \mathcal{H} : \text{there is analytic } f(z) : (T-z)f(z) = x \text{ on } \mathbb{C} \setminus F \}.$$

It is known that $H_0(T - \lambda) = \mathcal{X}_T(\{\lambda\})$ by [1, Theorem 2.20]. As T has Bishop's property (β) by Theorem 3.4, $\mathcal{X}_T(F)$ is closed and $\sigma(T|_{\mathcal{X}_T(F)}) \subset F$ by [43, Proposition 1.2.19]. Hence $H_0(T - \lambda I)$ is closed and $T|_{H_0(T - \lambda I)}$ is p-w-hyponormal by Theorem 3.1. Since $\sigma(T|_{H_0(T - \lambda I)}) \subset \{\lambda\}, T|_{H_0(T - \lambda I)}$ is normal by Corollary 2.12. If $\sigma(T|_{H_0(T - \lambda I)}) = \emptyset$, then $H_0(T - \lambda I) = \{0\}$ and $\ker(T - \lambda I) = \{0\}$. If $\sigma(T|_{H_0(T - \lambda I)}) = \{\lambda\}$, then $T|_{H_0(T - \lambda I)} = \lambda I$ and $H_0(T - \lambda I) \subset \ker(T - \lambda I)$.

Remark 3.6. If $\lambda \neq 0$, then $H_0(T - \lambda I) = \ker(T - \lambda I) \subset \ker(T - \lambda I)^*$. Moreover, if $\lambda \in \sigma(T) \setminus \{0\}$ is an isolated point then $H_0(T - \lambda I) = \ker(T - \lambda I) = \ker(T - \lambda I)^*$.

Lemma 3.7. Let $T \in \mathcal{B}(\mathcal{H})$ be *p*-*w*-hyponormal. Let $\lambda \in \mathbb{C}$. Assume that $\sigma(T) = \{\lambda\}$. Then $T = \lambda I$

Proof. We consider two cases:

Case (I). $(\lambda = 0)$: Since T is p-w-hyponormal, T is normaloid. Therefore T = 0. Case (II). $(\lambda \neq 0)$: Here T is invertible, and since T is p-w-hyponormal, we see that T^{-1} is also p-w-hyponormal. Therefore T^{-1} is normaloid. On the other hand, $\sigma(T^{-1}) = \{\frac{1}{\lambda}\}$, so $||T|| ||T^{-1}|| = |\lambda| |\frac{1}{\lambda}| = 1$. It follows that T is convexoid, so $W(T) = \{\lambda\}$. Therefore $T = \lambda$. Two classical quantities associated with a linear operator T are the ascent p := p(T), defined as the smallest non-negative integer p (if it does exist) such that ker $T^p = \ker T^{p+1}$, and the descent q := q(T), defined as the smallest non-negative integer q (if it does exists) such that $\mathcal{R}(T^q) = \mathcal{R}(T^{q+1})$. It is well-known that if $p(T - \lambda)$ and $q(T - \lambda)$ are both finite then $p(T - \lambda) = q(T - \lambda)$ and λ is a pole of the the function resolvent $\lambda \longrightarrow (T - \lambda)^{-1}$, in particular λ is an isolated point of the spectrum $\sigma(T)$, see Proposition 38.3 and Proposition 50.2 of Heuser [35].

A bounded operator $T \in \mathcal{B}(\mathcal{H})$ defined on a Banach space is said to be polaroid if every isolated point of the spectrum $\sigma(T)$ is a pole of the resolvent. The following result has been proved in [3, Theorem 2.4].

Theorem 3.8. For an operator $T \in \mathcal{B}(\mathcal{H})$ the following statements are equivalent:

- (i) T is polaroid;
- (ii) there exists $f \in H_{nc}(\sigma(T))$ such that f(T) is polaroid;
- (iii) f(T) is polaroid for every $f \in H_{nc}(\sigma(T))$.

Theorem 3.9. If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal operator, 0 , then T is polaroid.

Proof. We show that for every isolated point λ of $\sigma(T)$ we have $p(T - \lambda) = q(T - \lambda) < \infty$. Let λ be an isolated point of $\sigma(T)$, and denote by P_{λ} denote the spectral projection associated with $\{\lambda\}$. Then $\mathcal{M} := K(T - \lambda) = \ker P_{\lambda}$ and $\mathcal{N} := H_0(T - \lambda) = P_{\lambda}(\mathcal{H})$, see [1, Theorem 3.74]. Therefore, $H = H_0(T - \lambda) \oplus K(T - \lambda)$. Furthermore, since $\sigma(T|_{\mathcal{N}}) = \{\lambda\}$, while $\sigma(T|_{\mathcal{M}}) = \sigma(T) \setminus \{\lambda\}$, so the restriction $T|_{\mathcal{N}} - \lambda$ is quasi-nilpotent and $T|_{\mathcal{N}} - \lambda$ is invertible. Since $T|_{\mathcal{N}} - \lambda$ is *p*-*w*-hyponormal, then Lemma 3.7 implies that $T|_{\mathcal{N}} - \lambda$ is nilpotent. In other words, $T|_{\mathcal{N}} - \lambda$ is an operator of Kato Type.

Now, both T and the dual T^* have SVEP at λ , since λ is isolated in $\sigma(T) = \sigma(T^*)$, and this implies, by Theorem 3.16 and Theorem 3.17 of [1], that both $p(T - \lambda)$ and $q(T - \lambda)$ are finite. Therefore, λ is a pole of the resolvent.

