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TENSOR PRODUCT AND VARIANTS OF WEYL’S TYPE THEOREM
FOR p-w-HYPONORMAL OPERATORS

M. H. M. RASHID

Abstract. A Hilbert space operator T is said to be p-w-hyponormal with 0 < p \leq 1

if | \widetilde T | p \geq | T | p \geq | \widetilde T \ast | p, where \widetilde T is the Aluthge transform. In this paper we prove
basic properties of these operators. Using these results, we also prove that if P is
a Riesz idempotent for a non-zero isolated point \lambda of the spectrum of T , then P is
self-adjoint. Among other things, we prove these operators are finitely ascensive and
that, for non-zero p-w-hyponormal T and S, T \otimes S is p-w-hyponormal if and only
if T and S are p-w-hyponormal. Moreover, it is shown that property (gt) holds for
f(T ), where f \in Hnc(\sigma (T )).

Оператор T у гiльбертовiм просторi називається p-w-гiпонормальним, де
0 < p \leq 1, якщо | \widetilde T | p \geq | T | p \geq | \widetilde T \ast | p, де \widetilde T — перетворення Алутге. В цiй роботi
дослiдженi основнi властивостi таких операторiв. Показано також, що якщо P —
iдемпотент Рiсса, який вiдповiдає ненульовiй iзольованiй точцi \lambda спектру T , то
оператор P самоспряжений. Доведено, що цi оператори мають скiнченний пiдйом
i що для ненульових p-w-гiпонормальних T i S, T \otimes S є p-w-гiпонормальним тодi
й тiльки тодi, коли T i S p-w-гiпонормальнi. Крiм того, доведено, що властивiсть
(gt) має мiсце для f(T ), де f \in Hnc(\sigma (T )).

1. Introduction

Let \scrX (or \scrH ) be a complex Banach (Hilbert, respectively) space and \scrB (\scrX ) (or \scrB (\scrH ))
be the set of all bounded linear operators on \scrX (\scrH , respectively). Every operator T can
be decomposed into T = U | T | with a partial isometry U , where | T | is the square root
of T \ast T . If U is determined uniquely by the kernel condition \mathrm{k}\mathrm{e}\mathrm{r}(U) = \mathrm{k}\mathrm{e}\mathrm{r}(| T | ), then
this decomposition is called the polar decomposition, which is one of the most important
results in operator theory ( [27], [32], [41] and [44]). In this paper, T = U | T | denotes the
polar decomposition satisfying the kernel condition \mathrm{k}\mathrm{e}\mathrm{r}(U) = \mathrm{k}\mathrm{e}\mathrm{r}(| T | ).

Recall that an operator T \in \scrB (\scrH ) is positive, T \geq 0, if \langle Tx, x\rangle \geq 0 for all x \in \scrH . An
operator T \in \scrB (\scrH ) is said to be hyponormal if T \ast T \geq TT \ast . Hyponormal operators have
been studied by many authors and it is known that hyponormal operators have many
interesting properties similar to those of normal operators [7, 22, 25, 28, 29, 38]. An
operator T is said to be p-hyponormal if(T \ast T )p \geq (TT \ast )p for p \in (0, 1] and an operator T
is said to be \mathrm{l}\mathrm{o}\mathrm{g}-hyponormal if T is invertible and \mathrm{l}\mathrm{o}\mathrm{g} | T | \geq \mathrm{l}\mathrm{o}\mathrm{g} | T \ast | . p-hyponormal and \mathrm{l}\mathrm{o}\mathrm{g}-
hyponormal operators are defined as extension of hyponormal operator. Aluthge [6] defined
the operator \widetilde T = | T | 1/2U | T | 1/2, called the Aluthge transformation of T . An operator
T is said to be w-hyponormal if | \widetilde T | \geq | T | \geq | \widetilde T \ast | . The operator \widetilde T (s, t) = | T | sU | T | t is
the generalized Aluthge transformation of T in [6]. The classes of \mathrm{l}\mathrm{o}\mathrm{g}-hyponormal and
w-hyponormal operators were introduced and their properties were studied in [8] and [9].
It is known that the square of a w-hyponormal operator is also w-hyponormal. In [9],
Aluthge showed that the class of w-hyponormal operator properly contains the classes of
p-hyponormal operators and \mathrm{l}\mathrm{o}\mathrm{g}-hyponormal.
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In [21], [31], and [20] Yang Changsen, Li Haiying introduced a class of p-w-hyponormal
(0 < p < 1) which means that if | \widetilde T | p \geq | T | p \geq | \widetilde T \ast | p. In [7], they showed that there exists
an invertible operator whose integer powers are all p-w-hyponormal. As a generalization
of class p-w-hyponormal (0 < p < 1) Li Haiying [30] introduced a new class called (s, p)-
w-hyponormal which mean that if | \widetilde T (s, s)| p \geq | T | 2sp \geq | \widetilde T \ast (s, s)| p (s > 0, 0 < p < 1).
Clearly, if s = 1

2 , an (s, p)-w-hyponormal operator is p-w-hyponormal. That is to say, the
class of (s, p)-w-hyponormal operators contains the class of p-w-hyponormal operators.

Throughout this paper, we shall denote the spectrum, the point spectrum and the
isolated points of the spectrum of T \in \scrB (\scrH ) by \sigma (T ), \sigma p(T ) and iso\sigma (T ), respectively.
The range and the kernel of T \in \scrB (\scrH ) will be denoted by \scrR (T ) = T\scrH and \mathrm{k}\mathrm{e}\mathrm{r}(T ),
respectively. We shall denote the set of all complex numbers and the complex conjugate
of a complex number \lambda by \BbbC and \lambda , respectively. The closure of a set S will be denoted
by S and we shall henceforth shorten T  - \lambda I to T  - \lambda .

In Section 2, we prove basic properties of p-w-hyponormal operators. Among other
things, we prove these operators are finitely ascensive. Section 3 is devoted to characterize
the quasinilpotent H0(T  - \lambda ) = \{ x \in \scrH : \mathrm{l}\mathrm{i}\mathrm{m}

n - \rightarrow \infty 
\| (T  - \lambda )nx\| 

1
n = 0\} of p-w-hyponormal

operators. Using the results established in Section 2, we also prove that if P is a Riesz
idempotent for a non-zero isolated point \lambda of the spectrum of T , then P is self-adjoint
and \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda ) = \scrR (P ) = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda )\ast . In Section 4, we prove that for non-zero p-w-
hyponormal T and S, T \otimes S is p-w-hyponormal if and only if T and S are p-w-hyponormal.
Moreover, in Section 5, it is shown that property (gt) holds for f(T ), and f is an analytic
function defined on an open neighborhood of the spectrum of T such that f is non
constant on each of the components of its domain.

2. Spectral Properties of p-w-hyponormal operators

To prove our main Theorems, we need the following results.

Lemma 2.1. [33, Hansen’s Inequality] If A,B \in \scrB (\scrH ) satisfy A \geq 0 and \| B\| \leq 1, then

(B\ast AB)\alpha \geq B\ast A\alpha B for all \alpha \in (0, 1].

Lemma 2.2. [34, Löwer-Heinz theorem] A \geq B \geq 0 ensure A\alpha \geq B\alpha for any \alpha \in [0, 1].

Theorem 2.3. [6] Let T \in \scrB (\scrH ). If T is p-hyponormal, then the following hold:

(i) \widetilde T is (p+ 1
2 )-hyponormal for 0 < p \leq 1

2 ;
(ii) \widetilde T is hyponormal for 1

2 \leq p \leq 1.

Proposition 2.4. ([21]) Let T \in \scrB (\scrH ). Then the following conditions are equivalent to
each other:

(i) T is p-w-hyponormal;
(ii) | T | p \geq (| T | 12 | T \ast | | T | 12 )

p
2 and (| T \ast | 12 | T | | T \ast | 12 )

p
2 \geq | T \ast | p;

(iii) | \widetilde T \ast \ast | p \geq | T \ast | p \geq | \widetilde T \ast | p.

