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TENSOR PRODUCT AND VARIANTS OF WEYL’S TYPE THEOREM
FOR p-w-HYPONORMAL OPERATORS

M. H. M. RASHID

ABsTrACT. A Hilbert space operator T is said to be p-w-hyponormal with 0 < p <1
if [T|P > |T|P > |T*|P, where T is the Aluthge transform. In this paper we prove
basic properties of these operators. Using these results, we also prove that if P is
a Riesz idempotent for a non-zero isolated point A of the spectrum of 7', then P is
self-adjoint. Among other things, we prove these operators are finitely ascensive and
that, for non-zero p-w-hyponormal 7" and S, T'® S is p-w-hyponormal if and only
if T and S are p-w-hyponormal. Moreover, it is shown that property (gt) holds for
f(T), where f € Hnc(o(T)).

Omneparop T y risib6epToBiM HPOCTOPI HA3BUBAETHCS P-W-TIMOHOPMAJBHUM, €
0 < p <1, akmo |ﬂp >|TP > \f*|p, ne T — neperBopennsa AutyTre. B miit po6oTi
JOCJIiIzKeHI OCHOBHI ByracTuBOCT] Takux omneparopis. [lokazano Takox, mo skmo P —
izemnorenT Picca, sikuil BigmnoBijlae HeHyJIbOBIil i30/1bOBaHil TO4Ii A ciekTpy 1, TO
oneparop P camocnpsi>kennit. JloBesieHo, 110 1ii oniepaTopu MarTh CKIHYEHHUI igiioM
i Mo 118 HeHyIbOBUX p-w-rinoHopMaibHux 11 S, T ® S € p-w-rinoHOpMaJbHUM TOJI
it Tisibku Tozi, kosim T i S p-w-rinonopmasibhi. Kpim Toro, mosejieHo, 1o BIacTuBicTb
(gt) mae micue mua f(T), ne f € Hne(o(T)).

1. INTRODUCTION

Let X (or H) be a complex Banach (Hilbert, respectively) space and B(X) (or B(H))
be the set of all bounded linear operators on X’ (H, respectively). Every operator T' can
be decomposed into T' = U|T| with a partial isometry U, where |T| is the square root
of T*T. 1If U is determined uniquely by the kernel condition ker(U) = ker(|T|), then
this decomposition is called the polar decomposition, which is one of the most important
results in operator theory ( [27], [32], [41] and [44]). In this paper, T = U|T| denotes the
polar decomposition satisfying the kernel condition ker(U) = ker(|T]).

Recall that an operator T' € B(H) is positive, T > 0, if (Tx,x) > 0 for all z € H. An
operator T' € B(H) is said to be hyponormal if T*T > TT*. Hyponormal operators have
been studied by many authors and it is known that hyponormal operators have many
interesting properties similar to those of normal operators [7, 22, 25, 28, 29, 38]. An
operator T is said to be p-hyponormal if(T*T)? > (TT*)P for p € (0,1] and an operator T'
is said to be log-hyponormal if T is invertible and log |T'| > log |T*|. p-hyponormal and log-
hyponormal operators are defined as extension of hyponormal operator. Aluthge [6] defined
the operator 7' = |T|Y/2U|T|*/?, called the Aluthge transformation of 7. An operator
T is said to be w-hyponormal if |T| > |T| > |T*|. The operator T(s,t) = |T|*U|T|* is
the generalized Aluthge transformation of 7" in [6]. The classes of log-hyponormal and
w-hyponormal operators were introduced and their properties were studied in [8] and [9].
It is known that the square of a w-hyponormal operator is also w-hyponormal. In [9],
Aluthge showed that the class of w-hyponormal operator properly contains the classes of
p-hyponormal operators and log-hyponormal.
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In [21], [31], and [20] Yang Changsen, Li Haiying introduced a class of p-w-hyponormal
(0 < p < 1) which means that if [T|P? > |T|P > |T*|P. In [7], they showed that there exists
an invertible operator whose integer powers are all p-w-hyponormal. As a generalization
of class p-w-hyponormal (0 < p < 1) Li Haiying [30] introduced a new class called (s, p)-
w- hyponormal which mean that if |T(s, s)[P > |T[2? > |T*(s,s)[P (s > 0,0 < p < 1).
Clearly, if s = =, an (s, p)-w-hyponormal operator is p-w-hyponormal. That is to say, the
class of (s, p)—w—hyponormal operators contains the class of p-w-hyponormal operators.

Throughout this paper, we shall denote the spectrum, the point spectrum and the
isolated points of the spectrum of T' € B(#H) by o(T), 0,(T") and isoo(T), respectively.
The range and the kernel of T' € B(#H) will be denoted by R(T) = TH and ker(T),
respectively. We shall denote the set of all complex numbers and the complex conjugate
of a complex number A by C and ), respectively. The closure of a set S will be denoted
by S and we shall henceforth shorten T — A\I to T — A.

In Section 2, we prove basic properties of p-w-hyponormal operators. Among other
things, we prove these operators are finitely ascensive. Section 3 is devoted to characterize
the quasinilpotent Ho(T — X) = {z € H : nlinoo (T —X)"z
operators. Using the results established in Section 2, we also prove that if P is a Riesz
idempotent for a non-zero isolated point A of the spectrum of T, then P is self-adjoint
and ker(T — A\) = R(P) = ker(T — A\)*. In Section 4, we prove that for non-zero p-w-
hyponormal 7" and S, T'® S is p-w-hyponormal if and only if 7" and S are p-w-hyponormal.
Moreover, in Section 5, it is shown that property (gt) holds for f(7T'), and f is an analytic
function defined on an open neighborhood of the spectrum of T such that f is non
constant on each of the components of its domain.

o 0} of p-w-hyponormal

2. SPECTRAL PROPERTIES OF p-w-HYPONORMAL OPERATORS

To prove our main Theorems, we need the following results.
Lemma 2.1. [33, Hansen’s Inequality] If A, B € B(H) satisfy A >0 and ||B|| < 1, then
(B*AB)* > B*A*B for all o € (0,1].
Lemma 2.2. [34, Lower-Heinz theorem| A > B > 0 ensure A* > B® for any a € [0, 1].

Theorem 2.3. [6] Let T € B(H). If T is p-hyponormal, then the following hold:
(i) T is (p+ 1)-hyponormal for 0 < p < %
(i) T is hyponormal for % <p<l.

Proposition 2.4. (|21]) Let T € B(H). Then the following conditions are equivalent to
each other:

(i) T is p-w-hyponormal
.. 1 * * * r *
(ii) |TJ7 > (IT(2|T*||T|2)% and (|T°|2|T||T*|2)% > |T°;
(iii) [T% [P > [T*[7 > |T*|7,
Theorem 2.5. ([30]) Let T € B(H). The following conditions are equivalent:
(i) T is (s,p)-w- hyponormal'
(it) TP > (TP |T*[**|T1°)2 and (T*[°|T1**|T*[*)% = |T*[*P;
(i) [T*(s,5)*] = [T > |T*(s,5)].