4. RIESZ IDEMPOTENT OF W-HYPONORMAL

Let $T \in \mathcal{B}(\mathcal{H})$ and $\lambda \in \sigma(T)$ be an isolated of $\sigma(T)$. then there exists a closed disc \mathbf{D}_{λ} centered λ which satisfies $\mathbf{D}_{\lambda} \cap \sigma(T) = \{\lambda\}$. The operator

$$P = \frac{1}{2\pi i} \int_{\partial \mathbf{D}_{\lambda}} (T - \lambda I)^{-1} \, d\lambda$$

is called the Riesz idempotent with respect to λ which has properties that

$$P^2 = P, PT = TP, \ker(T - \lambda I) \subset \mathcal{R}(P) \text{ and } \sigma(T|_{\mathcal{R}(P)}) = \{\lambda\}.$$

In [51], Stampfli proved that if T is hyponormal and $\lambda \in \sigma(T)$ is isolated, then the Riesz idempotent P with respect to λ is self-adjoint and satisfies

$$\mathcal{R}(P) = \ker(T - \lambda I) = \ker(T - \lambda I)^*.$$

In this paper we extend these result to the case of ap-w-hyponormal operator.

Theorem 4.1. Let $T \in \mathcal{B}(\mathcal{H})$ be a *p*-w-hyponormal operator and λ be a non-zero isolated point of $\sigma(T)$. Let \mathbf{D}_{λ} denote the closed disc which centered λ such that $\mathbf{D}_{\lambda} \cap \sigma(T) = \{\lambda\}$. Then the Riesz idempotent $P = \frac{1}{2\pi i} \int_{\partial \mathbf{D}_{\lambda}} (T - \lambda I)^{-1} d\lambda$ satisfies that

$$\mathcal{R}(P) = \ker(T - \lambda I) = \ker(T - \lambda I)^*$$

In particular P is self-adjoint.

Proof. Since *p*-*w*-hyponormal operators are isoloid by Corollary 2.18. Then every isolated point of $\sigma(T)$ of T is an eigenvalue of T. Then the range of Riesz idempotent P =

M. H. M. RASHID

 $\frac{1}{2\pi i} \int_{\partial \mathbf{D}_{\lambda}} (T - \lambda I)^{-1} d\lambda \text{ is an invariant closed subspace of } T \text{ and } \sigma(T|_{\mathcal{R}(P)}) = \{\lambda\}. \text{ Here } \mathbf{D}_{\lambda} \text{ is a closed disc with its center } \lambda \text{ such that } \mathbf{D}_{\lambda} \cap \sigma(T) = \{\lambda\}.$

If $\lambda = 0$, then $\sigma(T|_{\mathcal{R}(P)}) = \{0\}$. Since $T|_{\mathcal{R}(P)}$ is *p*-*w*-hyponormal by Theorem 3.1, $T|_{\mathcal{R}(P)} = 0$ by Lemma 3.7. Therefore, 0 is an eigenvalue of *T*.

If $\lambda \neq 0$, then $T|_{\mathcal{R}(P)}$ is an invertible *p*-*w*-hyponormal operator and hence $(T|_{\mathcal{R}(P)})^{-1}$ is also *w*-hyponormal. We see that $||T|_{\mathcal{R}(P)}|| = |\lambda|$ and $||(T|_{\mathcal{R}(P)})^{-1}|| = \frac{1}{|\lambda|}$. Let $x \in \mathcal{R}(P)$ be arbitrary vector. Then

$$||x|| \le \left\| (T|_{\mathcal{R}(P)})^{-1} \right\| \left\| T|_{\mathcal{R}(P)} x \right\| = \frac{1}{|\lambda|} \left\| T|_{\mathcal{R}(P)} x \right\| \le \frac{1}{|\lambda|} |\lambda| ||x|| = ||x||.$$

This implies that $\frac{1}{\lambda}T|_{\mathcal{R}(P)}$ is unitary with its spectrum $\sigma(\frac{1}{\lambda}T|_{\mathcal{R}(P)}) = \{1\}$. Hence $T|_{\mathcal{R}(P)} = \lambda I$ and λ is an eigenvalue of T. Therefore, $\mathcal{R}(P) = \ker(T - \lambda I)$. Since $\ker(T - \lambda I) \subset \ker(T - \lambda I)^*$ by Proposition 2.14, it suffices to show that $\ker(T - \lambda I)^* \subset \ker(T - \lambda I)$. Since $\ker(T - \lambda I)$ is a reducing subspace of T by Proposition 2.14 and the restriction of a p-w-hyponormal to its reducing subspace is also p-w-hyponormal operator, we see that T is of the form $T = T' \oplus \lambda I$ on $\mathcal{H} = \ker(T - \lambda I) \oplus \ker(T - \lambda I)^{\perp}$, where T' is a p-w-hyponormal operator with $\ker(T' - \lambda I) = \{0\}$. since $\lambda \in \sigma(T) = \sigma(T') \cup \{\lambda\}$ is isolated, the only two cases occur. One is $\lambda \notin \sigma(T')$ and the other is that λ is an isolated point of $\sigma(T')$. The latter case, however, does not occur otherwise we have $\lambda \in \sigma_p(T')$ and this contradicts the fact that $\ker(T' - \lambda I) = \{0\}$. $\ker(T - \lambda I) = \ker(T - \lambda I)^*$ is immediate from the injectivity of $T' - \lambda I$ as an operator on $\ker(T - \lambda I)^{\perp}$.