Theorem 2.5. ([30]) Let T \in \scrB (\scrH ). The following conditions are equivalent:

(i) T is (s, p)-w-hyponormal;
(ii) | T | 2sp \geq (| T | s| T \ast | 2s| T | s)

p
2 and (| T \ast | s| T | 2s| T \ast | s)

p
2 \geq | T \ast | 2sp;

(iii) | \widetilde T \ast (s, s)\ast | \geq | T \ast | 2sp \geq | \widetilde T \ast (s, s)| .

Lemma 2.6. Let T \in \scrB (\scrH ). If T is an invertible (s, p)-w-hyponormal operator, then so
is T - 1.
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Proof. Since | T - 1| = | T \ast |  - 1, | T - 1\ast | = | T |  - 1 and T \geq I \Leftarrow \Rightarrow T - 1 \leq I. Applying (ii) of
Theorem 2.5, we have

(| T \ast | s| T | 2s| T \ast | s)
p
2 \geq | T \ast | 2sp

\Rightarrow | T \ast |  - sp(| T \ast | 12 | T | | T \ast | s)
p
2 | T \ast |  - sp \geq I

\Rightarrow 
\Bigl( 
| T \ast |  - sp(| T \ast | s| T | 2s| T \ast | s)

p
2 | T \ast |  - sp

\Bigr)  - 1

\leq I

\Rightarrow | T \ast | sp(| T \ast | s| T | 2s| T \ast | s) - 
p
2 | T \ast | sp \leq I

\Rightarrow (| T \ast |  - s| T |  - 2s| T \ast |  - s)
p
2 \leq | T \ast |  - 2sp

\Rightarrow (| T - 1| s| T - 1\ast | 2s| T - 1| s)
p
2 \leq | T - 1| 2sp.

Similarly

| T | 2sp \geq (| T | s| T \ast | 2s| T | s)
p
2

\Rightarrow (| T | s| T \ast | 2s| T | s) - 
p
4 | T | 2sp(| T | s| T \ast | 2s| T | s) - 

p
4 \geq I

\Rightarrow (| T | s| T \ast | 2s| T | s)
p
4 | T |  - 2sp(| T | s| T \ast | 2s| T | s)

p
4 \leq I

\Rightarrow | T \ast  - 1

| 2sp \leq (| T | s| T \ast | 2s| T | s) - 
p
2

\Rightarrow | T - 1\ast | 2sp \leq (| T |  - s| T \ast |  - 2s| T |  - s)
p
2

\Rightarrow | T - 1\ast | 2sp \leq (| T - 1\ast | s| T - 1| 2s| T - 1\ast | s)
p
2 .

That is, T - 1 is (s, p)-w-hyponormal operator. \square 

Letting s = 1
2 in Lemma 2.6, we have immediately

Corollary 2.7. Let T \in \scrB (\scrH ). If T is an invertible p-w-hyponormal operator, 0 < p \leq 1,
then so is T - 1.

Lemma 2.8. If T is p-w-hyponormal, then \widetilde T is p
2 -hyponormal, \widetilde \widetilde T is p+1

2 -hyponormal

and
\widetilde \widetilde \widetilde T is hyponormal.

Proof. The definition of p-w-hyponormal clearly implies that \widetilde T is p
2 -hyponormal. Since\widetilde T is p

2 -hyponormal , \widetilde \widetilde T is p+1
2 -hyponormal by Theorem 2.3, again by Theorem 2.3

\widetilde \widetilde \widetilde T is
hyponormal. \square 

An operator T is said to be normaloid if \| T\| = r(T ), where r(T ) is the spectral radius
of T . The equality \| T\| = r(T ) was shown to hold in [51] for hyponormal operators, in
[6] for p-hyponormal and in [8]. The next theorem shows that the equality holds for
p-w-hyponormal operators.

Theorem 2.9. Let T \in \scrB (\scrH ). If T is p-w-hyponormal, then
\bigm\| \bigm\| \bigm\| \bigm\| \widetilde \widetilde \widetilde T\bigm\| \bigm\| \bigm\| \bigm\| =

\bigm\| \bigm\| \bigm\| \bigm\| \widetilde \widetilde T\bigm\| \bigm\| \bigm\| \bigm\| =
\bigm\| \bigm\| \bigm\| \widetilde T\bigm\| \bigm\| \bigm\| =

\| T\| = r(T ). That is, T is normaloid.

Proof. Since
\widetilde \widetilde \widetilde T is hyponormal,

\bigm\| \bigm\| \bigm\| \bigm\| \widetilde \widetilde \widetilde T\bigm\| \bigm\| \bigm\| \bigm\| = r(
\widetilde \widetilde \widetilde T ) by [51, Theorem 1]. The result follows by [8,

Corollary 2.3] since \sigma (T ) = \sigma ( \widetilde T ) = \sigma (
\widetilde \widetilde T ) = \sigma (

\widetilde \widetilde \widetilde T ). \square 

Theorem 2.10. Let T \in \scrB (\scrH ) be p-w-hyponormal operator. Then T is
(a) normal if \sigma (T ) is an arc or if \sigma (T ) has only a finite number of limit points;
(b) self-adjoint if \sigma (T ) \subset \BbbR ;
(c) unitary if \sigma (T ) is contained in the unit circle.
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Proof. (a) If \sigma (T ) is an arc, then \sigma (
\widetilde \widetilde \widetilde T ) is an arc by [8, Corollary 2.3]. The hyponormality

of
\widetilde \widetilde \widetilde T implies

\widetilde \widetilde \widetilde T is normal [51, Theorem 4]. Applying [31, Theorem 4.4] to \widetilde \widetilde T , we obtain\widetilde \widetilde T =
\widetilde \widetilde \widetilde T and thus \widetilde \widetilde T is normal. Applying the same theorem to \widetilde T firstly and to T secondly

yields \widetilde \widetilde T = \widetilde T and T = \widetilde T and hence T is normal.
(b) If \sigma (T ) \subset \BbbR , then \sigma ( \widetilde T ) \subset \BbbR by [8, Corollary 2.3]. The p-hyponormality of \widetilde T implies
that \widetilde T is self-adjoint and \widetilde T = T , so the result.
(c) Both T and T - 1 are p-w-hyponormal and their spectra are subsets of \BbbT = \{ \lambda \in \BbbC :
| \lambda | = 1\} . Consequently, by Theorem 2.9 \| T\| =

\bigm\| \bigm\| T - 1
\bigm\| \bigm\| = 1, and so T is a unitary. \square 

Corollary 2.11. A compact p-w-hyponormal operator is normal.

Theorem 2.12. Let T \in \scrB (\scrH ) be p-w-hyponormal operator. If the planar Lebesgue
measure m2(\sigma (T )) of \sigma (T ) is 0, then T is normal.

Proof. Since \widetilde T is p
2 -hyponormal by Lemma 2.8, and \sigma ( \widetilde T ) = \sigma (T ) by [8, Corollary 2.3],

we have m2(\sigma ( \widetilde T )) = 0. Hence \widetilde T is normal by Putnam’s inequality [54, Corollary]. Thus
T is normal by [31, Theorem 4.4]. \square 

Let W (S) denotes the closure of the numerical range of the operator S. In [50] showed
that if T is hyponormal, T = S - 1T \ast S and 0 /\in W (S), then T is self-adjoint. The next
theorem gives an extension of Sheh’s result to p-w-hyponormal operators.

Theorem 2.13. Let T \in \scrB (\scrH ) be p-w-hyponormal operator. If T = S - 1T \ast S and
0 /\in W (S), then T is self-adjoint.

Proof. If T = S - 1T \ast S and 0 /\in W (S), then it follows from [39, Theorem 1] that \sigma (T ) \subset \BbbR .
Since a p-w-hyponormal operator T with \sigma (T ) \subset \BbbR is self-adjoint, the result follows. \square 

A complex number \lambda is said to be in the point spectrum \sigma p(T ) of an operator T if
there is a non-zero vector x for which (T  - \lambda )x = 0. If in addition, (T \ast  - \lambda )x = 0, then \lambda 
to be in the joint point spectrum \sigma jp(T ) of T . In general, one has \sigma jp(T ) \subset \sigma p(T ). It is
known the equality holds for p-hyponormal [6].