Lemma 2.6. Let T € B(H). If T is an invertible (s, p)-w-hyponormal operator, then so
is TL.
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Proof. Since [T~ = |T*|~*, |T~"| = |T|"" and T > I <= T~' < I. Applying (ii) of
Theorem 2.5, we have

p
2

(1T |7 |T*|*)
= [T~ (|T* |2 |T||T*)*) 8 |T*|~*F > I

2 |T*‘25p

= (I PP R ) <1
S [T (T T 7)) TP < 1
= (| TR < R
- (|T—1|S|T_1*|2S‘T—1|S)g < |71,

Similarly
(TP > (T |T*[*|T|*)
= (T P T (e P > T
S (T 725 T R T2 7 22 7)) < 1
= [T o0 < (TP | T)
= TP < (T
= ‘T—1*|2sp < (‘T—l* S|T—1|28|T—1*|S)g.
That is, T~ is (s, p)-w-hyponormal operator. O
Letting s = % in Lemma 2.6, we have immediately

Corollary 2.7. Let T € B(H). If T is an invertible p-w-hyponormal operator, 0 < p <1,
then so is T~1.

Lemma 2.8. If T is p-w-hyponormal, then T is g-hyponormal, T is pgl -hyponormal

and T is hyponormal.

Proof. The definition of p-w-hyponormal clearly implies that T is £-hyponormal. Si~nce

T is £-hyponormal , T is p—;l—hyponormal by Theorem 2.3, again by Theorem 2.3 T is
hyponormal. O

An operator T is said to be normaloid if ||| = (T"), where r(T) is the spectral radius
of T. The equality ||T|| = r(T) was shown to hold in [51] for hyponormal operators, in

[6] for p-hyponormal and in [8]. The next theorem shows that the equality holds for
p-w-hyponormal operators.

Theorem 2.9. Let T € B(H). If T is p-w-hyponormal, then T
IT|| = r(T). That is, T is normaloid.

-

= |7l -

= r(T) by [51, Theorem 1]. The result follows by |8,

Corollary 2.3] since o(T) = o(T) = o(T) = o(T). O

Proof. Since T is hyponormal, T

Theorem 2.10. Let T € B(H) be p-w-hyponormal operator. Then T is
(a) normal if o(T) is an arc or if o(T) has only a finite number of limit points;
(b) self-adjoint if o(T) C R;
(¢) unitary if o(T) is contained in the unit circle.
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Proof (a) If 0( ) is an arc, then o(T) is an arc by [8, Corollary 2.3]. The hyponormahty
of T 1mphes T is normal [51, Theorem 4|. Applying [31, Theorem 4.4| to T we obtain

T = T ‘and thus T is normal. Applying the same theorem to T firstly and to T secondly
yields T=Tand T =T and hence T is normal.

(b) If o(T) C R, then O(T) C R by [8, Corollary 2.3]. The p-hyponormality of T implies
that 7T is self-adjoint and T = T, so the result.

(c) Both T and T~! are p-w-hyponormal and their spectra are subsets of T = {\ € C :
|A| = 1}. Consequently, by Theorem 2.9 ||T|| = ||77!|| = 1, and so T is a unitary. O

Corollary 2.11. A compact p-w-hyponormal operator is normal.

Theorem 2.12. Let T € B(H) be p-w-hyponormal operator. If the planar Lebesgue
measure ma(o(T)) of o(T) is 0, then T is normal.

Proof. Since T is 7—hyponormal by Lemma 2.8, and o(T) = o(T) by [8, Corollary 2.3],

we have ma(o(T)) = 0. Hence T is normal by Putnam’s inequality [54, Corollary]. Thus
T is normal by [31, Theorem 4.4]. O

Let W(S) denotes the closure of the numerical range of the operator S. In [50] showed
that if T is hyponormal, T'= S~!7*S and 0 ¢ W(S), then T is self-adjoint. The next
theorem gives an extension of Sheh’s result to p-w-hyponormal operators.

Theorem 2.13. Let T € B(H) be p-w-hyponormal operator. If T = S~T*S and
0 ¢ W(S), then T is self-adjoint.

Proof. If T = S~'T*S and 0 ¢ W (S), then it follows from [39, Theorem 1] that o(T) C R.
Since a p-w-hyponormal operator T' with o(T') C R is self-adjoint, the result follows. O

A complex number A is said to be in the point spectrum o,(T") of an operator T if
there is a non-zero vector x for which (7' — \)x = 0. If in addition, (T* — X\)z = 0, then X
to be in the joint point spectrum o,(T") of T In general, one has 0;,(T) C 0,(T). It is
known the equality holds for p-hyponormal [6].

If T is hyponormal, it is easy to see [51, Lemma 2| that T posses the property that
Tz = A\r implies T*x = Az. This property clearly implies o, (T) = ojp(T) if T is
hyponormal. In the sequel, we show that p-w-hyponormal also possess this property
provided A # 0. Consequently the non-zero points of ¢,(T") and ¢;,(T) are identical if T
is p-w-hyponormal.

Theoreim 2.14. Let T € B(H) be p-w-hyponormal operator. If Tx = Az, A # 0, then
Tz = A\x.

Proof. Since Tis 2 £-hyponormal by Lemma 2.8, T possesses the property that Tz = Az
implies T*z = \x. It follows from [8, Lemma 3.1] that T possesses the same property. [

Corollary 2.15. If T € B(H) is p-w-hyponormal operator, then o,(T) \ {0} = 0, (T) \
{0}

Corollary 2.16. Let T € B(H) be p-w-hyponormal operator with Tx = Az, Ty = uy
and A # p. Then (x,y) = 0.

Proof. Without loss of generality, assume p # 0. Then T*y = fy by Theorem 2.14. Thus,
plz,y) = (z,Ty) = (Tz,y) = Az, y) .
Since A\ # p, {(x,y) = 0. O
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Let 0,(T) denotes the approximate point spectrum of the operator T. In [56], Xia
proved that if 7" is semi-hyponormal, then o(T) = {\ : A € 0,(T*)}. The next proposition
shows that if T' is p-w-hyponormal, the non-zero points of o(T) and {\ : X € o (T*)} are
identical.

Proposition 2.17. If T € B(H) is p-w-hyponormal operator, then
a(T)\{0} = {A: X € 0o (T")} \ {0}.
Proof. In [56], it was shown that for any operator T', the equality o(T) = o,(T) U {X :

A € 0,(T*)} holds. If T is p-w-hyponormal, then Corollary 2.15 implies o,(T) \ {0} =
aip(T)\ {0} C {A: X € 0,(T*)}\ {0}. Since 0,(T*) C 0,(T*), the result follows. O

Here and elsewhere in this paper, for A C C, isoA denotes the set of all isolated points
of A and accA denotes the set of all points of accumulation of A.
A bounded linear operator T' is said to be isoloid if isoc(T") C o, (T').

Theorem 2.18. Let T' € B(H) be p-w-hyponormal. If X is an isolated point in o(T),
then A € o0,(T). That is, T is isoloid.