Next, we show that P is self-adjoint. Since $\mathcal{R}(P) = \ker(T - \lambda I) = \ker(T - \lambda I)^*$, we have $((T - zI)^*)^{-1}P = \overline{(z - \lambda)^{-1}}P$. Hence

$$P^*P = -\frac{1}{2i\pi} \int_{\partial \mathbf{D}_{\lambda}} ((T - zI)^*)^{-1} P \, d\bar{z}$$

$$= -\frac{1}{2i\pi} \int_{\partial \mathbf{D}_{\lambda}} \overline{(z - \lambda)^{-1}} P \, d\bar{z}$$

$$= \overline{\left(\frac{1}{2i\pi} \int_{\partial \mathbf{D}_{\lambda}} \frac{1}{z - \lambda} \, d\bar{z}\right)} P$$

$$= PP^*.$$

In the following we give an example T of p-w-hyponormal operator which has properties that 0 is an isolated point of $\sigma(T)$, the Riesz idempotent with respect to 0 is not self-adjoint and ker $(T) \neq \text{ker}(T^*)$.

Example 4.2. Let $\mathcal{H} = \bigoplus_{n=0}^{\infty} \mathbb{C}^2$ and define an operator T on \mathcal{H} by

$$T(\dots \oplus x_{-2} \oplus x_{-1} \oplus x_0^{(0)} \oplus x_1 \oplus \dots) = \dots \oplus Ax_{-2} \oplus A^{(0)}x_{-1} \oplus Bx_0 \oplus Bx_1 \oplus \dots,$$

where $A = \begin{pmatrix} 1/8 & 1/8 \\ 1/8 & 1/8 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Then T is p -w-hyponormal with $0 and $\sigma(T) = \{0\} \cup \{z : \frac{1}{4} \le |z| \le 1\}$. Moreover $P\mathcal{H} = \ker(T)$, P is not self-adjoint and
 $\ker(T) \neq \ker(T^*)$, where P is the Riesz idempotent with respect to 0.$

Proof. Let
$$x = \dots \oplus x_{-2} \oplus x_{-1} \oplus x_0^{(0)} \oplus x_1 \oplus \dots$$
, we have

$$T^*x = (\dots \oplus Ax_0 \oplus B^{(0)}x_1 \oplus Bx_2 \oplus \dots),$$

$$|T|x = (\oplus_{n < 0}Ax_n) \oplus (\oplus_{n \ge 0}Bx_n),$$

$$|\widetilde{T}|x = (\oplus_{n < -1}Ax_n) \oplus (A^{1/2}BA^{1/2})^{1/2}x_{-1} \oplus (\oplus_{n \ge 0}Bx_n),$$

$$|(\widetilde{T})^*|x = (\oplus_{n < 0}Ax_n) \oplus (A^{1/2}BA^{1/2})^{1/2}x_0 \oplus (\oplus_{n \ge 1}Bx_n).$$

Since $(A^{\frac{1}{2}}BA^{\frac{1}{2}})^{\frac{p}{2}} = 2^{\frac{p}{2}}A$ and $(B^{\frac{1}{2}}AB^{\frac{1}{2}})^{\frac{p}{2}} = (BAB)^{\frac{p}{2}} = \frac{1}{8^{\frac{p}{2}}}B$,

$$\left\langle (|\widetilde{T}|^p - |T|^p)x, x \right\rangle = \left\langle ((A^{\frac{1}{2}}BA^{\frac{1}{2}})^{\frac{p}{2}} - A)x_{-1}, x_{-1} \right\rangle \ge 0$$

$$\left\langle (|T|^p - |(\widetilde{T})^*|^p)x, x \right\rangle = \left\langle (B - (BAB)^{\frac{p}{2}})x_0, x_0 \right\rangle \ge 0.$$

Hence T is p-w-hyponormal.

- (i) Let $\mathcal{H}_{+} = \{(T-\lambda)x | x \in \mathcal{H}, x = \cdots \oplus 0 \oplus x_{0} \oplus x_{1} \oplus x_{2} \oplus \cdots\}, \mathcal{H}_{-} = \{(T-\lambda)x | x \in \mathcal{H}, x = \cdots \oplus x_{-4} \oplus x_{-3} \oplus 0 \oplus \cdots\}, \text{ and } \mathcal{H}_{0} = \{(T-\lambda)x | x \in \mathcal{H}, x = \cdots \oplus 0 \oplus x_{-2} \oplus x_{-1} \oplus 0 \oplus \cdots\}.$ Then $\mathcal{H}_{+} \perp \mathcal{H}_{-}$. We remark that 4A is unitary equivalent to B. By Lemma 12 of [55], \mathcal{H}_{+} and \mathcal{H}_{-} are closed for $\lambda < \frac{1}{4}$. Since \mathcal{H}_{0} is finite dimensional, $\mathcal{R}(T-\lambda) = (\mathcal{H}_{+} \oplus \mathcal{H}_{-}) + \mathcal{H}_{0}$ is closed.
- (ii) It is easy to check that

$$\ker(T) = \left\{ \left[\bigoplus_{n \le -1} c_n \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right] \oplus \left[\bigoplus_{n \ge 0} c_n \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] | \{c_n\} \in \ell^2(\mathbb{Z}) \right\},$$
$$\ker(T^*) = \left\{ \left[\bigoplus_{n \le 0} c_n \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right] \oplus \left[\bigoplus_{n \ge 1} c_n \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] | \{c_n\} \in \ell^2(\mathbb{Z}) \right\}.$$

Hence, $\ker(T) \neq \ker(T^*)$.