If T is hyponormal, it is easy to see [51, Lemma 2] that T posses the property that
Tx = \lambda x implies T \ast x = \lambda x. This property clearly implies \sigma p(T ) = \sigma jp(T ) if T is
hyponormal. In the sequel, we show that p-w-hyponormal also possess this property
provided \lambda \not = 0. Consequently the non-zero points of \sigma p(T ) and \sigma jp(T ) are identical if T
is p-w-hyponormal.

Theorem 2.14. Let T \in \scrB (\scrH ) be p-w-hyponormal operator. If Tx = \lambda x, \lambda \not = 0, then
T \ast x = \lambda x.

Proof. Since \widetilde T is p
2 -hyponormal by Lemma 2.8, \widetilde T possesses the property that \widetilde Tx = \lambda x

implies \widetilde T \ast x = \lambda x. It follows from [8, Lemma 3.1] that T possesses the same property. \square 

Corollary 2.15. If T \in \scrB (\scrH ) is p-w-hyponormal operator, then \sigma p(T ) \setminus \{ 0\} = \sigma jp(T ) \setminus 
\{ 0\} .

Corollary 2.16. Let T \in \scrB (\scrH ) be p-w-hyponormal operator with Tx = \lambda x, Ty = \mu y
and \lambda \not = \mu . Then \langle x, y\rangle = 0.

Proof. Without loss of generality, assume \mu \not = 0. Then T \ast y = \mu y by Theorem 2.14. Thus,

\mu \langle x, y\rangle = \langle x, T \ast y\rangle = \langle Tx, y\rangle = \lambda \langle x, y\rangle .

Since \lambda \not = \mu , \langle x, y\rangle = 0. \square 
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Let \sigma a(T ) denotes the approximate point spectrum of the operator T . In [56], Xia
proved that if T is semi-hyponormal, then \sigma (T ) = \{ \lambda : \lambda \in \sigma a(T

\ast )\} . The next proposition
shows that if T is p-w-hyponormal, the non-zero points of \sigma (T ) and \{ \lambda : \lambda \in \sigma a(T

\ast )\} are
identical.

Proposition 2.17. If T \in \scrB (\scrH ) is p-w-hyponormal operator, then

\sigma (T ) \setminus \{ 0\} = \{ \lambda : \lambda \in \sigma a(T
\ast )\} \setminus \{ 0\} .

Proof. In [56], it was shown that for any operator T , the equality \sigma (T ) = \sigma p(T ) \cup \{ \lambda :

\lambda \in \sigma a(T
\ast )\} holds. If T is p-w-hyponormal, then Corollary 2.15 implies \sigma p(T ) \setminus \{ 0\} =

\sigma jp(T ) \setminus \{ 0\} \subset \{ \lambda : \lambda \in \sigma p(T
\ast )\} \setminus \{ 0\} . Since \sigma p(T

\ast ) \subset \sigma a(T
\ast ), the result follows. \square 

Here and elsewhere in this paper, for A \subset \BbbC , isoA denotes the set of all isolated points
of A and accA denotes the set of all points of accumulation of A.

A bounded linear operator T is said to be isoloid if iso\sigma (T ) \subset \sigma p(T ).

Theorem 2.18. Let T \in \scrB (\scrH ) be p-w-hyponormal. If \lambda is an isolated point in \sigma (T ),
then \lambda \in \sigma p(T ). That is, T is isoloid.

Proof. Since \sigma (T ) = \sigma (
\widetilde \widetilde \widetilde T ), \lambda is an isolated point of \sigma (

\widetilde \widetilde \widetilde T ). the hyponormality of
\widetilde \widetilde \widetilde T implies

that \lambda \in \sigma p(
\widetilde \widetilde \widetilde T ) by [51, Theorem 2]. It follows from the fact T is invertible if and only if\widetilde T is invertible that \sigma p(T ) = \sigma p( \widetilde T ) = \sigma p(

\widetilde \widetilde T ) = \sigma p(
\widetilde \widetilde \widetilde T ). Thus, \lambda \in \sigma p(T ) and the proof is

complete. \square 

Recall that a complex number \lambda is said to be in the approximate point spectrum \sigma a(T )
of the operator T if there is a sequence \{ xn\} of unit vectors in \scrH such that (T  - \lambda )xn = 0.
If in addition, (T \ast  - \lambda )xn = 0, then \lambda is said to be in the joint approximate point spectrum
\sigma ja(T ) of T . Clearly, one has \sigma ja(T ) \subset \sigma a(T ). It is known [9] that if T is w-hyponormal,
then \sigma ja(T ) \setminus \{ 0\} = \sigma a(T ) \setminus \{ 0\} . Here we show that if T is p-w-hyponormal, then the
same result holds.

Theorem 2.19. [12] Given a Hilbert space \scrH , there exists a Hilbert space \scrK \supset \scrH and a
map \phi : \scrB (\scrH )  - \rightarrow \scrB (\scrK ) such that

(a) \phi is a faithful \ast -representation of the algebra \scrB (\scrH ) on \scrK ,
(b) \phi (A) \geq 0 for any A \geq 0 in \scrB (\scrH ), and
(c) \sigma a(T ) = \sigma a(\phi (T )) = \sigma p(\phi (T )) for any T \in \scrB (\scrH ).

We also need the following corollary which Xia observed in [56].

Corollary 2.20. Let \phi : \scrB (\scrH )  - \rightarrow \scrB (\scrK ) be the Berberian’s faithful \ast -representation. For
any operator T \in \scrB (\scrH ), \sigma jp(\phi (T )) = \sigma ja(T ).

Theorem 2.21. If T \in \scrB (\scrH ) is p-w-hyponormal, then \sigma ja(T ) \setminus \{ 0\} = \sigma a(T ) \setminus \{ 0\} .

Proof. Let \phi be the representation of Berberian. First, we show that \phi (T ) is p-w-
hyponormal. In view of Proposition 2.4, we need only establish

| \phi (T )| p \geq (| \phi (T )| 12 | \phi (T )\ast | | \phi (T )| 12 )
p
2

and
(| \phi (T )\ast | 12 | \phi (T )| | \phi (T )\ast | 12 )

p
2 \geq | \phi (T )\ast | p.

Part (a) and (b) of Theorem 2.19 imply

| \phi (T )| p = \phi (| T | p) \geq \phi ((| T | 12 | T \ast | | T | | T | 12 )
p
2 ) = (| \phi (T )| 12 | \phi (T )\ast | | \phi (T )| 12 )

p
2 ,

and similarly,
(| \phi (T )\ast | 12 | \phi (T )| | \phi (T )\ast | 12 )

p
2 \geq | \phi (T )\ast | p.
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Thus, \phi (T ) is p-w-hyponormal. Now, by part(c) of Theorem 2.19, we have

\sigma a(T ) \setminus \{ 0\} = \sigma a(\phi (T )) \setminus \{ 0\} 
= \sigma p(\phi (T )) \setminus \{ 0\} 
= \sigma jp(\phi (T )) \setminus \{ 0\} by Corollary 2.15
= \sigma ja(T ) \setminus \{ 0\} 

where the last equality follows from Corollary 2.20. The proof is complete. \square 

Corollary 2.22. If T \in \scrB (\scrH ) is an invertible p-w-hyponormal, then \sigma a(T ) = \sigma ja(T ).

Lemma 2.23. (H\"older-McCarthy Inequality) Let A \geq 0. Then the following assertions
hold.

(i) \langle Arx, x\rangle \geq \langle Ax, x\rangle r \| x\| 2(1 - r)for r > 1 and x \in \scrH .

(ii) \langle Arx, x\rangle \leq \langle Ax, x\rangle r \| x\| 2(1 - r)for r \in [0, 1] and x \in \scrH .

Theorem 2.24. If T \in \scrB (\scrH ) is p-w-hyponormal, 0 < p \leq 1. Then

\mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda )2 = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda ) for all \lambda \in \BbbC \setminus \{ 0\} .