Proof. Since o(T') = o(T), X is an isolated point of ¢(T). the hyponormality of 7' implies

that \ € Up(f) by [51, Theorem 2]. It follows from the fact T is invertible if and only if

T is invertible that o,(T) = 0,(T) = 0,(T) = 0,,(T). Thus, A € 0,,(T) and the proof is
complete. O

Recall that a complex number A is said to be in the approximate point spectrum o, (7")
of the operator T if there is a sequence {x,,} of unit vectors in H such that (T'— \)z,, = 0.

If in addition, (T* — X)x,, = 0, then A is said to be in the joint approximate point spectrum
0ja(T) of T. Clearly, one has 0 (T) C 04(T). It is known [9] that if T is w-hyponormal,
then 0,4(T) \ {0} = 04(T) \ {0}. Here we show that if T" is p-w-hyponormal, then the
same result holds.

Theorem 2.19. [12] Given a Hilbert space H, there exists a Hilbert space K O H and a
map ¢ : B(H) — B(K) such that

(a) ¢ is a faithful x-representation of the algebra B(H) on K,

(b) ¢(A) >0 for any A >0 in B(H), and

(c) 0a(T) = 0a(d(T)) = 0p(¢(T)) for any T € B(H).

We also need the following corollary which Xia observed in [56].

Corollary 2.20. Let ¢ : B(H) — B(K) be the Berberian’s faithful x-representation. For
any operator T € B(H), 0jp(¢(T)) = 0jo(T).
Theorem 2.21. If T € B(H) is p-w-hyponormal, then 0;,(T) \ {0} = o (T) \ {0}.

Proof. Let ¢ be the representation of Berberian. First, we show that ¢(T') is p-w-
hyponormal. In view of Proposition 2.4, we need only establish

()P > (|6(T)|2|¢(T)*||o(T)|2) 5
and
(16(T)*|2[o(T)||$(T)*2)% > |6(T)*P.
Part (a) and (b) of Theorem 2.19 imply
(TP = $(|ITIP) > ((ITIZ|T*||T|T|2)8) = (|6(T)|=|o(T)*||6(T)|2)%

and similarly,

(16(T)* |2 [o(D)||(T)*12)% > |6(T)*P.
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Thus, ¢(T) is p-w-hyponormal. Now, by part(c) of Theorem 2.19, we have

oa(T )\{0}—%( (1)) \ {0}
ap(o(T)) \ {0}
= Ujp(¢( )\ {0} by Corollary 2.15
= 05a(T) \ {0}
where the last equality follows from Corollary 2.20. The proof is complete. O

Corollary 2.22. If T € B(H) is an invertible p-w-hyponormal, then 0,(T) = 0j4(T).
Lemma 2.23. (Holder-McCarthy Inequality) Let A > 0. Then the following assertions
hold.
(i) (A"z,x) > (Ax,z)" ||xH2(1_T)f0r r>1and z € H.
(i) (ATz,2) < (Az,2)" ||z for r € [0,1] and = € .
Theorem 2.24. If T € B(H) is p-w-hyponormal, 0 < p < 1. Then
ker(T — \)? = ker(T — \) for all X € C\ {0}.

Proof. Since ker(T — \) C ker(T — A\)? is clear, we need only show that ker(T — \)?
ker(T —\). For simplicity, write K = ker(7'—\)? and denote by F the closure of (T'—\) K
Let © € K. The hypothesis implies

(T -N(T—-Nz=
and consequently,
(T—N)'F =

If 2 € H, write 2 = w + y, where w € F and y € F*+. Then (T — \)*z = (T — \)*y , and
hence

(T =A)z2) = (T =Ny, 2) = (y, (T = ANz) .
for all 2 € K. Therefore, R(T — \)* C K=, and consequently,
ker(T — \)? = K+ € (R(T — \)*)* = ker(T — \).
O

Corollary 2.25. If T € B(H) is p-w-hyponormal for 0 < p < 1, then T — X has finite
ascent for all X € C\ {0}.

3. QUASINILPOTENT PART OF p-w-HYPONORMAL OPERATORS

Lemma 3.1. [48, Lemma 2.22| Let T € B(H) be a p-w-hyponormal operator for some
0 <p <1 andlet M an invariant subspace of T. Then the restriction T|r is also a
p-w-hyponormal operator.

Lemma 3.2. [48, Lemma 2.24] Let T € B(H) be a p-w- -hyponormal operator, let M be
an invariant subspace for T and a reduced subspace for T such that T| M the restriction
ofT to M is an injective normal operator, then T'|p = T|M and M reduces T.

Two important subspaces in local spectral theory and Fredholm theory are defined in
the sequel. The quasi-nilpotent part of an operator T' € B(#) is the set

. non:
Hy(T)={z€eH: nlgnoo |IT"x||™ = 0}.

Clearly, ker T™ C Hy(T) for every n € N. If T' € B(H), the analytic core K(T') is the set
of all z € H such that there exists a constant ¢ > 0 and a sequence of elements x, € H
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such that xg = z, Tz, = x—1, and ||z, || < ¢ ||z|| for all n € N. Note that by Theorem
2.2 of [4], T € B(H) is polaroid if and only if there exists p := p(A — T') € N such that

Ho(A—=T)=ker(A—=T)? forall € isoo(T). (3.1)

We note that Ho(T — A) and K (T — \) are generally non-closed hyper-invariant subspaces
of T'— X such that ker(T'— X\)? C Ho(T' — A) for all p=10,1,--- and (T — N\ K(T — \) =
K(T — )). Recall that if A € isoo(T'), then Ho(T — A) = Xp({\}), where Xp({A}) is the
global spectral subspace consisting of all € H for which there exists an analytic function
f:C\{A\} — H that satisfies (T — p)f(u) =« for all u € C\ {A}, see [1].

Let H,.(o(T)) denote the set of all analytic functions, defined on an open neighborhood
of o(T), such that f is non constant on each of the components of its domain. Define,
by the classical functional calculus, f(T') for every f € H,.(o(T)). Following [26] We
say that T' € B(H) has the single-valued extension property (SVEP) at point A € C if
for every open neighborhood Uy of A, the only analytic function f : Uy — H which
satisfies the equation (T' — p)f(p) = 0 is the constant function f = 0. It is well-known
that T' € B(H) has SVEP at every point of the resolvent p(T) := C\ o(T). Moreover,
from the identity Theorem for analytic function it easily follows that T' € B(#) has SVEP
at every point of the boundary do(T') of the spectrum. In particular, 7" has SVEP at
every isolated point of o(T). In [42, Proposition 1.8], Laursen proved that if 7" is of finite
ascent, then T" has SVEP.

Definition 3.3. [19] An operator T is said to have Bishop’s property () at A € C if
for every open neighborhood G of A, the function f,, € H,.(G) with (T — A) fn (1) — 0
uniformly on every compact subset of G implies that f, (1) — 0 uniformly on every
compact subset of G,where Hol(G) means the space of all analytic functions on G. When
T has Bishop’s property (5) at each A € C, simply say that T has property (53).
Theorem 3.4. [20] If T € B(H) is p-w-hyponormal, then T has property (8) and hence
has SVEP.