- (iii) If $0 < \lambda < 1/4$, it easy to check that $\ker(T-\lambda) = \ker(T-\lambda)^* = \{0\}$. Since $\mathcal{R}(T-\lambda)$ is closed by [55, Lemma 12], we have $\mathcal{R}(T-\lambda) = \overline{\mathcal{R}(T-\lambda)} = [\ker(T-\lambda)^*]^{\perp} = \mathcal{H}$ and therefore $\lambda \notin \sigma(T)$.
- (iv) If $\frac{1}{4} < \lambda < 1$, we have

$$\ker(T-\lambda)^* = \mathbb{C}\left(\left[\bigoplus_{n<0} \frac{1}{2(4\lambda)^{|n|}} \begin{pmatrix} 1\\1 \end{pmatrix} \right] \oplus \left[\bigoplus_{n\geq 0} \lambda^n \begin{pmatrix} 1\\1 \end{pmatrix} \right] \right).$$

- (v) It follows from (*iii*) and (*iv*) that $\sigma(T) = \{0\} \cup \{\lambda \in \mathbb{C} | \frac{1}{4} \le |\lambda| \le 1\}$.
- (vi) Since T is paranormal, we have $\mathcal{R}(P) = \ker(T)$ by the proof of [55, Lemma 6]. Suppose that P is self-adjoint. Then $\mathcal{R}(P) \perp \mathcal{R}(I-P)$, so that $T = 0 \oplus S$ for some paranormal operator on $\mathcal{R}(I-P)$ with $\mathcal{R}(S) = \{0\}$. Since S is isoloid, $0 \notin \sigma(S)$. Hence $\ker(T) = \mathcal{R}(P) = \ker(T^*)$. This contradicts (*ii*).

5. Tensor Product

Let \mathcal{H} and \mathcal{K} denote the Hilbert spaces. For given non-zero operators $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K}), T \otimes S$ denotes the tensor product on the product space $\mathcal{H} \otimes \mathcal{K}$. The normaloid property is invariant under tensor products [53]. $T \otimes S$ is normal if and only if T and S are normal [23, 40]. There exist paranormal operators T and S such that $T \otimes S$ is not paranormal [52]. In [37], I.H.Kim showed that for non-zero $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K}), T \otimes S$ is log-hyponormal if and only if T and S are log-hyponormal. This result was extended to p-quasihyponormal operators, w-hyponormal operators , class A operators and class A(k) in [37], [36], and [47] respectively. In this section, we prove an analogous result for p-w-hyponormal operators.

Remark 5.1. Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be non-zero operators, then we have

- (i) $(T \otimes S)^* (T \otimes S) = T^*T \otimes S^*S$
- (ii) $|T \otimes S|^t = |T|^t \otimes |S|^t$ for any positive real t.

Lemma 5.2. ([40]) Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$, $S_1, S_2 \in \mathcal{B}(\mathcal{K})$ be non-negative operators. If T_1 and S_1 are non-zero, then the following assertions are equivalent:

- (a) $T_1 \otimes S_1 \leq T_2 \otimes S_2$
- (b) there exists c > 0 such that $T_1 \leq cT_2$ and $S_1 \leq c^{-1}S_2$.

Theorem 5.3. Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be non-zero operators and let 0 . $Then <math>T \otimes S$ is p-w-hyponormal if and only if T and S is p-w-hyponormal.

Proof. We shall use the fact that the function $T \longrightarrow \widetilde{T}$ has the property $\widetilde{T \otimes S} = \widetilde{T} \otimes \widetilde{S}$. It follows from Remark 5.1 that

$$|\widetilde{T \otimes S}|^p = |\widetilde{T}|^p \otimes |\widetilde{S}|^p \ge |T \otimes S|^p = |T|^p \otimes |S|^p \ge |(\widetilde{T \otimes S})^*|^p = |\widetilde{T}^*|^p \otimes |\widetilde{S}^*|^p.$$
(5.2)

Inequality 5.2 holds if and only if

$$\left(|\widetilde{T}|^p - |T|^p \right) \otimes |\widetilde{S}|^p + |T|^p \left(|\widetilde{S}|^p - |S|^p \right) \ge 0 \text{ and}$$

$$\left(|T|^p - |\widetilde{T}^*|^p \right) \otimes |S|^p + |\widetilde{T}^*|^p \left(|S|^p - |\widetilde{S}^*|^p \right) \ge 0,$$
(5.3)

or, equivalently, if and only if

$$\left(|\widetilde{T}|^p - |T|^p \right) \otimes |S|^p + |\widetilde{T}|^p \left(|\widetilde{S}|^p - |S|^p \right) \ge 0 \text{ and}$$

$$\left(|T|^p - |\widetilde{T}^*|^p \right) \otimes |\widetilde{S}^*|^p + |T|^p \left(|S|^p - |\widetilde{S}^*|^p \right) \ge 0.$$

$$(5.4)$$

So, the sufficency is clear.

To prove the necessity, suppose that $T \otimes S$ is *p*-*w*-hyponormal. Then

$$|\widetilde{T}|^p \otimes |\widetilde{S}|^p \ge |T|^p \otimes |S|^p.$$

Therefore, by Lemma 5.2, there exists a $c \in \mathbb{R}^+$ such that

$$c|\widetilde{T}|^p \ge |T|^p$$
 and $c^{-1}|\widetilde{S}|^p \ge |S|^p$.