Proof. Since \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda ) \subset \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda )2 is clear, we need only show that \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda )2 \subset 
\mathrm{k}\mathrm{e}\mathrm{r}(T - \lambda ). For simplicity, write K = \mathrm{k}\mathrm{e}\mathrm{r}(T - \lambda )2 and denote by F the closure of (T - \lambda )K.
Let x \in K. The hypothesis implies

(T  - \lambda )\ast (T  - \lambda )x = 0,

and consequently,
(T  - \lambda )\ast F = 0

If z \in \scrH , write z = w + y, where w \in F and y \in F\bot . Then (T  - \lambda )\ast z = (T  - \lambda )\ast y , and
hence

\langle (T  - \lambda )\ast z, x\rangle = \langle (T  - \lambda )\ast y, x\rangle = \langle y, (T  - \lambda )x\rangle .
for all x \in K. Therefore, \scrR (T  - \lambda )\ast \subset K\bot , and consequently,

\mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda )2 = K\bot \bot \subset (\scrR (T  - \lambda )\ast )\bot = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda ).

\square 

Corollary 2.25. If T \in \scrB (\scrH ) is p-w-hyponormal for 0 < p \leq 1, then T  - \lambda has finite
ascent for all \lambda \in \BbbC \setminus \{ 0\} .

3. Quasinilpotent part of p-w-hyponormal operators

Lemma 3.1. [48, Lemma 2.22] Let T \in \scrB (\scrH ) be a p-w-hyponormal operator for some
0 < p \leq 1 and let \scrM an invariant subspace of T . Then the restriction T | \scrM is also a
p-w-hyponormal operator.

Lemma 3.2. [48, Lemma 2.24] Let T \in \scrB (\scrH ) be a p-w-hyponormal operator, let \scrM be
an invariant subspace for T and a reduced subspace for \widetilde T such that \widetilde T | \scrM the restriction
of \widetilde T to \scrM is an injective normal operator, then T | \scrM = \widetilde T | \scrM and \scrM reduces T .

Two important subspaces in local spectral theory and Fredholm theory are defined in
the sequel. The quasi-nilpotent part of an operator T \in \scrB (\scrH ) is the set

H0(T ) = \{ x \in \scrH : \mathrm{l}\mathrm{i}\mathrm{m}
n - \rightarrow \infty 

\| Tnx\| 
1
n = 0\} .

Clearly, \mathrm{k}\mathrm{e}\mathrm{r}Tn \subseteq H0(T ) for every n \in \BbbN . If T \in \scrB (\scrH ), the analytic core K(T ) is the set
of all x \in \scrH such that there exists a constant c > 0 and a sequence of elements xn \in \scrH 
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such that x0 = x, Txn = xn - 1, and \| xn\| \leq cn \| x\| for all n \in \BbbN . Note that by Theorem
2.2 of [4], T \in \scrB (\scrH ) is polaroid if and only if there exists p := p(\lambda  - T ) \in \BbbN such that

H0(\lambda  - T ) = \mathrm{k}\mathrm{e}\mathrm{r}(\lambda  - T )p for all \lambda \in iso\sigma (T ). (3.1)

We note that H0(T  - \lambda ) and K(T  - \lambda ) are generally non-closed hyper-invariant subspaces
of T  - \lambda such that \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda )p \subseteq H0(T  - \lambda ) for all p = 0, 1, \cdot \cdot \cdot and (T  - \lambda )K(T  - \lambda ) =
K(T  - \lambda ). Recall that if \lambda \in iso\sigma (T ), then H0(T  - \lambda ) = \scrX T (\{ \lambda \} ), where \scrX T (\{ \lambda \} ) is the
global spectral subspace consisting of all x \in \scrH for which there exists an analytic function
f : \BbbC \setminus \{ \lambda \}  - \rightarrow \scrH that satisfies (T  - \mu )f(\mu ) = x for all \mu \in \BbbC \setminus \{ \lambda \} , see [1].

Let Hnc(\sigma (T )) denote the set of all analytic functions, defined on an open neighborhood
of \sigma (T ), such that f is non constant on each of the components of its domain. Define,
by the classical functional calculus, f(T ) for every f \in Hnc(\sigma (T )). Following [26] We
say that T \in \scrB (\scrH ) has the single-valued extension property (SVEP) at point \lambda \in \BbbC if
for every open neighborhood U\lambda of \lambda , the only analytic function f : U\lambda  - \rightarrow \scrH which
satisfies the equation (T  - \mu )f(\mu ) = 0 is the constant function f \equiv 0. It is well-known
that T \in \scrB (\scrH ) has SVEP at every point of the resolvent \rho (T ) := \BbbC \setminus \sigma (T ). Moreover,
from the identity Theorem for analytic function it easily follows that T \in \scrB (\scrH ) has SVEP
at every point of the boundary \partial \sigma (T ) of the spectrum. In particular, T has SVEP at
every isolated point of \sigma (T ). In [42, Proposition 1.8], Laursen proved that if T is of finite
ascent, then T has SVEP.
Definition 3.3. [19] An operator T is said to have Bishop’s property (\beta ) at \lambda \in \BbbC if
for every open neighborhood G of \lambda , the function fn \in Hnc(G) with (T  - \lambda )fn(\mu ) \rightarrow 0
uniformly on every compact subset of G implies that fn(\mu ) \rightarrow 0 uniformly on every
compact subset of G,where Hol(G) means the space of all analytic functions on G. When
T has Bishop’s property (\beta ) at each \lambda \in \BbbC , simply say that T has property (\beta ).
Theorem 3.4. [20] If T \in \scrB (\scrH ) is p-w-hyponormal, then T has property (\beta ) and hence
has SVEP.

Theorem 3.5. Let T \in \scrB (\scrH ) be p-w-hyponormal. Then H0(T  - \lambda I) = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I for
\lambda \in \BbbC .

Proof. Let F \subset \BbbC be closed set. Define the global spectral subspace by

\scrX T (F ) = \{ x \in \scrH : there is analytic f(z) : (T  - z)f(z) = x on\BbbC \setminus F\} .

It is known that H0(T  - \lambda ) = \scrX T (\{ \lambda \} ) by [1, Theorem 2.20]. As T has Bishop’s property
(\beta ) by Theorem 3.4, \scrX T (F ) is closed and \sigma (T | \scrX T (F )) \subset F by [43, Proposition 1.2.19].
Hence H0(T  - \lambda I) is closed and T | H0(T - \lambda I) is p-w-hyponormal by Theorem 3.1. Since
\sigma (T | H0(T - \lambda I)) \subset \{ \lambda \} , T | H0(T - \lambda I) is normal by Corollary 2.12. If \sigma (T | H0(T - \lambda I)) = \emptyset , then
H0(T  - \lambda I) = \{ 0\} and \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I) = \{ 0\} . If \sigma (T | H0(T - \lambda I)) = \{ \lambda \} , then T | H0(T - \lambda I) = \lambda I
and H0(T  - \lambda I) \subset \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I). \square 

Remark 3.6. If \lambda \not = 0, then H0(T  - \lambda I) = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I) \subset \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I)\ast . Moreover, if
\lambda \in \sigma (T ) \setminus \{ 0\} is an isolated point then H0(T  - \lambda I) = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I) = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I)\ast .