Theorem 3.5. Let T € B(H) be p-w-hyponormal. Then Ho(T — AI) = ker(T — I for
reC.

Proof. Let F C C be closed set. Define the global spectral subspace by
Xr(F) = {x € H : there is analytic f(2) : (T — z)f(z) =zonC\ F}.

It is known that Ho(T — X\) = X7 ({\}) by [1, Theorem 2.20]. As T has Bishop’s property
(B) by Theorem 3.4, Xp(F) is closed and o(T|x,(r)) C F by [43, Proposition 1.2.19].
Hence Ho(T — M) is closed and T'| g, (r—ap) is p-w-hyponormal by Theorem 3.1. Since
(T |ty (r—an)) €A} Tay(r—r) is normal by Corollary 2.12. If o (T'| gy (r—a1y) = 0, then
Ho(T—AI) = {0} and ker(T—)\I) = {0} LI O—(T|HO(T—)\I)) = {)\} 5 then T‘HO(T—AI) =\
and Ho(T — M) C ker(T — AI). O

Remark 3.6. If A # 0, then Ho(T — M) = ker(T — \I) C ker(T — AI)*. Moreover, if
A € o(T)\ {0} is an isolated point then Ho(T' — M) = ker(T — M) = ker(T' — AI)*.

Lemma 3.7. Let T € B(H) be p-w-hyponormal. Let A € C. Assume that o(T) = {\}.
Then T = A1

Proof. We consider two cases:

Case (I). (A =0): Since T is p-w-hyponormal, T is normaloid. Therefore T' = 0.

Case (II). (A # 0): Here T is invertible, and since T is p-w-hyponormal, we see that T~1
is also p-w-hyponormal. Therefore T=! is normaloid. On the other hand, o(T~!) = {1},
so [|[T||T7|| = |All5] = 1. It follows that T is convexoid, so W(T) = {A}. Therefore
T=M\ O
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Two classical quantities associated with a linear operator T are the ascent p := p(T),
defined as the smallest non-negative integer p (if it does exist) such that ker T? = ker TP*+1,
and the descent ¢ := ¢(T), defined as the smallest non-negative integer ¢ (if it does exists)
such that R(T?) = R(T?H1). It is well-known that if p(T — \) and q(T — \) are both finite
then p(T'— X) = ¢(T — \) and X is a pole of the the function resolvent A — (T — \)~1,
in particular A is an isolated point of the spectrum o(7'), see Proposition 38.3 and
Proposition 50.2 of Heuser [35].

A bounded operator T' € B(H) defined on a Banach space is said to be polaroid if
every isolated point of the spectrum o(T) is a pole of the resolvent. The following result
has been proved in [3, Theorem 2.4].

Theorem 3.8. For an operator T € B(H) the following statements are equivalent:
(i) T is polaroid;
(i) there exists f € Hpe(o(T)) such that f(T) is polaroid;
(i) f(T) is polaroid for every f € Hp(o(T)).

Theorem 3.9. If T € B(H) is p-w-hyponormal operator, 0 < p < 1, then T is polaroid.

Proof. We show that for every isolated point A of o(T") we have p(T' — ) = ¢(T' — \) < cc.
Let A be an isolated point of o(T"), and denote by P, denote the spectral projection
associated with {\}. Then M := K(T'—\) = ker Py and N := Ho(T —)\) = Px\(H), see [1,
Theorem 3.74]. Therefore, H = Ho(T — A\) @ K (T — X). Furthermore, since o(T|x) = {A},
while o(T|pm) = o(T) \ {\}, so the restriction Ty — A is quasi-nilpotent and T'|pr — A is
invertible. Since T|n — A is p-w-hyponormal, then Lemma 3.7 implies that T'|xr — A is
nilpotent. In other words, T'|,s — A is an operator of Kato Type.

Now, both T and the dual T* have SVEP at A, since A is isolated in o(T) = o(T*), and
this implies, by Theorem 3.16 and Theorem 3.17 of [1], that both p(T — A) and ¢(T — \)
are finite. Therefore, X is a pole of the resolvent. O

4. RIESZ IDEMPOTENT OF wW-HYPONORMAL

Let T € B(H) and A € o(T) be an isolated of o(T). then there exists a closed disc Dy
centered A which satisfies Dy N o(T) = {A}. The operator

1
P:—/ (T — XI)~tdx
oDy

271
is called the Riesz idempotent with respect to A which has properties that
P? = P,PT =TP,ker(T — X\I) C R(P) and o(T|gp)) = {A\}.

In [51], Stampfli proved that if 7" is hyponormal and X\ € o(T) is isolated, then the Riesz
idempotent P with respect to A is self-adjoint and satisfies

R(P) =ker(T — \I) = ker(T — \I)*.
In this paper we extend these result to the case of ap-w-hyponormal operator.

Theorem 4.1. Let T € B(H) be a p-w-hyponormal operator and X be a non-zero isolated
point of o(T). Let Dy denote the closed disc which centered A such that DyNo(T) = {A}.

1
Then the Riesz idempotent P = 5 fBDA (T — XI)~1dX satisfies that
i
R(P) =ker(T — AI) = ker(T' — XI)™.
In particular P is self-adjoint.

Proof. Since p-w-hyponormal operators are isoloid by Corollary 2.18. Then every isolated
point of o(T) of T is an eigenvalue of T. Then the range of Riesz idempotent P =
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1
o fan (T — M)~ dX\ is an invariant closed subspace of T and o (T'|g(p)) = {A}. Here
i

D, is a closed disc with its center A such that Dy No(T) = {A}.
If A =0, then o(T|z(py) = {0}. Since T|r(p is p-w-hyponormal by Theorem 3.1,
T|r(py = 0 by Lemma 3.7. Therefore, 0 is an eigenvalue of T'.
If X # 0, then T'|z(p) is an invertible p-w-hyponormal operator and hence (T\R(p))’l
is also w-hyponormal. We see that ||T|(p)|| = [Al and ||(T|rp)) Y| = \%I Let z € R(P)
be arbitrary vector. Then
1

(ANl fl = ]l
RY

lzll < |[(Tlrce) [T lrepyzl| = ﬁ Itz <
This implies that 7T|g(py is unitary with its spectrum o(+7T|gr(p)) = {1}. Hence
T|g(py = M and X is an eigenvalue of T". Therefore, R(P) = ker(T — AI). Since
ker(T'— AI) C ker(T — AI)* by Proposition 2.14, it suffices to show that ker(T' — A\I)* C
ker(T — AI). Since ker(T — AI) is a reducing subspace of T' by Proposition 2.14 and the
restriction of a p-w-hyponormal to its reducing subspace is also p-w-hyponormal operator,
we see that 7 is of the form T =T’ ® M on H = ker(T — M) @ ker(T — A\I)*, where T"
is a p-w-hyponormal operator with ker(7” — AI) = {0}. since A € o(T) = o(T") U{\} is
isolated, the only two cases occur. One is A ¢ o(T”) and the other is that A is an isolated
point of o(7T”). The latter case, however, does not occur otherwise we have A € o,(T")
and this contradicts the fact that ker(T" — XI) = {0}. ker(T — M) = ker(T — A\I)* is
immediate from the injectivity of 77 — AI as an operator on ker(T — \I)> .
Next, we show that P is self-adjoint. Since R(P) = ker(T — AI) = ker(T — \I)*, we
have ((T — 21)*)"'P = (2 — \)~1P. Hence
P*P = —i (T —zI)*)"'Pdz
i Jop,
1

2iT Jop,

1 1
- (— 2\ p
<2m /g,.DA z—)\dz>

= PP*. O

In the following we give an example T of p-w-hyponormal operator which has properties
that 0 is an isolated point of o(T"), the Riesz idempotent with respect to 0 is not self-adjoint
and ker(T') # ker(T™).

