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UNIFORM AND MEAN ERGODIC THEOREMS
FOR C0-SEMIGROUPS

FATIH BARKI, ABDELAZIZ TAJMOUATI, AND ABDESLAM EL BAKKALI

Abstract. Let \{ T (t)\} t\geq 0 be a C0-semigroup of bounded linear operators on a
complex Banach space \scrX . In this paper, we study the uniform ergodicity for a C0-
semigroup \{ T (t)\} t\geq 0 via the discrete ergodicity of a bounded linear operator T (t0), for
some t0 > 0. We show that for a C0-semigroup \{ T (t)\} t\geq 0 satisfying \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| T (t)\| 

t
= 0,

the Cesàro averages 1
t

\int t
0 T (s)ds of \{ T (t)\} t\geq 0 converges uniformly as t \rightarrow \infty if and

only if the Cesàro means 1
n

\sum n - 1
k=0 Tk(t0) of an operator T (t0), for t0 > 0, converges

uniformly as n \rightarrow \infty . Furthermore, we investigate the strong convergence of the
Cesàro averages of \{ T (t)\} t\geq 0, so that we give some sufficient conditions implying that
\{ T (t)\} t\geq 0 is mean ergodic.

Нехай \{ T (t)\} t\geq 0 – C0-пiвгрупа обмежених лiнiйних операторiв у комплексному
банаховому просторi \scrX . Вивчається її рiвномiрна ергодичнiсть шляхом зведення
до дискретної ергодичностi обмеженого лiнiйного оператора T (t0), для деякого
t0 > 0. Показано, що для C0-пiвгрупи \{ T (t)\} t\geq 0, такої, що \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| T (t)\| 

t
= 0,

середнi Чезаро 1
t

\int t
0 T (s)ds рiвномiрно збiгаються при t \rightarrow \infty тодi й тiльки

тодi, коли середнi Чезаро 1
n

\sum n - 1
k=0 Tk(t0) оператора T (t0), де t0 > 0, рiвномiрно

збiгаються при n \rightarrow \infty . Крiм того, дослiджується сильна збiжнiсть середнiх
Чезаро вiд \{ T (t)\} t\geq 0; даються достатнi умови, за яких \{ T (t)\} t\geq 0 ергодична в
середньому.

1. Introduction

Throughout this paper, \scrB (\scrX ) denotes the Banach algebra of all bounded linear operators
on a Banach space \scrX into itself, with the unit element I. If T \in \scrB (\scrX ), then we denote by
N(T ), R(T ), \sigma (T ), \rho (T ), and \scrR (\lambda , T ) the kernel, the range, the spectrum, the resolvent
set and the resolvent function of T , respectively. The notation \scrX = Y \oplus Z means \scrX is a
topological direct sum of linear subspaces Y and Z; where Y and Z are closed.

Let T \in \scrB (\scrX ), the Cesàro means of T are defined by

\scrM n(T ) =
1

n

n - 1\sum 
k=0

T k , where n \in N\ast . (1.1)

If \scrM n(T ) converges in the norm (resp. strong) operator topology, then T is called
uniformly (resp. mean) ergodic. The interest in such operators has its origins in statistical
mechanics and probability theory. In such a setting, one also considers continuous
processes \Phi t, with t specifying time, such that \Phi t

\bigl( 
\Phi s(u)

\bigr) 
= \Phi t+s(u), for all points u

in a phase space and all times s and t. The abstract setting consists of a semigroup
\{ T (t)\} t\geq 0 of bounded linear operators on \scrX , and one investigates the long term behavior
of \{ T (t)\} t\geq 0 via its Cesàro averages

\scrC (t) = 1

t

\int t

0

T (s) ds, for t > 0. (1.2)
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If \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

\scrC (t) exists in the norm (resp. strong) operator topology, then \{ T (t)\} t\geq 0 is called

uniformly (resp. mean) ergodic. Fix t0 > 0 and n \in \BbbN , we have \scrC (nt0) = \scrM n

\bigl( 
T (t0)

\bigr) 
\scrC (t0),

hence we see the connection between the Cesàro averages \scrC (nt0) of the semigroup \{ T (t)\} t\geq 0

and the discrete Cesàro averages \scrM n

\bigl( 
T (t0)

\bigr) 
of the individual operator T (t0). For this,

we are interested to examine simultaneously the uniform ergodicity of family semigroup
\{ T (t)\} t\geq 0 and the uniform ergodicity of individual operator T (t0), for some t0 > 0. It
is worth mentioning that the strong convergence of the Cesàro averages \scrC (t), as t \rightarrow \infty ,
does not imply the strong convergence of the discrete Cesàro averages \scrM n

\bigl( 
T (t0)

\bigr) 
, as

n \rightarrow \infty . For more details see [8, Note p.83].