Lemma 3.7. Let T \in \scrB (\scrH ) be p-w-hyponormal. Let \lambda \in \BbbC . Assume that \sigma (T ) = \{ \lambda \} .
Then T = \lambda I

Proof. We consider two cases:
Case (I). (\lambda = 0): Since T is p-w-hyponormal, T is normaloid. Therefore T = 0.
Case (II). (\lambda \not = 0): Here T is invertible, and since T is p-w-hyponormal, we see that T - 1

is also p-w-hyponormal. Therefore T - 1 is normaloid. On the other hand, \sigma (T - 1) = \{ 1
\lambda \} ,

so \| T\| \| T - 1\| = | \lambda | | 1\lambda | = 1. It follows that T is convexoid, so W (T ) = \{ \lambda \} . Therefore
T = \lambda . \square 
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Two classical quantities associated with a linear operator T are the ascent p := p(T ),
defined as the smallest non-negative integer p (if it does exist) such that \mathrm{k}\mathrm{e}\mathrm{r}T p = \mathrm{k}\mathrm{e}\mathrm{r}T p+1,
and the descent q := q(T ), defined as the smallest non-negative integer q (if it does exists)
such that \scrR (T q) = \scrR (T q+1). It is well-known that if p(T  - \lambda ) and q(T  - \lambda ) are both finite
then p(T  - \lambda ) = q(T  - \lambda ) and \lambda is a pole of the the function resolvent \lambda  - \rightarrow (T  - \lambda ) - 1,
in particular \lambda is an isolated point of the spectrum \sigma (T ), see Proposition 38.3 and
Proposition 50.2 of Heuser [35].

A bounded operator T \in \scrB (\scrH ) defined on a Banach space is said to be polaroid if
every isolated point of the spectrum \sigma (T ) is a pole of the resolvent. The following result
has been proved in [3, Theorem 2.4].

Theorem 3.8. For an operator T \in \scrB (\scrH ) the following statements are equivalent:
(i) T is polaroid;
(ii) there exists f \in Hnc(\sigma (T )) such that f(T ) is polaroid;
(iii) f(T ) is polaroid for every f \in Hnc(\sigma (T )).

Theorem 3.9. If T \in \scrB (\scrH ) is p-w-hyponormal operator, 0 < p \leq 1, then T is polaroid.

Proof. We show that for every isolated point \lambda of \sigma (T ) we have p(T  - \lambda ) = q(T  - \lambda ) < \infty .
Let \lambda be an isolated point of \sigma (T ), and denote by P\lambda denote the spectral projection
associated with \{ \lambda \} . Then \scrM := K(T  - \lambda ) = \mathrm{k}\mathrm{e}\mathrm{r}P\lambda and \scrN := H0(T  - \lambda ) = P\lambda (\scrH ), see [1,
Theorem 3.74]. Therefore, H = H0(T  - \lambda )\oplus K(T  - \lambda ). Furthermore, since \sigma (T | \scrN ) = \{ \lambda \} ,
while \sigma (T | \scrM ) = \sigma (T ) \setminus \{ \lambda \} , so the restriction T | \scrN  - \lambda is quasi-nilpotent and T | \scrN  - \lambda is
invertible. Since T | \scrN  - \lambda is p-w-hyponormal, then Lemma 3.7 implies that T | \scrN  - \lambda is
nilpotent. In other words, T | \scrN  - \lambda is an operator of Kato Type.

Now, both T and the dual T \ast have SVEP at \lambda , since \lambda is isolated in \sigma (T ) = \sigma (T \ast ), and
this implies, by Theorem 3.16 and Theorem 3.17 of [1], that both p(T  - \lambda ) and q(T  - \lambda )
are finite. Therefore, \lambda is a pole of the resolvent. \square 

4. Riesz idempotent of \mathrm{w}-hyponormal

Let T \in \scrB (\scrH ) and \lambda \in \sigma (T ) be an isolated of \sigma (T ). then there exists a closed disc \bfD \lambda 

centered \lambda which satisfies \bfD \lambda \cap \sigma (T ) = \{ \lambda \} . The operator

P =
1

2\pi i

\int 
\partial \bfD \lambda 

(T  - \lambda I) - 1 d\lambda 

is called the Riesz idempotent with respect to \lambda which has properties that

P 2 = P, PT = TP, \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I) \subset \scrR (P ) and \sigma (T | \scrR (P )) = \{ \lambda \} .

In [51], Stampfli proved that if T is hyponormal and \lambda \in \sigma (T ) is isolated, then the Riesz
idempotent P with respect to \lambda is self-adjoint and satisfies

\scrR (P ) = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I) = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I)\ast .

In this paper we extend these result to the case of ap-w-hyponormal operator.

Theorem 4.1. Let T \in \scrB (\scrH ) be a p-w-hyponormal operator and \lambda be a non-zero isolated
point of \sigma (T ). Let \bfD \lambda denote the closed disc which centered \lambda such that \bfD \lambda \cap \sigma (T ) = \{ \lambda \} .
Then the Riesz idempotent P =

1

2\pi i

\int 
\partial \bfD \lambda 

(T  - \lambda I) - 1 d\lambda satisfies that

\scrR (P ) = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I) = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I)\ast .

In particular P is self-adjoint.

Proof. Since p-w-hyponormal operators are isoloid by Corollary 2.18. Then every isolated
point of \sigma (T ) of T is an eigenvalue of T . Then the range of Riesz idempotent P =
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1

2\pi i

\int 
\partial \bfD \lambda 

(T  - \lambda I) - 1 d\lambda is an invariant closed subspace of T and \sigma (T | \scrR (P )) = \{ \lambda \} . Here
\bfD \lambda is a closed disc with its center \lambda such that \bfD \lambda \cap \sigma (T ) = \{ \lambda \} .

If \lambda = 0, then \sigma (T | \scrR (P )) = \{ 0\} . Since T | \scrR (P ) is p-w-hyponormal by Theorem 3.1,
T | \scrR (P ) = 0 by Lemma 3.7. Therefore, 0 is an eigenvalue of T .

If \lambda \not = 0, then T | \scrR (P ) is an invertible p-w-hyponormal operator and hence (T | \scrR (P ))
 - 1

is also w-hyponormal. We see that
\bigm\| \bigm\| T | \scrR (P )

\bigm\| \bigm\| = | \lambda | and
\bigm\| \bigm\| (T | \scrR (P ))

 - 1
\bigm\| \bigm\| = 1

| \lambda | . Let x \in \scrR (P )

be arbitrary vector. Then

\| x\| \leq 
\bigm\| \bigm\| (T | \scrR (P ))

 - 1
\bigm\| \bigm\| \bigm\| \bigm\| T | \scrR (P )x

\bigm\| \bigm\| =
1

| \lambda | 
\bigm\| \bigm\| T | \scrR (P )x

\bigm\| \bigm\| \leq 1

| \lambda | 
| \lambda | \| x\| = \| x\| .

This implies that 1
\lambda T | \scrR (P ) is unitary with its spectrum \sigma ( 1\lambda T | \scrR (P )) = \{ 1\} . Hence

T | \scrR (P ) = \lambda I and \lambda is an eigenvalue of T . Therefore, \scrR (P ) = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I). Since
\mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I) \subset \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I)\ast by Proposition 2.14, it suffices to show that \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I)\ast \subset 
\mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I). Since \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I) is a reducing subspace of T by Proposition 2.14 and the
restriction of a p-w-hyponormal to its reducing subspace is also p-w-hyponormal operator,
we see that T is of the form T = T \prime \oplus \lambda I on \scrH = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I)\oplus \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I)\bot , where T \prime 

is a p-w-hyponormal operator with \mathrm{k}\mathrm{e}\mathrm{r}(T \prime  - \lambda I) = \{ 0\} . since \lambda \in \sigma (T ) = \sigma (T \prime ) \cup \{ \lambda \} is
isolated, the only two cases occur. One is \lambda /\in \sigma (T \prime ) and the other is that \lambda is an isolated
point of \sigma (T \prime ). The latter case, however, does not occur otherwise we have \lambda \in \sigma p(T

\prime )
and this contradicts the fact that \mathrm{k}\mathrm{e}\mathrm{r}(T \prime  - \lambda I) = \{ 0\} . \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I) = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I)\ast is
immediate from the injectivity of T \prime  - \lambda I as an operator on \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I)\bot .

Next, we show that P is self-adjoint. Since \scrR (P ) = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I) = \mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I)\ast , we
have ((T  - zI)\ast ) - 1P = (z  - \lambda ) - 1P. Hence

P \ast P =  - 1

2i\pi 

\int 
\partial \bfD \lambda 

((T  - zI)\ast ) - 1P d\=z

=  - 1

2i\pi 

\int 
\partial \bfD \lambda 

(z  - \lambda ) - 1P d\=z

=

\biggl( 
1

2i\pi 

\int 
\partial \bfD \lambda 

1

z  - \lambda 
d\=z

\biggr) 
P

= PP \ast . \square 

In the following we give an example T of p-w-hyponormal operator which has properties
that 0 is an isolated point of \sigma (T ), the Riesz idempotent with respect to 0 is not self-adjoint
and \mathrm{k}\mathrm{e}\mathrm{r}(T ) \not = \mathrm{k}\mathrm{e}\mathrm{r}(T \ast ).