Example 4.2. Let H = @22 ,C? and define an operator T on H by

(0)

T(®r_o®r_1® 1 69131@"'):"'@AZL‘_Q@A(O)x_l@on@Bl‘lEB"',

1/8 1/8 10 . .
= = - - <
where A < 1/8 1/8 > and B ( 0 0 > Then T is p-w-hyponormal with0 < p <1

and o(T) = {0} U{z : 1 < |z| < 1}. Moreover PH = ker(T), P is not self-adjoint and
ker(T) # ker(T*), where P is the Riesz idempotent with respect to 0.
Proof. Let x = -~-EBJ:,2®$,1EBQ:SO) ®x1®---, we have
T =(--- @ Azo @ B(O)xl ®Bry®---),
Tz =(Sn<oAzn) @ (Bn>0Bwn),
|z =(®ne—1Azy) & (AV2BAY?) 25 _1 & (@50Bay),
(T)* |z =(BncoAzn) & (AY2BAY?) 220 & (Br51 Bxy).
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Since (A2 BA?)% =25 A and (B2 AB?)% = (BAB)% = B
<(|T|p ITP)z x> < (A3 BA%)E - A)x,l,x,1> >0
(TP = 1Ty ), ) = (B -

Hence T is p-w-hyponormal.

(i) Let Hy ={(T-Nzlz e H,o = - d0B20Bx1Bx2D--- }, H_ ={(T - N)z|z €
Hax= - Pr 4Pr 36500 -}, and Ho={(T - Nzlzr e Hyz=--B0P
T_o®x_1P0P---}. Then Hy L H_. We remark that 44 is unitary equivalent
to B. By Lemma 12 of [55], H and H_ are closed for A < 1. Since H, is finite
dimensional, R(T — ) = (H4+ & H_) + H, is closed.

(ii) It is easy to check that

ker() = {[nesen () 1@ @msoen ( § ltent e @}

kaa(r) ={oncocn (1) )10 10 (] )llten} € 2@}

Hence, ker(T) # ker(T™*).

(i) If0 < A < 1/4, it easy to check that ker(T—\) = ker(T'—\)* = {0}. Since R(T—\)
is closed by [55, Lemma 12], we have R(T — ) = R(T — \) = [ker(T —\)*]* =H
and therefore A ¢ o(T).

(iv) If + <X <1, we have

ker(T — \)* =C <[@"<02(4/1\)n| ( } )] & [Bn>0A" < } >]> }

) It follows from (iii) and (iv) that o(T) = {0} U{X € C|§ < |A| < 1}

(vi) Since T is paranormal, we have R(P) = ker(T) by the proof of [55, Lemma 6].
Suppose that P is self-adjoint. Then R(P) L R(I — P), so that T =0 S for
some paranormal operator on R(I — P) with R(S) = {0}. Since S is isoloid,
0 ¢ o(S). Hence ker(T) = R(P) = ker(T*). This contradicts (7).

(BAB) %)xo,xo> > 0.

O

5. TENSOR PRoODUCT

Let H and K denote the Hilbert spaces. For given non-zero operators T € B(H) and
S € B(K), T®S denotes the tensor product on the product space H @ K. The normaloid
property is invariant under tensor products [53]. T'® S is normal if and only if T" and
S are normal [23, 40]. There exist paranormal operators T and S such that T ® S is
not paranormal [52]. In [37], LH.Kim showed that for non-zero T € B(H) and S € B(K),
T ® S is log-hyponormal if and only if 7" and S are log-hyponormal. This result was
extended to p-quasihyponormal operators, w-hyponormal operators , class A operators
and class A(k) in [37], [36], and [47] respectively. In this section, we prove an analogous
result for p-w-hyponormal operators.

Remark 5.1. Let T € B(H) and S € B(K) be non-zero operators, then we have
i) TeS)*(TeS)=T"T®S*S
(ii) |T® S| =|T|" ®|S|* for any positive real t.

Lemma 5.2. ([40]) Let T, T» € B(H), S1,52 € B(K) be non-negative operators. If Ty
and S1 are non-zero, then the following assertions are equivalent:

(a) i ®51 <Th® S,

(b) there exists ¢ > 0 such that Ty < cTy and S; < ¢ 1Ss.
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Theorem 5.3. Let T € B(H) and S € B(K) be non-zero operators and let 0 < p < 1.
Then T ® S is p-w-hyponormal if and only if T and S is p-w-hyponormal.

—~

Proof. We shall use the fact that the function T — T has the property T'® S = T®S.
It follows from Remark 5.1 that

T@SP=|TPe|SP>TesP=TPa|SP>|(TeS) P =TSP (5.2)
Inequality 5.2 holds if and only if
(171 = 717) @181 + 71 (1817 ~ S) = 0 and

(171 = 17*1) @11 + T (151 — 1817 = 0, (5.3)
or, equivalently, if and only if

(171 = 1717) @ |57 + 1T (18] = |5I”) = 0 and

(171 = 17 1) @ 15* + |71 (11 - 15*7) = 0. (5.4)
So, the sufficency is clear.
To prove the necessity, suppose that T'® S is p-w-hyponormal. Then
TP &[S > TP @ | S
Therefore, by Lemma, 5.2, there exists a ¢ € RT such that
c|T|P > |T|P and ¢7|S|P > |SP.
Consequently,

IITPI* = sup ([TP7z,5) < sup (lTz,2) < cl(TPI®
x|l=

llzl|=1
and

IISPI* = sup (ISP%a,2) < sup (82, 2) <" ISP
[lz]|=1 [lz]]=1

Thus, ¢ = 1 and N N
IT|? > |T|P and |S|? > |S]P. (5.5)

Now we just to show that |T|P > |T*|P and |S|P > |S*|P. Let € H and y € K be
arbitrary. Then, from inequalities ( 5.3) and ( 5.4), we have

(i =17 1) @, ) ISPy, y) + (T Pa,) (ISP = 187 ) gy) 20 (5.6)
and

(11 =17 1) 2,2 ) (18P, ) + (ITP2,2) (1S = 151 ) yoy) 2 0. (5.7)
Suppose that |T|P — |T*|? is not a positive operator. Then there is a 2o € H such that

<(|T|p - |T*\p) xo,x0> = o <0 and <|f*x07x0> =03>0.