Consequently,

$$\||T|^{p}\|^{2} = \sup_{\|x\|=1} \left\langle |T|^{2p} x, x \right\rangle \le \sup_{\|x\|=1} \left\langle c|\widetilde{T}|^{2p} x, x \right\rangle \le c \, \||T|^{p}\|^{2}$$

and

$$|||S|^{p}||^{2} = \sup_{||x||=1} \left\langle |S|^{2p}x, x \right\rangle \le \sup_{||x||=1} \left\langle c^{-1} |\tilde{S}|^{2p}x, x \right\rangle \le c^{-1} \left|||S|^{p}\right||^{2}$$

Thus, c = 1 and

$$|\widetilde{T}|^p \ge |T|^p \text{ and } |\widetilde{S}|^p \ge |S|^p.$$
 (5.5)

Now we just to show that $|T|^p \ge |\widetilde{T}^*|^p$ and $|S|^p \ge |\widetilde{S}^*|^p$. Let $x \in \mathcal{H}$ and $y \in \mathcal{K}$ be arbitrary. Then, from inequalities (5.3) and (5.4), we have

$$\left\langle \left(|T|^p - |\widetilde{T}^*|^p \right) x, x \right\rangle \left\langle |S|^p y, y \right\rangle + \left\langle |\widetilde{T}^*|^p x, x \right\rangle \left\langle \left(|S|^p - |\widetilde{S}^*|^p \right) y, y \right\rangle \ge 0$$
(5.6)

and

$$\left\langle \left(|T|^p - |\widetilde{T}^*|^p \right) x, x \right\rangle \left\langle |\widetilde{S}^*|^p y, y \right\rangle + \left\langle ||T|^p x, x \right\rangle \left\langle \left(|S|^p - |\widetilde{S}^*|^p \right) y, y \right\rangle \ge 0.$$
(5.7)

Suppose that $|T|^p - |\widetilde{T}^*|^p$ is not a positive operator. Then there is a $x_0 \in \mathcal{H}$ such that

$$\left\langle \left(|T|^p - |\widetilde{T}^*|^p \right) x_0, x_0 \right\rangle = \alpha < 0 \text{ and } \left\langle |\widetilde{T}^*x_0, x_0 \right\rangle = \beta > 0.$$

From inequality (5.6) we get

$$(\alpha + \beta) |||S|^p y|| \ge \beta \left|||\widetilde{S}^*|^p y\right||.$$

That is,

$$(\alpha + \beta) |||S|^p|| \ge \beta \left|||\widetilde{S}^*|^p\right||.$$

Since, by inequality (5.5), $|\tilde{S}|^p \ge |S|^p$, we have also

$$(\alpha + \beta) \left\| S \right\|^p = (\alpha + \beta) \left\| |S|^p \right\| \ge \beta \left\| |\widetilde{S}^*|^p \right\| = \beta \left\| |\widetilde{S}|^p \right\| \ge \beta \left\| S \right\|^p.$$

This is a contradiction. Hence, $|T|^p \ge |\tilde{T}^*|^p$. A similar argument shows, by using inequality (5.7), that $|S|^p \ge |\tilde{S}^*|^p$.

6. Weyl's Type theorems

Let us denote by $\alpha(T)$ the dimension of the kernel and by $\beta(T)$ the codimension of the range. Recall that the operator $T \in \mathcal{B}(\mathcal{X})$ is said to be *upper semi-Fredholm*, $T \in SF_+(\mathcal{X})$, if the range of $T \in \mathcal{B}(\mathcal{X})$ is closed and $\alpha(T) < \infty$, while $T \in \mathcal{B}(\mathcal{X})$ is said to be *lower semi-Fredholm*, $T \in SF_-(\mathcal{X})$, if $\beta(T) < \infty$. An operator $T \in \mathcal{B}(\mathcal{X})$ is said to be *semi-Fredholm* if $T \in SF_+(\mathcal{X}) \cup SF_-(\mathcal{X})$ and Fredholm if $T \in SF_+(\mathcal{X}) \cap SF_-(\mathcal{X})$. If T is semi-Fredholm then the *index* of T is defined by $\operatorname{ind}(T) = \alpha(T) - \beta(T)$.

A bounded linear operator T acting on a Banach space \mathcal{X} is Weyl if it is Fredholm of index zero and Browder if T is Fredholm of finite ascent and descent. The Weyl spectrum $\sigma_W(T)$ and Browder spectrum $\sigma_b(T)$ of T are defined by

$$\sigma_W(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl}\}\$$

$$\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Browder}\}.$$

Let $E^0(T) = \{\lambda \in iso \, \sigma(T) : 0 < \alpha(T-\lambda) < \infty\}$ and let $\pi^0(T) := \sigma(T) \setminus \sigma_b(T)$ all Riesz points of T. According to Coburn [24], Weyl's theorem holds for T if $\Delta(T) = \sigma(T) \setminus \sigma_W(T) = E^0(T)$, and that Browder's theorem holds for T if $\Delta(T) = \sigma(T) \setminus \sigma_W(T) = \pi^0(T)$.

Let $SF_{+}^{-}(\mathcal{X}) = \{T \in SF_{+} : \operatorname{ind}(T) \leq 0\}$. The upper semi Weyl spectrum is defined by $\sigma_{SF_{+}^{-}}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin SF_{+}^{-}(\mathcal{X})\}$. According to Rakočević [49], an operator $T \in \mathcal{B}(\mathcal{X})$ is said to satisfy *a*-Weyl's theorem if $\sigma_{a}(T) \setminus \sigma_{SF_{+}^{-}}(T) = E_{a}^{0}(T)$, where

$$E_a^0(T) = \{\lambda \in \operatorname{iso} \sigma_a(T) : 0 < \alpha(T - \lambda I) < \infty\}.$$

It is known [49] that an operator satisfying *a*-Weyl's theorem satisfies Weyl's theorem, but the converse does not hold in general.