The ergodic theory was launched by Von Neumann in the 1930s [23], who proved
that for every unitary operator T in a complex Hilbert space \scrH , the limit of Cesàro
averages \scrM n(T )x exists for all x \in \scrH , and the limit P is a projection of \scrH onto the kernel
N(I  - T ) along (I  - T )\scrH . A simple proof of Von Neumann’s mean ergodic theorem,
due to F. Riesz, appeared in 1937, and was followed by more general results (see e.g.
[13, 17]). Kakutani and Yosida in 1938 [25], obtained characterizations of the convergence
of the Cesàro averages \scrM n(T )x for x in a Banach space \scrX : A power bounded operator
T \in \scrB (\scrX ) is mean ergodic if and only if \scrX has the following decomposition (called the
ergodic decomposition)

\scrX = \{ x \in \scrX : Tx = x\} \oplus (I  - T )\scrX . (1.3)

Generally, the right-hand side of (1.3) is precisely the subspace of x \in \scrX (called the mean
ergodic subspace) for which the Cesàro averages \scrM n(T )x converges.

Much of modern works occurs to studies the uniform ergodicity for individual operators
(see e.g. [2] [8, Ch.II]). An interesting basic result needed in this regard is the uniform
ergodic theorem of M. Lin in 1974 [10], who proved that for T \in \scrB (\scrX ) satisfying
\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| Tn\| \setminus n = 0, T is uniformly ergodic if and only if 1 is a simple pole of the resolvent
of T , if and only if the range of (I  - T ) is closed. This result has been generalized by
Mbekhta and Zemánek in 1993 [15], in a way that the last condition of the M. Lin’s
theorem was replaced with the following: there exists an integer k \geq 1 such that the
range (I  - T )k\scrX is closed. A number of studies have followed, among those we point out
[1, 4, 9, 24].

The classical uniform ergodic theorem for C0-semigroup of bounded linear operators
on a Banach space \scrX , goes back to M. Lin in 1974 [11], he shows that for a C0-semigroup
\{ T (t)\} t\geq 0 satisfying \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| T (t)\| \setminus t = 0, \{ T (t)\} t\geq 0 is uniformly ergodic if and only if

the range of its infinitesimal generator A is closed. In [19], S.Y. Shaw proved that a
C0-semigroup \{ T (t)\} t\geq 0 is uniformly ergodic if and only if it satisfies:

(i) the infinitesimal generator A has a closed range,
(ii) the resolvent function \scrR (\lambda ,A) of A, exists for \lambda > 0,
(iii) \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| T (t)\scrR (\lambda ,A)\| 

t = 0 for some \lambda > 0.

Further conditions equivalent to the uniform convergence of the Cesàro averages \scrC (t),
have been obtained more recently by several authors, see e.g. [5, 7, 19] and the references
therein. On the mean ergodicity for C0-semigroup of bounded linear operators on a
Banach space \scrX , there exists an extensive bibliography, see e.g. [6, 14, 18, 20].

This paper is organized as follows. In Section 2, we give some definitions and fundamen-
tal properties concerning C0-semigroups of bounded linear operators on a Banach space
\scrX . Also, we present the uniform ergodic theorem for an individual operator T and for
a C0-semigroup \{ T (t)\} t\geq 0 on \scrB (\scrX ). In Section 3, we study the uniform ergodicity for
a C0-semigroup \{ T (t)\} t\geq 0 via the discrete ergodicity of a bounded linear operator T (t0),
for t0 > 0. We show that for a C0-semigroup \{ T (t)\} t\geq 0 satisfying \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| T (t)\| \setminus t = 0,

the Cesàro averages \scrC (t) of \{ T (t)\} t\geq 0 converges uniformly as t \rightarrow \infty if and only if the
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Cesàro means \scrM n

\bigl( 
T (t0)

\bigr) 
of the operator T (t0), for some t0 > 0, converges uniformly as

n \rightarrow \infty , which is not suitable in the case of strong convergence. As a consequence, we
give a theorem which can be considered as a version of the Gelfand-Hille theorem. Next,
we are also interested to investigate the strong convergence of the Cesàro averages of
\{ T (t)\} t\geq 0. More precisely, we show that for an infinitesimal generator A of a C0-semigroup
\{ T (t)\} t\geq 0 on \scrB (\scrX ) satisfying the following:

(i) \mathrm{s}\mathrm{u}\mathrm{p}t\geq 0 \| \scrC (t)\| < \infty , and
(ii) \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| T (t)x\| \setminus t = 0, for every x \in \scrX .