From inequality ( 5.6) we get

(a+B) ISPyl = 815717y
That is,
(a+B) ISPl = 8157

Since, by inequality ( 5.5), |S|P > |S|P, we have also

(a+ B ISI” = (+ B) ISPl = 818" > BIS|.

= 8151




TENSOR PRODUCT AND p-w-HYPONORMAL OPERATORS 99

This is a contradiction. Hence, |T|P > |TV* [P. A similar argument shows, by using inequality
( 5.7), that |S|P > |S*P. O

6. WEYL'S TYPE THEOREMS

Let us denote by «(T) the dimension of the kernel and by S(T") the codimension
of the range. Recall that the operator T € B(X) is said to be upper semi-Fredholm,
T € SF;(X), if the range of T' € B(X) is closed and «a(T') < oo, while T' € B(X) is said
to be lower semi-Fredholm, T € SF_(X), if 8(T) < oco. An operator T' € B(X) is said to
be semi-Fredholm if T € SF(X)USF_(X) and Fredholm if T € SF(X)NSF_(X). If
T is semi-Fredholm then the index of T is defined by ind (T) = «(T) — B(T).

A bounded linear operator T" acting on a Banach space X is Weyl if it is Fredholm of
index zero and Browder if T is Fredholm of finite ascent and descent. The Weyl spectrum
ow (T) and Browder spectrum op(T) of T are defined by

ow(T) ={A € C: T — Al is not Weyl}
op(T) = {X € C: T — A is not Browder}.

Let E°(T) = {\ €isoa(T):0 < a(T — \) < oo} and let 7%(T) := o(T) \ 0(T) all Riesz
points of T. According to Coburn [24], Weyl’s theorem holds for T if A(T) = o(T) \
ow (T) = E°(T), and that Browder’s theorem holds for T if A(T) = o(T)\ow (T) = 7°(T).

Let SF(X) ={T € SF, :ind (T) < 0}. The upper semi Weyl spectrum is defined
by Tsr: (IT)={ e C:T—-X¢ SF_(X)}. According to Rakocevi¢ [49], an operator
T € B(X) is said to satisfy a-Weyl’s theorem if o,(T) \(TSFJ: (T) = E9(T), where

EXUT)={)\ €is00,(T): 0 < aT — AI) < oo}

It is known [49] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s theorem,
but the converse does not hold in general.

For T'€ B(X) and a non negative integer n define T}, to be the restriction T" to
R(T") viewed as a map from R(T™) to R(T™)(in particular Tjg) = T'). If for some integer
n the range space R(T") is closed and Tp, is an upper ( resp., lower) semi-Fredholm
operator, then T is called upper ( resp., lower) semi-B-Fredholm operator. In this case
index of T is defined as the index of semi-B-Fredholm operator T},). A semi-B-Fredholm
operator is an upper or lower semi-Fredholm operator [18]. Moreover, if T}, is a Fredholm
operator then T is called a B-Fredholm operator [13]. An operator T is called a B-Weyl
operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum opw (T) is
defined by opw (T) = {A € C: T — X is not B-Weyl operator } [14]. Let E(T) be the
set of all eigenvalues of T' which are isolated in o(T). According to [15], an operator
T € B(X) is said to satisfy generalized Weyl’s theorem, if o(T) \ opw(T) = E(T). In
general, generalized Weyl’s theorem implies Weyl’s theorem but the converse is not
true [17]. Following [14], we say that T satisfies generalized Browders’s theorem, if
a(T)\ opw(T) = n(T), where 7(T) is the set of poles of T.

Let SBF (X) denote the class of all is upper B-Fredholm operators such that ind (T) <
0. The upper B-Weyl spectrum TsBr; (T') of T is defined by

USBF;(T) ={AeC:T-\¢SBF_(X)}.

Following [17], we say that generalized a- Weyl’s theorem holds for T' € B(X) if A4(S) =
oa(T) \ Tspr; (T) = Eo(T), where E,(T) = {\ € is00,(T) : a(T — A) > 0} is the set of
all eigenvalues of T" which are isolated in 0,(T") and that T € B(X) obeys generalized
a-Browder’s theorem if AY(T) = 7o (T). It is proved in [10, Theorem 2.2| that generalized
a-Browder’s theorem is equivalent to a-Browder’s theorem, and it is known from [17,
Theorem 3.11] that an operator satisfying generalized a-Weyl’s theorem satisfies a-
Weyl’s theorem, but the converse does not hold in general and under the assumption
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E.(T) = 7o(T) it is proved in [16, Theorem 2.10] that generalized a-Weyl’s theorem is
equivalent to a-Weyl’s theorem. Following [46], we say that T' € B(X) possesses property
(t) if Ap(T) = o(T) \ 0gp-(T) = E°T). In Proposition 2.7 of [46], it is shown that
+
property (t) implies Weyl’s theorem, but the converse is not true in general. We say that
T € B(X) possesses property (gt) if AY(T) = o(T)\ 0g5x-(T) = E(T). Property (gt)
+

has been introduced and studied in [46]. Property (gt) extends property () to the context
of B-Fredholm theory, and it is proved in [46] that an operator possessing property (gt)
possesses property (¢) but the converse is not true in general.

Lemma 6.1. If T € B(H) is p-w-hyponormal operator with 0 < p <1, then T and T*
satisfy Weyl’s theorem.

Proof. Since T is p-w-hyponormal, then T" has SVEP by Theorem 3.4. Then T satisfies
Browder’s theorem if and only if T* satisfies Browder’s theorem if and only if 7%(7) =
o(T)\ 0(T) € E%T) and 7%(T*) = o(T*) \ 0, (T*) C E°(T*). If X € E°(T*), then
T has SVEP at A and T* has SVEP at A and 0 < p(T' — \)* = ¢(T — \) < oo. Thus
the ascent and descent of T'— A are finite and hence equal, see [35]. Then T'— A is a
Fredholm of index 0 and also (T"— \)* is a Fredholm of index 0, then E°(T") C 7%(T) and
E°(T*) C 7%(T*). This implies that both 7" and T* satisfy Weyl’s theorem. O

Lemma 6.2. If T or T* is p-w-hyponormal operator with 0 < p < 1, then both T and
T* satisfy generalized Weyl’s theorem.

Proof. If T or T* is p-w-hyponormal, then T is polaroid by Theorem 3.9 also T™ is
polaroid, and generalized Weyl’s theorem for T', or T* are equivalent, see [2, Theorem
3.7]). The assertion then follows from [2, Theorem 3.3]. O

Definition 6.3. Let T' € B(X). Then we say that
(i) T possess property (w) if o (T) \ ogp+(T) = E°(T) [5];
(ii) T possess property (gw) if o,(T) \ JS:BF+ (T) = E(T) [11];
(ili) T possess property (b) if 0,(T) \ ogp+ (1:) = 70(T) [45];
(iv) T possess property (gb) if oo (T) \ JS;F:r (T) == (T) [45].

Theorem 6.4. Suppose that T € B(H) is p-w-hyponormal with 0 < p < 1 and f €
H,.(c(T)). Then
(i) property (t) holds for f(T*), or equivalently property (w), property (R), property
(b), Weyl’s theorem, a-Weyl’s theorem hold for f(T*).