For $T \in \mathcal{B}(\mathcal{X})$ and a non negative integer *n* define $T_{[n]}$ to be the restriction *T* to $\mathcal{R}(T^n)$ viewed as a map from $\mathcal{R}(T^n)$ to $\mathcal{R}(T^n)$ (in particular $T_{[0]} = T$). If for some integer *n* the range space $\mathcal{R}(T^n)$ is closed and $T_{[n]}$ is an upper (resp., lower) semi-Fredholm operator, then *T* is called *upper* (resp., *lower*) *semi-B-Fredholm* operator. In this case index of *T* is defined as the index of semi-*B*-Fredholm operator $T_{[n]}$. A *semi-B-Fredholm* operator is an upper or lower semi-Fredholm operator [18]. Moreover, if $T_{[n]}$ is a Fredholm operator then *T* is called a *B-Fredholm* operator [13]. An operator *T* is called a *B-Weyl* operator if it is a *B*-Fredholm operator of index zero. The *B-Weyl spectrum* $\sigma_{BW}(T)$ is defined by $\sigma_{BW}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not } B$ -Weyl operator $\}$ [14]. Let E(T) be the set of all eigenvalues of *T* which are isolated in $\sigma(T)$. According to [15], an operator $T \in \mathcal{B}(\mathcal{X})$ is said to satisfy *generalized Weyl's theorem*, if $\sigma(T) \setminus \sigma_{BW}(T) = E(T)$. In general, generalized Weyl's theorem implies Weyl's theorem but the converse is not true [17]. Following [14], we say that *T* satisfies *generalized Browders's theorem*, if $\sigma(T) \setminus \sigma_{BW}(T) = \pi(T)$, where $\pi(T)$ is the set of poles of *T*.

Let $SBF_{+}^{-}(\mathcal{X})$ denote the class of all is *upper B-Fredholm* operators such that ind (T) \leq 0. The *upper B-Weyl spectrum* $\sigma_{SBF_{+}^{-}}(T)$ of T is defined by

$$\sigma_{SBF_{+}^{-}}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin SBF_{+}^{-}(\mathcal{X})\}.$$

Following [17], we say that generalized a-Weyl's theorem holds for $T \in \mathcal{B}(\mathcal{X})$ if $\Delta_a^g(S) = \sigma_a(T) \setminus \sigma_{SBF_+}(T) = E_a(T)$, where $E_a(T) = \{\lambda \in iso\sigma_a(T) : \alpha(T-\lambda) > 0\}$ is the set of all eigenvalues of T which are isolated in $\sigma_a(T)$ and that $T \in \mathcal{B}(\mathcal{X})$ obeys generalized a-Browder's theorem if $\Delta_a^g(T) = \pi_a(T)$. It is proved in [10, Theorem 2.2] that generalized a-Browder's theorem is equivalent to a-Browder's theorem, and it is known from [17, Theorem 3.11] that an operator satisfying generalized a-Weyl's theorem satisfies a-Weyl's theorem, but the converse does not hold in general and under the assumption

 $E_a(T) = \pi_a(T)$ it is proved in [16, Theorem 2.10] that generalized *a*-Weyl's theorem is equivalent to *a*-Weyl's theorem. Following [46], we say that $T \in \mathcal{B}(\mathcal{X})$ possesses property (t) if $\Delta_+(T) = \sigma(T) \setminus \sigma_{SF_+^-}(T) = E^0(T)$. In Proposition 2.7 of [46], it is shown that property (t) implies Weyl's theorem, but the converse is not true in general. We say that $T \in \mathcal{B}(\mathcal{X})$ possesses property (gt) if $\Delta_+^g(T) = \sigma(T) \setminus \sigma_{SBF_+^-}(T) = E(T)$. Property (gt) has been introduced and studied in [46]. Property (gt) extends property (t) to the context of B-Fredholm theory, and it is proved in [46] that an operator possessing property (gt) possesses property (t) but the converse is not true in general.

Lemma 6.1. If $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal operator with 0 , then T and T^{*} satisfy Weyl's theorem.

Proof. Since T is p-w-hyponormal, then T has SVEP by Theorem 3.4. Then T satisfies Browder's theorem if and only if T^* satisfies Browder's theorem if and only if $\pi^0(T) = \sigma(T) \setminus \sigma_w(T) \subseteq E^0(T)$ and $\pi^0(T^*) = \sigma(T^*) \setminus \sigma_w(T^*) \subseteq E^0(T^*)$. If $\overline{\lambda} \in E^0(T^*)$, then T has SVEP at λ and T^* has SVEP at $\overline{\lambda}$ and $0 < p(T - \lambda)^* = q(T - \lambda) < \infty$. Thus the ascent and descent of $T - \lambda$ are finite and hence equal, see [35]. Then $T - \lambda$ is a Fredholm of index 0 and also $(T - \lambda)^*$ is a Fredholm of index 0, then $E^0(T) \subseteq \pi^0(T)$ and $E^0(T^*) \subseteq \pi^0(T^*)$. This implies that both T and T* satisfy Weyl's theorem.

Lemma 6.2. If T or T^* is p-w-hyponormal operator with $0 , then both T and <math>T^*$ satisfy generalized Weyl's theorem.

Proof. If T or T^* is *p-w*-hyponormal, then T is polaroid by Theorem 3.9 also T^* is polaroid, and generalized Weyl's theorem for T, or T^* are equivalent, see [2, Theorem 3.7]. The assertion then follows from [2, Theorem 3.3].