If either of the following hold
(1) The descent des(A) of A is finite.
(2) R(An) is closed for some n > 1, or
(3) R(Aj) +N(Ak) is closed for some positive integers j, k \geq 1.

Then \{ T (t)\} t\geq 0 is mean ergodic.

2. Preliminaries

A family \{ T (t)\} t\geq 0 of bounded linear operators on a Banach space \scrX is called a
C0-semigroup or a strongly continuous semigroup of operators if

(1) T (0) = I,
(2) T (t+ s) = T (t)T (s) ; \forall t, s \geq 0,
(3) \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow 0
T (t)x = x; \forall x \in \scrX .

\{ T (t)\} t\geq 0 has a unique infinitesimal generator A defined in domain D(A) by

Ax = \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow 0

T (t)x - x

t
; \forall x \in D(A),

with D(A) = \{ x \in \scrX : \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow 0

T (t)x - x

t
exists\} .

In this case, we have the following properties [3, Ch. I] , [16, Ch. I and II]:
(1) T (t) is a bounded linear operator on \scrX for all t \geq 0.
(2) A is closed and D(A) = \scrX .
(3) For all x \in \scrX and t \geq 0,\int t

0

T (s)xds \in D(A) and A

\int t

0

T (s)xds = T (t)x - x. (2.4)

(4) For all x \in D(A) and t \geq 0,

T (t)x \in D(A) and T \prime (t) = AT (t)x = T (t)Ax. (2.5)
Recall that, if \{ T (t)\} t\geq 0 is a C0-semigroup of bounded linear operators on a Banach

space \scrX and A be their infinitesimal generator, then the resolvent function of A is the
Laplace transform of T (t) (see e.g. [16, Paragraph p.25]), that’s mean

\scrR (\lambda ,A) =

\int \infty 

0

e - \lambda tT (t)dt. (2.6)

Now, we give the following lemma, which may play an important role in the sequel.

Lemma 2.1. [12, Lemma 5.2] Let \{ T (t)\} t\geq 0 be a C0-semigroup of bounded linear operators
on a Banach space \scrX , and let A be their infinitesimal generator. Then the following
relations hold:

(1) R(A) = (\lambda \scrR (\lambda ,A) - I)\scrX .
(2) N(A) = \{ x \in \scrX : \lambda \scrR (\lambda ,A)x = x\} = \scrF \{ T (t)\} ,

where \scrF \{ T (t)\} = \{ x \in \scrX : T (t)x = x; t \geq 0\} , the set of fixed points of T (t).
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Let A be a closed linear operator on a Banach space \scrX , with domain D(A) \subset \scrX . The
smallest non-negative integer p such that N(Ap) = N(Ap+1) is called the ascent of A and
denoted by asc(A). If such an integer does not exist, we set asc(A) = \infty . Similarly, the
smallest non-negative integer q such that R(Aq) = R(Aq+1) is called the descent of A and
denoted by des(A). If such an integer does not exist, we set des(A) = \infty . If A \in \scrB (\scrX )
and we have asc(A) and des(A) are both finite, then asc(A) = des(A), which is not true
if A is a closed linear operator with D(A) \subsetneq \scrX , (see [22, Theorem 6.2]).
For A \in \scrB (\scrX ), we have the following equivalences, see [4, Lemma 1.1]:

asc(A) \leq p \Leftarrow \Rightarrow R(Ap) \cap N(Aj) = \{ 0\} ; j = 1, 2, ....

des(A) \leq q \Leftarrow \Rightarrow \scrX = R(Aj) + N(Aq); j = 1, 2, ....
The following Theorem of this section can be deduced from the corresponding classical

results of [10] and [15]. Theorems of this nature are referred to in the literature as Ergodic
Theorems.