Example 4.2. Let \scrH = \oplus \infty 
n=0\BbbC 2 and define an operator T on \scrH by

T (\cdot \cdot \cdot \oplus x - 2 \oplus x - 1 \oplus x
(0)
0 \oplus x1 \oplus \cdot \cdot \cdot ) = \cdot \cdot \cdot \oplus Ax - 2 \oplus A(0)x - 1 \oplus Bx0 \oplus Bx1 \oplus \cdot \cdot \cdot ,

where A =

\biggl( 
1/8 1/8
1/8 1/8

\biggr) 
and B =

\biggl( 
1 0
0 0

\biggr) 
. Then T is p-w-hyponormal with 0 < p \leq 1

and \sigma (T ) = \{ 0\} \cup \{ z : 1
4 \leq | z| \leq 1\} . Moreover P\scrH = \mathrm{k}\mathrm{e}\mathrm{r}(T ), P is not self-adjoint and

\mathrm{k}\mathrm{e}\mathrm{r}(T ) \not = \mathrm{k}\mathrm{e}\mathrm{r}(T \ast ), where P is the Riesz idempotent with respect to 0.

Proof. Let x = \cdot \cdot \cdot \oplus x - 2 \oplus x - 1 \oplus x
(0)
0 \oplus x1 \oplus \cdot \cdot \cdot , we have

T \ast x =(\cdot \cdot \cdot \oplus Ax0 \oplus B(0)x1 \oplus Bx2 \oplus \cdot \cdot \cdot ),
| T | x =(\oplus n<0Axn)\oplus (\oplus n\geq 0Bxn),

| \widetilde T | x =(\oplus n< - 1Axn)\oplus (A1/2BA1/2)1/2x - 1 \oplus (\oplus n\geq 0Bxn),

| ( \widetilde T )\ast | x =(\oplus n<0Axn)\oplus (A1/2BA1/2)1/2x0 \oplus (\oplus n\geq 1Bxn).
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Since (A
1
2BA

1
2 )

p
2 = 2

p
2A and (B

1
2AB

1
2 )

p
2 = (BAB)

p
2 = 1

8
p
2
B,\Bigl\langle 

(| \widetilde T | p  - | T | p)x, x
\Bigr\rangle 
=
\Bigl\langle 
((A

1
2BA

1
2 )

p
2  - A)x - 1, x - 1

\Bigr\rangle 
\geq 0\Bigl\langle 

(| T | p  - | ( \widetilde T )\ast | p)x, x\Bigr\rangle =
\Bigl\langle 
(B  - (BAB)

p
2 )x0, x0

\Bigr\rangle 
\geq 0.

Hence T is p-w-hyponormal.
(i) Let \scrH + = \{ (T  - \lambda )x| x \in \scrH , x = \cdot \cdot \cdot \oplus 0\oplus x0\oplus x1\oplus x2\oplus \cdot \cdot \cdot \} , \scrH  - = \{ (T  - \lambda )x| x \in 

\scrH , x = \cdot \cdot \cdot \oplus x - 4 \oplus x - 3 \oplus 0 \oplus \cdot \cdot \cdot \} , and \scrH 0 = \{ (T  - \lambda )x| x \in \scrH , x = \cdot \cdot \cdot \oplus 0 \oplus 
x - 2 \oplus x - 1 \oplus 0\oplus \cdot \cdot \cdot \} . Then \scrH + \bot \scrH  - . We remark that 4A is unitary equivalent
to B. By Lemma 12 of [55], \scrH + and \scrH  - are closed for \lambda < 1

4 . Since \scrH 0 is finite
dimensional, \scrR (T  - \lambda ) = (\scrH + \oplus \scrH  - ) +\scrH 0 is closed.

(ii) It is easy to check that

\mathrm{k}\mathrm{e}\mathrm{r}(T ) =

\biggl\{ 
[\oplus n\leq  - 1cn

\biggl( 
1
 - 1

\biggr) 
]\oplus [\oplus n\geq 0cn

\biggl( 
0
1

\biggr) 
]| \{ cn\} \in \ell 2(\BbbZ )

\biggr\} 
,

\mathrm{k}\mathrm{e}\mathrm{r}(T \ast ) =

\biggl\{ 
[\oplus n\leq 0cn

\biggl( 
1
 - 1

\biggr) 
]\oplus [\oplus n\geq 1cn

\biggl( 
0
1

\biggr) 
]| \{ cn\} \in \ell 2(\BbbZ )

\biggr\} 
.

Hence, \mathrm{k}\mathrm{e}\mathrm{r}(T ) \not = \mathrm{k}\mathrm{e}\mathrm{r}(T \ast ).
(iii) If 0 < \lambda < 1/4, it easy to check that \mathrm{k}\mathrm{e}\mathrm{r}(T - \lambda ) = \mathrm{k}\mathrm{e}\mathrm{r}(T - \lambda )\ast = \{ 0\} . Since \scrR (T - \lambda )

is closed by [55, Lemma 12], we have \scrR (T  - \lambda ) = \scrR (T  - \lambda ) = [\mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda )\ast ]\bot = \scrH 
and therefore \lambda /\in \sigma (T ).

(iv) If 1
4 < \lambda < 1, we have

\mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda )\ast = \BbbC 
\biggl( 
[\oplus n<0

1

2(4\lambda )| n| 

\biggl( 
1
1

\biggr) 
]\oplus [\oplus n\geq 0\lambda 

n

\biggl( 
1
1

\biggr) 
]

\biggr) 
.

(v) It follows from (iii) and (iv) that \sigma (T ) = \{ 0\} \cup \{ \lambda \in \BbbC | 14 \leq | \lambda | \leq 1\} .
(vi) Since T is paranormal, we have \scrR (P ) = \mathrm{k}\mathrm{e}\mathrm{r}(T ) by the proof of [55, Lemma 6].

Suppose that P is self-adjoint. Then \scrR (P ) \bot \scrR (I  - P ), so that T = 0\oplus S for
some paranormal operator on \scrR (I  - P ) with \scrR (S) = \{ 0\} . Since S is isoloid,
0 /\in \sigma (S). Hence \mathrm{k}\mathrm{e}\mathrm{r}(T ) = \scrR (P ) = \mathrm{k}\mathrm{e}\mathrm{r}(T \ast ). This contradicts (ii).

\square 

5. Tensor Product

Let \scrH and \scrK denote the Hilbert spaces. For given non-zero operators T \in \scrB (\scrH ) and
S \in \scrB (\scrK ), T \otimes S denotes the tensor product on the product space \scrH \otimes \scrK . The normaloid
property is invariant under tensor products [53]. T \otimes S is normal if and only if T and
S are normal [23, 40]. There exist paranormal operators T and S such that T \otimes S is
not paranormal [52]. In [37], I.H.Kim showed that for non-zero T \in \scrB (\scrH ) and S \in \scrB (\scrK ),
T \otimes S is \mathrm{l}\mathrm{o}\mathrm{g}-hyponormal if and only if T and S are \mathrm{l}\mathrm{o}\mathrm{g}-hyponormal. This result was
extended to p-quasihyponormal operators, w-hyponormal operators , class A operators
and class A(k) in [37], [36], and [47] respectively. In this section, we prove an analogous
result for p-w-hyponormal operators.

Remark 5.1. Let T \in \scrB (\scrH ) and S \in \scrB (\scrK ) be non-zero operators, then we have
(i) (T \otimes S)\ast (T \otimes S) = T \ast T \otimes S\ast S
(ii) | T \otimes S| t = | T | t \otimes | S| t for any positive real t.