Definition 6.3. Let $T \in \mathcal{B}(\mathcal{X})$. Then we say that

- (i) T possess property (w) if $\sigma_a(T) \setminus \sigma_{SF^+}(T) = E^0(T)$ [5];
- (ii) T possess property (gw) if $\sigma_a(T) \setminus \sigma_{SBF^+}(T) = E(T)$ [11];
- (iii) T possess property (b) if $\sigma_a(T) \setminus \sigma_{SF^+}(T) = \pi^0(T)$ [45];
- (iv) T possess property (gb) if $\sigma_a(T) \setminus \sigma_{SBF^+}(T) = \pi(T)$ [45].

Theorem 6.4. Suppose that $T \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal with $0 and <math>f \in H_{nc}(\sigma(T))$. Then

- (i) property (t) holds for f(T*), or equivalently property (w), property (R), property (b), Weyl's theorem, a-Weyl's theorem hold for f(T*).
- (ii) property (gt) holds for $f(T^*)$, or equivalently property (gw), property (gb), generalized Weyl's theorem, generalized a-Weyl's theorem hold for $f(T^*)$.

Proof. Since T has SVEP by Theorem 3.4 and polaroid by 3.9. The assertions then follows from Theorem 3.6 (ii) and Theorem 3.7 (ii) of [46]. \Box

Theorem 6.5. Suppose that $T^* \in \mathcal{B}(\mathcal{H})$ is p-w-hyponormal with $0 and <math>f \in H_{nc}(\sigma(T))$. Then

- (i) property (t) holds for f(T), or equivalently property (w), property (R), property (b), Weyl's theorem, a-Weyl's theorem hold for f(T).
- (ii) property (gt) holds for f(T), or equivalently property (gw), property (gb), generalized Weyl's theorem, generalized a-Weyl's theorem hold for f(T).

Proof. Since T has SVEP by Theorem 3.4 and polaroid by Theorem 3.9. The assertions then follows from Theorem 3.6 (i) and Theorem 3.7 (i) of [46]. \Box

References

- P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Functional Analysis Mathematics, vol. 1, Springer Netherlands, 2004, doi:10.1007/1-4020-2525-4.
- [2] P. Aiena, E. Aponte, and E. Bazan, Weyl type theorems for left and right polaroid operators, Integr. Equ. Oper. Theory 66 (2010), no. 1, 485–495, doi:10.1007/s00020-009-1738-2.
- [3] P. Aiena, J.R. Guillen, and P. Peña, A unifying approch to Weyl type theorems for Banach space operators, Integr. Equ. Oper. Theory 77 (2013), 371-384, doi:10.1007/s00020-013-2097-6.
- [4] P. Aiena, M. Chö, and M. Gonzălez, Polaroid type operator under quasiaffinities, J. Math. Anal. Appl. 371 (2010), no. 2, 485–495, doi:10.1016/j.jmaa.2010.05.057.
- [5] P. Aiena and P. Peña, Variations on Weyl's theorem, J. Math. Anal. Appl. 324 (2006), no. 1, 566-579, doi:10.1016/j.jmaa.2005.11.027.
- [6] A. Aluthge, On p-hyponormal operators for 0 , Integr. Equ. Oper. Theory**13**(1990), 307–315, doi:10.1007/BF01199886.
- [7] A. Aluthge and D. Wang, An operator inequality which implies paranormality, Math. Ineq. Appl. 2 (1999), no. 1, 113–119, doi:10.7153/mia-02-09.
- [8] A. Aluthge and D. Wang, w-hyponormal operators, Integr. Equ. Oper. Theory 36 (2000), 1–10.
- [9] A. Aluthge and D. Wang, w-hyponormal operators II, Integr. Equ. Oper. Theory 37 (2000), 324-331, doi:10.1007/BF01194481.
- [10] M. Amouch and H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasg. Math. J. 48 (2006), 179–185, doi:10.1017/S0017089505002971.
- [11] M. Amouch and M. Berkani, on the property (gw), Mediterr. J. Math 5 (2008), 371–378, doi: 10.1007/s00009-008-0156-z.
- [12] S. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), no. 1, 111–114, doi:10.2307/2033783.
- [13] M. Berkani, On a class of quasi-Fredholm operators, Proc. Amer. Math. Soc. 34 (1999), no. 2, 244–249, doi:10.1007/BF01236475.
- [14] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), no. 2, 596–603, doi:10.1016/S0022-247X(02)00179-8.
- [15] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1717–1723, doi:10.2307/2699766.
- [16] M. Berkani, On the equivalence of Weyl's theorem and generalized Weyl's theorem, Acta Math Sinica 23 (2007), 103-110, doi:10.1007/s10114-005-0720-4.
- [17] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), no. 1, 359–376.
- [18] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasg. Math. J. 43 (2001), 457–465, doi:10.1017/S0017089501030075.
- [19] E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), no. 2, 379–397, doi:euclid.pjm/1103039262.
- [20] Y. Changsen and L. Haiying, On p-w-hyponormal operators, Chinese Quart. J. Math 20 (2005), no. 1, 79–84.
- [21] Y. Changsen and L. Haiying, A note on p-w-hyponormal operators, Acta Math Sinica (Chinese) 49 (2006), no. 1, 19–28.
- [22] M. Chō and T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application, Integr. equ. oper. theory 53 (2005), 497–508, doi:10.1007/ s00020-004-1332-6.
- [23] J. chuan Hou, On tensor products of operators, Acta Mathematica Sinica 9 (1993), 195–202, doi:10.1007/BF02560050.
- [24] L. Coburn, Weyl's theorem for non-normal operators, Michigan. Math. J. 13 (1966), no. 3, 285–288, doi:10.1307/mmj/1031732778.
- [25] J.B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag New York, 1990, doi:10.1007/978-1-4757-3828-5.
- [26] J.K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61-69, doi:euclid.pjm/1102905839.
- [27] M. Fujii, S. Izumino, and R. Nakamoto, classes of operators determined by the Heinz-Kato-Furuta inequality and the Hölder-McCarthy inequality, Nihonkai Math. J. 5 (1994), no. 1, 61–67.
- [28] T. Furuta, On the class of paranormal operators, Proc. Jaban. Acad. 43 (1967), no. 7, 594–598, doi:10.3792/pja/1195521514.
- [29] T. Furuta, M. Ito, and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. Jpn. 1 (1999), 389–403.
- [30] L. Haiying, Powers of an invertible (s, p)-w-hyponormal operator, Acta Math. Sci. 28 (2008), no. 2, 282–288, doi:10.1016/S0252-9602(08)60028-4.