Theorem 2.2. [10, 15] Let T \in \scrB (\scrX ) such that \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| Tn\| 
n = 0. Then, the following

statements are equivalent:
(1) T is uniformly ergodic,
(2) (I  - T )k\scrX is closed for some k = 1, 2, ... ,
(3) the point 1 is a simple pole of the resolvent function of T ,
(4) the operator I  - T has a finite descent.

The limit in (1) is the projection P of \scrX onto N(I  - T ) along (I  - T )\scrX , that is, the Riesz
projection corresponding to the simple pole 1 of the resolvent of T .

Recall that, a C0-semigroup \{ T (t)\} t\geq 0 \in \scrB (\scrX ), is said to be uniformly Abel ergodic if
the Abel averages, defined by

\scrA (\lambda ) = \lambda 

\int \infty 

0

e - \lambda tT (t)dt. (2.7)

converges uniformly as \lambda \rightarrow 0+. Clearly, if \{ T (t)\} t\geq 0 is uniformly ergodic then is
uniformly Abel ergodic, but the reverse is not true, see e.g. [19] and [8, Chapter 2] for
more information. Further, we have from identity (2.6), \scrA (\lambda ) = \lambda \scrR (\lambda ,A), for every
\lambda > 0, where \scrR (\lambda ,A) is the resolvent of A.

Now, we will need the following results which can be considered as a version of the
ergodic theorems for semi-groups.

Theorem 2.3. [11, Theorem] Let \{ T (t)\} t\geq 0 be a C0-semigroup of bounded linear operators
on \scrX satisfying \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| T (t)\| 

t = 0, and A be their infinitesimal generator. Then, the following
statements are equivalent:

(1) \{ T (t)\} t\geq 0 is uniformly ergodic,
(2) \scrX = R(A)\oplus N(A), with R(A) is closed,
(3) the range R(A) of A is closed,
(4) for some \lambda > 0, the operator \scrA (\lambda ) is uniformly ergodic, that is, the Cesàro

averages \scrM n

\bigl( 
\scrA (\lambda )

\bigr) 
converges uniformly on \scrB (\scrX ), as n \rightarrow \infty .

Moreover, the limit in (1) and (4) is the same, is the projection P of \scrX onto N(A) along
R(A), corresponding to the ergodic decomposition

\scrX = R(A)\oplus N(A).

Corollary 2.4. [21, Corollary 3] Let \{ T (t)\} t\geq 0 be a C0-semigroup of bounded linear
operators on \scrX satisfying \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| T (t)\| 

t = 0, and A be their infinitesimal generator. Then,
the following statements are equivalent:

(1) \{ T (t)\} t\geq 0 is uniformly ergodic,
(2) \{ T (t)\} t\geq 0 is uniformly Abel ergodic,
(3) \scrX = R(A)\oplus N(A), with R(A) is closed,
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(4) R(Ak) is closed for some (equivalent all) integer k \geq 1,
(5) R(Ak) +N(Am) is closed for some (equivalent all) integers k,m \geq 1.

3. Main results and proofs

3.1. Uniform ergodicity of C0-semigroups. This subsection is devoted to study the
relationship between the uniform ergodicity for a C0-semigroup \{ T (t)\} t\geq 0 and the discrete
ergodicity of a bounded linear operator T (t0), for some t0 > 0. Furthermore, we give a
theorem which can be considered as a version of the Gelfand-Hille theorem.

The first main result of this paper is the following theorem.

Theorem 3.1. Let \{ T (t)\} t\geq 0 be a C0-semigroup of bounded linear operators on \scrX such
that \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| T (t)\| 

t = 0. Then, \{ T (t)\} t\geq 0 is uniformly ergodic if and only if there exists an
operator T (t0), for t0 > 0, which is uniformly ergodic.

Proof. Let \{ T (t)\} t\geq 0 be a C0-semigroup of bounded linear operators on \scrX and A be their
infinitesimal generator with domain D(A) \subset \scrX . Let’s denote

S(t) =

\int t

0

T (s)ds for all t \geq 0.

Next, we assume that \{ T (t)\} t\geq 0 satisfies \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

\| T (t)\| 
t = 0, then by M. Lin’s theorem [11],

the range R(A) of A is closed and we have \scrX = R(A)\oplus N(A).
Let show that the range R

\bigl( 
I - T (t0)

\bigr) 
, for t0 > 0, of the operator I - T (t0) is closed. Let

(xn)n\geq 0 \subset R
\bigl( 
I  - T (t0)

\bigr) 
, such that xn  - \rightarrow x, hence we can write xn = (I  - T (t0))un =

AS(t0)un, with un \subset \scrX (see [3, Lemma II.1.9]). Since S(t0) is bounded and R(A) is
closed, then xn  - \rightarrow AS(t0)u for u \in \scrX , which means that x = AS(t0)u = (I  - T (t0))u.
Therefore R(I  - T (t0)) is closed.