(ii) property (gt) holds for f(T*), or equivalently property (gw), property (gb), gener-
alized Weyl’s theorem, generalized a-Weyl’s theorem hold for f(T*).

Proof. Since T has SVEP by Theorem 3.4 and polaroid by 3.9. The assertions then
follows from Theorem 3.6 (ii) and Theorem 3.7 (ii) of [46]. O

Theorem 6.5. Suppose that T* € B(H) is p-w-hyponormal with 0 < p <1 and f €
H,.(0(T)). Then
(i) property (t) holds for f(T), or equivalently property (w), property (R), property
(b), Weyl’s theorem, a-Weyl’s theorem hold for f(T).
(ii) property (gt) holds for f(T), or equivalently property (gw), property (gb), gener-
alized Weyl’s theorem, generalized a-Weyl’s theorem hold for f(T).

Proof. Since T has SVEP by Theorem 3.4 and polaroid by Theorem 3.9. The assertions
then follows from Theorem 3.6 (i) and Theorem 3.7 (i) of [46]. O



(1]
(2]
(3]
(4]
[5]
(6]

[7

(8]
Bl

(10]
(11]
(12]
(13]
[14]
(15]
[16]
(17]
(18]
(19]
[20]
[21]

[22]

23]
[24]
[25]
[26]
(27]
(28]
29]

(30]

TENSOR PRODUCT AND p-w-HYPONORMAL OPERATORS 101

REFERENCES

P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Functional Analysis
Mathematics, vol. 1, Springer Netherlands, 2004, doi:10.1007/1-4020-2525-4.

P. Aiena, E. Aponte, and E. Bazan, Weyl type theorems for left and right polaroid operators,
Integr. Equ. Oper. Theory 66 (2010), no. 1, 485-495, doi:10.1007/s00020-009-1738-2.

P. Aiena, J.R. Guillen, and P. Pefia, A unifying approch to Weyl type theorems for Banach space
operators, Integr. Equ. Oper. Theory 77 (2013), 371-—384, doi:10.1007/s00020-013-2097-6.

P. Aiena, M. Cho, and M. Gonzélez, Polaroid type operator under quasiaffinities, J. Math. Anal.
Appl. 371 (2010), no. 2, 485-495, doi:10.1016/3.jmaa.2010.05.057.

P. Aiena and P. Pena, Variations on Weyl’s theorem, J. Math. Anal. Appl. 324 (2006), no. 1,
566-579, doi:10.1016/j.jmaa.2005.11.027.

A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integr. Equ. Oper. Theory 13 (1990),
307-315, doi:10.1007/BF01199886.

A. Aluthge and D. Wang, An operator inequality which implies paranormality, Math. Ineq. Appl.
2 (1999), no. 1, 113-119, doi:10.7153/mia-02-09.

A. Aluthge and D. Wang, w-hyponormal operators, Integr. Equ. Oper. Theory 36 (2000), 1-10.

A. Aluthge and D. Wang, w-hyponormal operators II, Integr. Equ. Oper. Theory 37 (2000),
324—-331, doi:10.1007/BF01194481.

M. Amouch and H. Zguitti, On the equivalence of Browder’s and generalized Browder’s theorem,
Glasg. Math. J. 48 (2006), 179-185, doi:10.1017/S0017089505002971.

M. Amouch and M. Berkani, on the property (gw), Mediterr. J. Math 5 (2008), 371-378, doi:
10.1007/s00009-008-0156-z.

S. Berberian, Approzimate proper vectors, Proc. Amer. Math. Soc. 13 (1962), no. 1, 111-114,
doi:10.2307/2033783.

M. Berkani, On a class of quasi-Fredholm operators, Proc. Amer. Math. Soc. 34 (1999), no. 2,
244-249, doi:10.1007/BF01236475.

M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), no. 2,
596-603, doi:10.1016/50022-247X(02)00179-8.

M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer.
Math. Soc. 130 (2002), no. 6, 1717-1723, doi:10.2307/2699766.

M. Berkani, On the equivalence of Weyl’s theorem and generalized Weyl’s theorem, Acta Math
Sinica 238 (2007), 103-110, doi:10.1007/s10114-005-0720-4.

M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math.
(Szeged) 69 (2003), no. 1, 359-376.

M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasg. Math. J. 43 (2001), 457-465,
d0i:10.1017/80017089501030075.

E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), no. 2, 379-397,
doi:euclid.pjm/1103039262.

Y. Changsen and L. Haiying, On p-w-hyponormal operators, Chinese Quart. J. Math 20 (2005),
no. 1, 79-84.

Y. Changsen and L. Haiying, A note on p-w-hyponormal operators, Acta Math Sinica (Chinese)
49 (2006), no. 1, 19-28.

M. Cho and T. Yamazaki, An operator transform from class A to the class of hyponormal
operators and its application, Integr. equ. oper. theory 53 (2005), 497-508, doi:10.1007/
s00020-004-1332-6.

J. chuan Hou, On tensor products of operators, Acta Mathematica Sinica 9 (1993), 195-202,
doi:10.1007/BF02560050.

L. Coburn, Weyl’s theorem for non-normal operators, Michigan. Math. J. 13 (1966), no. 3, 285-288,
do0i:10.1307/mmj/1031732778.

J.B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-
Verlag New York, 1990, doi:10.1007/978-1-4757-3828-5.

J.K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975),
no. 1, 61-69, doi:euclid.pjm/1102905839.

M. Fujii, S. Izumino, and R. Nakamoto, classes of operators determined by the Heinz-Kato-Furuta
inequality and the Hélder-McCarthy inequality, Nihonkai Math. J. 5 (1994), no. 1, 61-67.

T. Furuta, On the class of paranormal operators, Proc. Jaban. Acad. 43 (1967), no. 7, 594-598,
doi:10.3792/pja/1195521514.

T. Furuta, M. Ito, and T. Yamazaki, A subclass of paranormal operators including class of
log-hyponormal and several related classes, Sci. Math. Jpn. 1 (1999), 389-403.

L. Haiying, Powers of an invertible (s, p)-w-hyponormal operator, Acta Math. Sci. 28 (2008),
no. 2, 282-288, doi:10.1016/50252-9602(08)60028-4.


http://dx.doi.org/10.1007/1-4020-2525-4
http://dx.doi.org/10.1007/s00020-009-1738-2
http://dx.doi.org/10.1007/s00020-013-2097-6
http://dx.doi.org/10.1016/j.jmaa.2010.05.057
http://dx.doi.org/10.1016/j.jmaa.2005.11.027
http://dx.doi.org/10.1007/BF01199886
http://dx.doi.org/10.7153/mia-02-09
http://dx.doi.org/10.1007/BF01194481
http://dx.doi.org/10.1017/S0017089505002971
http://dx.doi.org/10.1007/s00009-008-0156-z
http://dx.doi.org/10.1007/s00009-008-0156-z
http://dx.doi.org/10.2307/2033783
http://dx.doi.org/10.1007/BF01236475
http://dx.doi.org/10.1016/S0022-247X(02)00179-8
http://dx.doi.org/10.2307/2699766
http://dx.doi.org/10.1007/s10114-005-0720-4
http://dx.doi.org/10.1017/S0017089501030075
http://dx.doi.org/euclid.pjm/1103039262
http://dx.doi.org/10.1007/s00020-004-1332-6
http://dx.doi.org/10.1007/s00020-004-1332-6
http://dx.doi.org/10.1007/BF02560050
http://dx.doi.org/10.1307/mmj/1031732778
http://dx.doi.org/10.1007/978-1-4757-3828-5
http://dx.doi.org/euclid.pjm/1102905839
http://dx.doi.org/10.3792/pja/1195521514
http://dx.doi.org/10.1016/S0252-9602(08)60028-4

102

(31]
(32]
(33]
[34]
(35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]

[52]
53]

[54]
[55]

[56]

M.