M. H. M. RASHID

- [31] L. Haiying and Y. Chang-sen, Several properties of p-w-hyponormal operator, Chin. Quart. J. Math. 23 (2008), no. 2, 195–201.
- [32] P.R. Halmos, A Hilbert space problem book, Graduate Texts in Mathematics, vol. 19, Springer-Verlag New York, 1982, doi:10.1007/978-1-4615-9976-0.
- [33] F. Hansen, An equality, Math. Ann. 246 (1980), 249–250.
- [34] E. Heinz, Beiträge zur störungstheorie der spektralzerlegung, Math. Ann. 123 (1951), 415–438.
- [35] H. Heuser, Functional analysis, vol. 1, Wiley, 1982.
- [36] I.H.Jeon and I.H.Kim, On operators satisfying T^{*}|T²|T ≥ T^{*}|T|²T, Linear Algebra Appl. 418 (1993), no. 2-3, 854–862, doi:10.1016/j.laa.2006.02.040.
- [37] I.H.Kim, Tensor products of log-hyponormal operators, Bull. Korean Math. Soc. 42 (2005), no. 2, 269–277, doi:10.4134/BKMS.2005.42.2.269.
- [38] I.H. Jeon, J. Lee, and A. Uchiyama, On p-quasihyponormal operators and quasisimilarity, Math. Ineq. Appl. 6 (2003), no. 2, 309–315, doi:10.7153/mia-06-29.
- [39] J.P.Williams, Operators similar to their adjoints, Proc. Amer. Math. Soc. 20 (1969), no. 1, 121–23, doi:10.2307/2035972.
- [40] J.Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc. 124 (1996), no. 1, 135–140, doi:10.1090/S0002-9939-96-03017-1.
- [41] I. Jung, E. Ko, and C. Pearcu, Aluthge transforms of operators, Integr equ oper theory 37 (2000), 437–448, doi:10.1007/BF01192831.
- [42] K.B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323–336, doi: 10.2140/pjm.1992.152.323.
- [43] K.B. Laursen and M.M. Neumann, An introduction to local spectral theory, London Mathematical Society Monographs, Clarendon Press, 2000.
- [44] M.Y. Lee and S.H. Lee, On a class of operators related to paranormal operators, J. Korean Math. Soc. 44 (2007), no. 1, 25–34, doi:10.4134/JKMS.2007.44.1.025.
- [45] M.H.M.Rashid, Property (gb) and perturbations, J. Math. Anal. Appl. 383 (2011), no. 1, 82–94, doi:10.1016/j.jmaa.2011.05.001.
- [46] M.H.M.Rashid, Properties (t) and (gt) for bounded linear operators, Mediterr. J. Math 11 (2014), no. 2, 729–744, doi:10.1007/s00009-013-0313-x.
- [47] M.H.M.Rashid, On operators satisfying $T^m(T^*|T|^{2k}T)^{1/(k+1)}T^m \ge T^{m*}|T|^2T^m$, Commun. Korean Math. Soc. **32** (2017), no. 3, 661–676, doi:10.4134/CKMS.c160191.
- [48] M.H.M.Rashid, Quasinormality and Fuglede-Putnam theorem for (s, p)-w-hyponormal operators, Linear Multilinear Algebra 65 (2017), no. 8, 1600–1616, doi:10.1080/03081087.2016.1248346.
- [49] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915–919.
- [50] I. Sheth, On hyponormal operators, Proc. Amer. Math. Soc. 17 (1966), no. 5, 998–1000, doi: 10.2307/2036076.
- [51] J. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469–476, doi:10.2307/1994219.
- [52] T.Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), no. 3-4, 169–178.
- [53] T.Saito, Hyponormal operators and related topics, Lecture Notes in Mathematics, vol. 247, Springer, Berlin, Heidelberg, 1971, doi:10.1007/BFb0058557.
- [54] A. Uchiyama, Berger-Shaw's theorem for p-hyponormal operators, Integr equ oper theory 33 (1999), 221–230, doi:10.1007/BF01233965.
- [55] A. Uchiyama and K. Tanahashi, On the Riesz idempotent of class A, Math. Ineq. Appl. 5 (2002), no. 2, 291–298, doi:10.7153/mia-05-32.
- [56] D. Xia, Spectral theory of hyponormal operators, Operator Theory: Advances and Applications, vol. 10, Birkhäuser Basel, 1983, doi:10.1007/978-3-0348-5435-1.

M. H. M. RASHID: malik_okasha@yahoo.com

Dept. of Mathematics & Statistics, Faculty of Science P.O. Box(7), Mu'tah University, Mu'tah-Jordan

Received 07/09/2020; Revised 29/09/2020