On the other hand, we have \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

\| T (t)\| 
t = 0, then there exists \varepsilon > 0 and t > 0 large

enough such that
\| T (t)\| \leq \varepsilon t.

So, we can take n = t
t0

, we get

\| Tn(t0)\| 
n

= t0
\| T (nt0)\| 

nt0
= t0

\| T (t)\| 
t

\leq t0\varepsilon .

Therefore, \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| Tn(t0)\| 
n = 0, and Theorem 2.2 implies that the operator T (t0) is uniformly

ergodic.
Conversely, let T (t0), for t0 > 0, be an operator belongs to the family \{ T (t)\} t\geq 0, such

that T (t0) is uniformly ergodic, hence by the hypothesis and Theorem 2.2, we obtain
R
\bigl( 
I  - T (t0)

\bigr) 
is closed. We will show that R(A) is closed, let z \in R(A), that is, there

exists (un)n\geq 0 \subset D(A), such that Aun  - \rightarrow z, hence\bigl( 
I  - T (t)

\bigr) 
un = S(t)Aun, for all t \geq 0.

It’s clear that S(t) =
\int t

0
T (s)ds for all t \geq 0 is a bounded linear operator, then

S(t)Aun  - \rightarrow S(t)z as n \rightarrow \infty , for all t \geq 0.

Since the range R
\bigl( 
I  - T (t0)

\bigr) 
is closed, and\bigl( 

I  - T (t0)
\bigr) 
un = S(t0)Aun  - \rightarrow S(t0)z, as n \rightarrow \infty ,

then
S(t0)z \in R(I  - T (t0)).

Therefore, we can take y \in D(A) such that S(t0)z =
\bigl( 
I  - T (t0)

\bigr) 
y = S(t0)Ay, which

yields that z  - Ay \in N
\bigl( 
S(t0)

\bigr) 
.
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Now, let show that N
\bigl( 
S(t0)

\bigr) 
\subset N(A), to infer that z \in R(A). To this end, we show

that
\int t0
0

S(s)xds \in D(A) and A
\int t0
0

S(s)xds = S(t0)x  - t0x. Indeed, for x \in \scrX and
t0 > 0,

T (h) - I

h

\int t0

0

S(s)xds =
1

h

\int t0

0

T (h)S(s)xds - 1

h

\int t0

0

S(s)xds

=

\int t0

0

\Bigl[ 1
h

\int s

0

T (h)T (u)xdu - 1

h

\int s

0

T (u)xdu
\Bigr] 
ds

=

\int t0

0

\Bigl[ 1
h

\int s

0

T (h+ u)xdu - 1

h

\int s

0

T (u)xdu
\Bigr] 
ds

=

\int t0

0

\Bigl[ 1
h

\int s+h

h

T (u)xdu - 1

h

\int s

0

T (u)xdu
\Bigr] 
ds

=

\int t0

0

\Bigl[ 1
h

\int s+h

s

T (u)xdu - 1

h

\int h

0

T (u)xdu
\Bigr] 
ds.

Since 1
h

\int s+h

s
T (u)xdu - 1

h

\int h

0
T (u)xdu converges to T (s)x - x when h \rightarrow 0, we have that

A

\int t0

0

S(s)xds =

\int t0

0

T (s)xds - 
\int t0

0

xds,

which means that

A

\int t0

0

S(s)xds = S(t0)x - t0x.

Therefore, we can easily deduce that N
\bigl( 
S(t0)

\bigr) 
\subset R(A). Hence z \in R(A), which yields

that R(A) is closed, and Theorem 2.3 implies that \{ T (t)\} t\geq 0 is uniformly ergodic. \square 

The following result is an immediate consequence of the previous theorem, Theorem
2.2 and Corollary 2.4.