M. H. M. RASHID

L. Haiying and Y. Chang-sen, Several properties of p-w-hyponormal operator, Chin. Quart. J.
Math. 23 (2008), no. 2, 195-201.

P.R. Halmos, A Hilbert space problem book, Graduate Texts in Mathematics, vol. 19, Springer-
Verlag New York, 1982, doi:10.1007/978-1-4615-9976-0.

F. Hansen, An equality, Math. Ann. 246 (1980), 249-250.

E. Heinz, Beitrage zur stérungstheorie der spektralzerlegung, Math. Ann. 123 (1951), 415-438.
H. Heuser, Functional analysis, vol. 1, Wiley, 1982.

I.H.Jeon and I.H.Kim, On operators satisfying T*|T?|T > T*|T|?T, Linear Algebra Appl. 418
(1993), no. 2-3, 854-862, doi:10.1016/j.1aa.2006.02.040.

LH.Kim, Tensor products of log-hyponormal operators, Bull. Korean Math. Soc. 42 (2005), no. 2,
269277, doi:10.4134/BKMS.2005.42.2.269.

I.H. Jeon, J. Lee, and A. Uchiyama, On p-quasihyponormal operators and quasisimilarity, Math.
Ineq. Appl. 6 (2003), no. 2, 309-315, doi:10.7153/mia-06-29.

J.P.Williams, Operators similar to their adjoints, Proc. Amer. Math. Soc. 20 (1969), no. 1, 121-23,
doi:10.2307/2035972.

J.Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc. 124
(1996), no. 1, 135-140, doi:10.1090/S0002-9939-96-03017-1.

I. Jung, E. Ko, and C. Pearcu, Aluthge transforms of operators, Integr equ oper theory 37 (2000),
437-448, doi:10.1007/BF01192831.

K.B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336, doi:
10.2140/pjm.1992.152.323.

K.B. Laursen and M.M. Neumann, An introduction to local spectral theory, London Mathematical
Society Monographs, Clarendon Press, 2000.

M.Y. Lee and S.H. Lee, On a class of operators related to paranormal operators, J. Korean Math.
Soc. 44 (2007), no. 1, 25-34, doi:10.4134/JKMS.2007 .44 .1.025.

M.H.M.Rashid, Property (gb) and perturbations, J. Math. Anal. Appl. 383 (2011), no. 1, 82-94,
doi:10.1016/j.jmaa.2011.05.001.

M.H.M.Rashid, Properties (t) and (gt) for bounded linear operators, Mediterr. J. Math 11 (2014),
no. 2, 729-744, doi:10.1007/s00009-013-0313-x.

M.H.M.Rashid, On operators satisfying T (T*|T|?*T)1/(+Dm > Tm*|7]2T™  Commun. Ko-
rean Math. Soc. 32 (2017), no. 3, 661-676, doi:10.4134/CKMS.c160191.

M.H.M.Rashid, Quasinormality and Fuglede-Putnam theorem for (s, p)-w-hyponormal operators,
Linear Multilinear Algebra 65 (2017), no. 8, 1600-1616, doi:10.1080/03081087.2016.1248346.
V. Rakocevié¢, Operators obeying a-Weyl’s theorem, Rev. Roumaine Math. Pures Appl. 34 (1989),
915-919.

I. Sheth, On hyponormal operators, Proc. Amer. Math. Soc. 17 (1966), no. 5, 998-1000, doi:
10.2307/2036076.

J. Stampfli, Hyponormal operatorsand spectral density, Trans. Amer. Math. Soc. 117 (1965),
469-476, doi:10.2307/1994219.

T.Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), no. 3-4, 169-178.
T.Saito, Hyponormal operators and related topics, Lecture Notes in Mathematics, vol. 247, Springer,
Berlin, Heidelberg, 1971, doi:10.1007/BFb0058557.

A. Uchiyama, Berger-Shaw’s theorem for p-hyponormal operators, Integr equ oper theory 33
(1999), 221-230, doi:10.1007/BF01233965.

A. Uchiyama and K. Tanahashi, On the Riesz idempotent of class A, Math. Ineq. Appl. 5 (2002),
no. 2, 291-298, doi:10.7153/mia-05-32.

D. Xia, Spectral theory of hyponormal operators, Operator Theory: Advances and Applications,
vol. 10, Birkhiiuser Basel, 1983, doi:10.1007/978-3-0348-5435-1.

H. M. RasHID: malik_okasha@yahoo.com

Dept. of Mathematics & Statistics, Faculty of Science P.O. Box(7), Mu’tah University, Mu’tah-Jordan

Received 07/09/2020; Revised 29,/09,/2020


http://dx.doi.org/10.1007/978-1-4615-9976-0
http://dx.doi.org/10.1016/j.laa.2006.02.040
http://dx.doi.org/10.4134/BKMS.2005.42.2.269
http://dx.doi.org/10.7153/mia-06-29
http://dx.doi.org/10.2307/2035972
http://dx.doi.org/10.1090/S0002-9939-96-03017-1
http://dx.doi.org/10.1007/BF01192831
http://dx.doi.org/10.2140/pjm.1992.152.323
http://dx.doi.org/10.2140/pjm.1992.152.323
http://dx.doi.org/10.4134/JKMS.2007.44.1.025
http://dx.doi.org/10.1016/j.jmaa.2011.05.001
http://dx.doi.org/10.1007/s00009-013-0313-x
http://dx.doi.org/10.4134/CKMS.c160191
http://dx.doi.org/10.1080/03081087.2016.1248346
http://dx.doi.org/10.2307/2036076
http://dx.doi.org/10.2307/2036076
http://dx.doi.org/10.2307/1994219
http://dx.doi.org/10.1007/BFb0058557
http://dx.doi.org/10.1007/BF01233965
http://dx.doi.org/10.7153/mia-05-32
http://dx.doi.org/10.1007/978-3-0348-5435-1
mailto:malik_okasha@yahoo.com

	1. Introduction
	2. Spectral Properties of p-w-hyponormal operators
	3. Quasinilpotent part of p-w-hyponormal operators
	4.  Riesz idempotent of w-hyponormal
	5. Tensor Product
	6. Weyl's Type theorems
	References