Lemma 5.2. ( [40]) Let T1, T2 \in \scrB (\scrH ), S1, S2 \in \scrB (\scrK ) be non-negative operators. If T1

and S1 are non-zero, then the following assertions are equivalent:
(a) T1 \otimes S1 \leq T2 \otimes S2

(b) there exists c > 0 such that T1 \leq cT2 and S1 \leq c - 1S2.
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Theorem 5.3. Let T \in \scrB (\scrH ) and S \in \scrB (\scrK ) be non-zero operators and let 0 < p \leq 1.
Then T \otimes S is p-w-hyponormal if and only if T and S is p-w-hyponormal.

Proof. We shall use the fact that the function T  - \rightarrow \widetilde T has the property \widetilde T \otimes S = \widetilde T \otimes \widetilde S.
It follows from Remark 5.1 that

| \widetilde T \otimes S| p = | \widetilde T | p \otimes | \widetilde S| p \geq | T \otimes S| p = | T | p \otimes | S| p \geq | \widetilde (T \otimes S)
\ast 
| p = | \widetilde T \ast | p \otimes | \widetilde S\ast | p. (5.2)

Inequality 5.2 holds if and only if\Bigl( 
| \widetilde T | p  - | T | p

\Bigr) 
\otimes | \widetilde S| p + | T | p

\Bigl( 
| \widetilde S| p  - | S| p

\Bigr) 
\geq 0 and\Bigl( 

| T | p  - | \widetilde T \ast | p
\Bigr) 
\otimes | S| p + | \widetilde T \ast | p

\Bigl( 
| S| p  - | \widetilde S\ast | p

\Bigr) 
\geq 0, (5.3)

or, equivalently, if and only if\Bigl( 
| \widetilde T | p  - | T | p

\Bigr) 
\otimes | S| p + | \widetilde T | p \Bigl( | \widetilde S| p  - | S| p

\Bigr) 
\geq 0 and\Bigl( 

| T | p  - | \widetilde T \ast | p
\Bigr) 
\otimes | \widetilde S\ast | p + | T | p

\Bigl( 
| S| p  - | \widetilde S\ast | p

\Bigr) 
\geq 0. (5.4)

So, the sufficency is clear.
To prove the necessity, suppose that T \otimes S is p-w-hyponormal. Then

| \widetilde T | p \otimes | \widetilde S| p \geq | T | p \otimes | S| p.
Therefore, by Lemma 5.2, there exists a c \in \BbbR + such that

c| \widetilde T | p \geq | T | p and c - 1| \widetilde S| p \geq | S| p.
Consequently,

\| | T | p\| 2 = \mathrm{s}\mathrm{u}\mathrm{p}
\| x\| =1

\bigl\langle 
| T | 2px, x

\bigr\rangle 
\leq \mathrm{s}\mathrm{u}\mathrm{p}

\| x\| =1

\Bigl\langle 
c| \widetilde T | 2px, x\Bigr\rangle \leq c \| | T | p\| 2

and

\| | S| p\| 2 = \mathrm{s}\mathrm{u}\mathrm{p}
\| x\| =1

\bigl\langle 
| S| 2px, x

\bigr\rangle 
\leq \mathrm{s}\mathrm{u}\mathrm{p}

\| x\| =1

\Bigl\langle 
c - 1| \widetilde S| 2px, x\Bigr\rangle \leq c - 1 \| | S| p\| 2

Thus, c = 1 and
| \widetilde T | p \geq | T | p and | \widetilde S| p \geq | S| p. (5.5)

Now we just to show that | T | p \geq | \widetilde T \ast | p and | S| p \geq | \widetilde S\ast | p. Let x \in \scrH and y \in \scrK be
arbitrary. Then, from inequalities ( 5.3) and ( 5.4), we have\Bigl\langle \Bigl( 

| T | p  - | \widetilde T \ast | p
\Bigr) 
x, x

\Bigr\rangle 
\langle | S| py, y\rangle +

\Bigl\langle 
| \widetilde T \ast | px, x

\Bigr\rangle \Bigl\langle \Bigl( 
| S| p  - | \widetilde S\ast | p

\Bigr) 
y, y

\Bigr\rangle 
\geq 0 (5.6)

and \Bigl\langle \Bigl( 
| T | p  - | \widetilde T \ast | p

\Bigr) 
x, x

\Bigr\rangle \Bigl\langle 
| \widetilde S\ast | py, y

\Bigr\rangle 
+ \langle | | T | px, x\rangle 

\Bigl\langle \Bigl( 
| S| p  - | \widetilde S\ast | p

\Bigr) 
y, y

\Bigr\rangle 
\geq 0. (5.7)

Suppose that | T | p  - | \widetilde T \ast | p is not a positive operator. Then there is a x0 \in \scrH such that\Bigl\langle \Bigl( 
| T | p  - | \widetilde T \ast | p

\Bigr) 
x0, x0

\Bigr\rangle 
= \alpha < 0 and

\Bigl\langle 
| \widetilde T \ast x0, x0

\Bigr\rangle 
= \beta > 0.

From inequality ( 5.6) we get

(\alpha + \beta ) \| | S| py\| \geq \beta 
\bigm\| \bigm\| \bigm\| | \widetilde S\ast | py

\bigm\| \bigm\| \bigm\| .
That is,

(\alpha + \beta ) \| | S| p\| \geq \beta 
\bigm\| \bigm\| \bigm\| | \widetilde S\ast | p

\bigm\| \bigm\| \bigm\| .
Since, by inequality ( 5.5), | \widetilde S| p \geq | S| p, we have also

(\alpha + \beta ) \| S\| p = (\alpha + \beta ) \| | S| p\| \geq \beta 
\bigm\| \bigm\| \bigm\| | \widetilde S\ast | p

\bigm\| \bigm\| \bigm\| = \beta 
\bigm\| \bigm\| \bigm\| | \widetilde S| p\bigm\| \bigm\| \bigm\| \geq \beta \| S\| p .
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This is a contradiction. Hence, | T | p \geq | \widetilde T \ast | p. A similar argument shows, by using inequality
( 5.7), that | S| p \geq | \widetilde S\ast | p. \square 

6. Weyl’s Type theorems

Let us denote by \alpha (T ) the dimension of the kernel and by \beta (T ) the codimension
of the range. Recall that the operator T \in \scrB (\scrX ) is said to be upper semi-Fredholm,
T \in SF+(\scrX ), if the range of T \in \scrB (\scrX ) is closed and \alpha (T ) < \infty , while T \in \scrB (\scrX ) is said
to be lower semi-Fredholm, T \in SF - (\scrX ), if \beta (T ) < \infty . An operator T \in \scrB (\scrX ) is said to
be semi-Fredholm if T \in SF+(\scrX ) \cup SF - (\scrX ) and Fredholm if T \in SF+(\scrX ) \cap SF - (X). If
T is semi-Fredholm then the index of T is defined by \mathrm{i}\mathrm{n}\mathrm{d} (\mathrm{T}) = \alpha (\mathrm{T}) - \beta (\mathrm{T}).

A bounded linear operator T acting on a Banach space \scrX is Weyl if it is Fredholm of
index zero and Browder if T is Fredholm of finite ascent and descent. The Weyl spectrum
\sigma W (T ) and Browder spectrum \sigma b(T ) of T are defined by

\sigma W (T ) = \{ \lambda \in \BbbC : T  - \lambda I is not Weyl\} 
\sigma b(T ) = \{ \lambda \in \BbbC : T  - \lambda I is not Browder\} .

Let E0(T ) = \{ \lambda \in iso\sigma (T ) : 0 < \alpha (T  - \lambda ) < \infty \} and let \pi 0(T ) := \sigma (T ) \setminus \sigma b(T ) all Riesz
points of T . According to Coburn [24], Weyl’s theorem holds for T if \Delta (T ) = \sigma (T ) \setminus 
\sigma W (T ) = E0(T ), and that Browder’s theorem holds for T if \Delta (T ) = \sigma (T )\setminus \sigma W (T ) = \pi 0(T ).

Let SF - 
+ (\scrX ) = \{ T \in SF+ : ind (T ) \leq 0\} . The upper semi Weyl spectrum is defined

by \sigma SF - 
+
(T ) = \{ \lambda \in \BbbC : T  - \lambda /\in SF - 

+ (\scrX )\} . According to Rakočević [49], an operator
T \in \scrB (\scrX ) is said to satisfy a-Weyl’s theorem if \sigma a(T ) \setminus \sigma SF - 

+
(T ) = E0

a(T ), where

E0
a(T ) = \{ \lambda \in \mathrm{i}\mathrm{s}\mathrm{o}\sigma \mathrm{a}(\mathrm{T}) : 0 < \alpha (\mathrm{T} - \lambda \mathrm{I}) < \infty \} .

It is known [49] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s theorem,
but the converse does not hold in general.

For T \in \scrB (\scrX ) and a non negative integer n define T[n] to be the restriction T to
\scrR (Tn) viewed as a map from \scrR (Tn) to \scrR (Tn)(in particular T[0] = T ). If for some integer
n the range space \scrR (Tn) is closed and T[n] is an upper ( resp., lower) semi-Fredholm
operator, then T is called upper ( resp., lower) semi-B-Fredholm operator. In this case
index of T is defined as the index of semi-B-Fredholm operator T[n]. A semi-B-Fredholm
operator is an upper or lower semi-Fredholm operator [18]. Moreover, if T[n] is a Fredholm
operator then T is called a B-Fredholm operator [13]. An operator T is called a B-Weyl
operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum \sigma BW (T ) is
defined by \sigma BW (T ) = \{ \lambda \in \BbbC : T  - \lambda is not B-Weyl operator \} [14]. Let E(T ) be the
set of all eigenvalues of T which are isolated in \sigma (T ). According to [15], an operator
T \in \scrB (\scrX ) is said to satisfy generalized Weyl’s theorem, if \sigma (T ) \setminus \sigma BW (T ) = E(T ). In
general, generalized Weyl’s theorem implies Weyl’s theorem but the converse is not
true [17]. Following [14], we say that T satisfies generalized Browders’s theorem, if
\sigma (T ) \setminus \sigma BW (T ) = \pi (T ), where \pi (T ) is the set of poles of T.

Let SBF - 
+ (\scrX ) denote the class of all is upper B-Fredholm operators such that \mathrm{i}\mathrm{n}\mathrm{d} (\mathrm{T}) \leq 

0. The upper B-Weyl spectrum \sigma SBF - 
+
(T ) of T is defined by

\sigma SBF - 
+
(T ) = \{ \lambda \in \BbbC : T  - \lambda /\in SBF - 

+ (\scrX )\} .
Following [17], we say that generalized a-Weyl’s theorem holds for T \in \scrB (\scrX ) if \Delta g

a(S) =
\sigma a(T ) \setminus \sigma SBF - 

+
(T ) = Ea(T ), where Ea(T ) = \{ \lambda \in iso\sigma a(T ) : \alpha (T  - \lambda ) > 0\} is the set of

all eigenvalues of T which are isolated in \sigma a(T ) and that T \in \scrB (\scrX ) obeys generalized
a-Browder’s theorem if \Delta g

a(T ) = \pi a(T ). It is proved in [10, Theorem 2.2] that generalized
a-Browder’s theorem is equivalent to a-Browder’s theorem, and it is known from [17,
Theorem 3.11] that an operator satisfying generalized a-Weyl’s theorem satisfies a-
Weyl’s theorem, but the converse does not hold in general and under the assumption
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Ea(T ) = \pi a(T ) it is proved in [16, Theorem 2.10] that generalized a-Weyl’s theorem is
equivalent to a-Weyl’s theorem. Following [46], we say that T \in \scrB (\scrX ) possesses property
(t) if \Delta +(T ) = \sigma (T ) \setminus \sigma SF - 

+
(T ) = E0(T ). In Proposition 2.7 of [46], it is shown that

property (t) implies Weyl’s theorem, but the converse is not true in general. We say that
T \in \scrB (\scrX ) possesses property (gt) if \Delta g

+(T ) = \sigma (T ) \setminus \sigma SBF - 
+
(T ) = E(T ). Property (gt)

has been introduced and studied in [46]. Property (gt) extends property (t) to the context
of B-Fredholm theory, and it is proved in [46] that an operator possessing property (gt)
possesses property (t) but the converse is not true in general.

Lemma 6.1. If T \in \scrB (\scrH ) is p-w-hyponormal operator with 0 < p \leq 1, then T and T \ast 

satisfy Weyl’s theorem.

Proof. Since T is p-w-hyponormal, then T has SVEP by Theorem 3.4. Then T satisfies
Browder’s theorem if and only if T \ast satisfies Browder’s theorem if and only if \pi 0(T ) =
\sigma (T ) \setminus \sigma w(T ) \subseteq E0(T ) and \pi 0(T \ast ) = \sigma (T \ast ) \setminus \sigma w(T

\ast ) \subseteq E0(T \ast ). If \lambda \in E0(T \ast ), then
T has SVEP at \lambda and T \ast has SVEP at \lambda and 0 < p(T  - \lambda )\ast = q(T  - \lambda ) < \infty . Thus
the ascent and descent of T  - \lambda are finite and hence equal, see [35]. Then T  - \lambda is a
Fredholm of index 0 and also (T  - \lambda )\ast is a Fredholm of index 0, then E0(T ) \subseteq \pi 0(T ) and
E0(T \ast ) \subseteq \pi 0(T \ast ). This implies that both T and T \ast satisfy Weyl’s theorem. \square 

Lemma 6.2. If T or T \ast is p-w-hyponormal operator with 0 < p \leq 1, then both T and
T \ast satisfy generalized Weyl’s theorem.

Proof. If T or T \ast is p-w-hyponormal, then T is polaroid by Theorem 3.9 also T \ast is
polaroid, and generalized Weyl’s theorem for T , or T \ast are equivalent, see [2, Theorem
3.7]. The assertion then follows from [2, Theorem 3.3]. \square 

Definition 6.3. Let T \in \scrB (\scrX ). Then we say that
(i) T possess property (w) if \sigma a(T ) \setminus \sigma SF+

 - 
(T ) = E0(T ) [5];

(ii) T possess property (gw) if \sigma a(T ) \setminus \sigma SBF+
 - 
(T ) = E(T ) [11];

(iii) T possess property (b) if \sigma a(T ) \setminus \sigma SF+
 - 
(T ) = \pi 0(T ) [45];

(iv) T possess property (gb) if \sigma a(T ) \setminus \sigma SBF+
 - 
(T ) = \pi (T ) [45].

Theorem 6.4. Suppose that T \in \scrB (\scrH ) is p-w-hyponormal with 0 < p \leq 1 and f \in 
Hnc(\sigma (T )). Then

(i) property (t) holds for f(T \ast ), or equivalently property (w), property (R), property
(b), Weyl’s theorem, a-Weyl’s theorem hold for f(T \ast ).

(ii) property (gt) holds for f(T \ast ), or equivalently property (gw), property (gb), gener-
alized Weyl’s theorem, generalized a-Weyl’s theorem hold for f(T \ast ).

Proof. Since T has SVEP by Theorem 3.4 and polaroid by 3.9. The assertions then
follows from Theorem 3.6 (ii) and Theorem 3.7 (ii) of [46]. \square 

Theorem 6.5. Suppose that T \ast \in \scrB (\scrH ) is p-w-hyponormal with 0 < p \leq 1 and f \in 
Hnc(\sigma (T )). Then

(i) property (t) holds for f(T ), or equivalently property (w), property (R), property
(b), Weyl’s theorem, a-Weyl’s theorem hold for f(T ).

(ii) property (gt) holds for f(T ), or equivalently property (gw), property (gb), gener-
alized Weyl’s theorem, generalized a-Weyl’s theorem hold for f(T ).

Proof. Since T has SVEP by Theorem 3.4 and polaroid by Theorem 3.9. The assertions
then follows from Theorem 3.6 (i) and Theorem 3.7 (i) of [46]. \square 
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