Corollary 3.2. Let \{ T (t)\} t\geq 0 be a C0-semigroup of bounded linear operators on \scrX 
satisfying \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| T (t)\| 

t = 0, and A be their infinitesimal generator. Then, the following
statements are equivalent:

(1) \{ T (t)\} t\geq 0 is uniformly ergodic,
(2) \{ T (t)\} t\geq 0 is uniformly Abel ergodic,
(3) there exists t0 > 0 such that the range of the operator

\bigl( 
I  - T (t0)

\bigr) k is closed for
some integer k \geq 1,

(4) there exists t0 > 0 such that the operator I  - T (t0) has a finite descent,
(5) there exists t0 > 0 such that \scrX = R

\bigl( 
I  - T (t0)

\bigr) 
\oplus N

\bigl( 
I  - T (t0)

\bigr) 
,

(6) there exists t0 > 0 such that 1 is a simple pole of the resolvent T (t0),
(7) the point 0 is a simple pole of the resolvent \scrR (., A) of A,
(8) the infinitesimal generator A has a finite descent.

The next Lemma can be considered a version of the Gelfand-Hille theorem. Thus, we
give in the Theorem 3.4 a new version of the Gelfand-Hille theorem corresponding to the
C0-semigroups.

Lemma 3.3. [15, Corollaire 2] Given an operator T \in \scrB (\scrX ), with \sigma (T ) = \{ 1\} . If T is
uniformly ergodic, then T = I.

Theorem 3.4. Let \{ T (t)\} t\geq 0 be a C0-semigroup of bounded linear operators on a complex
Banach space \scrX . If there exists an operator T (t0), for some t0 > 0, such that T (t0) be
uniformly ergodic and \sigma 

\bigl( 
T (t0)

\bigr) 
= \{ 1\} , then T (t) = I, for all t \geq 0.
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Proof. We assume that T (t0), for t0 > 0, be an operator uniformly ergodic, Theorem 3.1
implies that the C0-semigroup \{ T (t)\} t\geq 0 is uniformly ergodic and the limit of Cesàro
averages \scrC (t) is the projection P of \scrX onto N(A) along R(A), corresponding to ergodic
decomposition \scrX = R(A)\oplus N(A). From Lemma 2.1, we have

R(A) = (\lambda \scrR (\lambda ,A) - I)\scrX and N(A) = \cap t\geq 0N
\bigl( 
I  - T (t)

\bigr) 
= \scrF \{ T (t)\} .

Now, we assume that \sigma (T (t0)) = \{ 1\} , then Lemma 3.3 implies that T (t0) = I. Therefore

\scrX = N
\bigl( 
I  - T (t0)

\bigr) 
= R(A)\oplus \cap t\geq 0N

\bigl( 
I  - T (t)

\bigr) 
. (3.8)

Next, we set y belongs to N
\bigl( 
I - T (t0)

\bigr) 
\cap R(A). Since y \in N

\bigl( 
I - T (t0)

\bigr) 
, then T (t0)y = y,

it follows that T (t0)ny = y for all n \geq 0, hence T (nt0)y = y. Therefore \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

T (nt0)y = y,

hence

\mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

1

t

t\int 
0

T (s)yds = y. (3.9)

Since y \in R(A) and R(A) = N(P ), then

\mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

1

t

t\int 
0

T (s)yds = 0. (3.10)

Thus, (3.9) and (3.10) implies that y = 0, hence N
\bigl( 
I - T (t0)

\bigr) 
\cap R(A) = \{ 0\} , which means

that R(A) = \{ 0\} by the decomposition (3.8). Then

\scrX = \cap t\geq 0N
\bigl( 
I  - T (t)

\bigr) 
.

Therefore, T (t) = I for all t \geq 0, and the proof is finished. \square 

3.2. Mean ergodicity of C0-semigroups. In general, the uniform ergodicity in all the
results considered above cannot be replaced by the mean ergodicity. The proof of the
uniform ergodicity often requires proving first the mean ergodicity (in order to obtain the
ergodic decomposition). Our purpose of this subsection it to study the strong convergence
of the Cesàro averages of \{ T (t)\} t\geq 0, so that we give some sufficient conditions implying
that \{ T (t)\} t\geq 0 is mean ergodic.

In terms of the ergodic decomposition, we give the following lemma which will be
widely used in the sequel.

Lemma 3.5. Let \{ T (t)\} t\geq 0 be a C0-semigroup of bounded linear operators on \scrX such
that \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| T (t)x\| 

t = 0, for every x \in \scrX , with A be the infinitesimal generator. If y \in R(A)

and z \in N(A), then

1

t

\int t

0

T (s)(y + z)ds = z +O
\Bigl( 1
t

\Bigr) 
, as t \rightarrow \infty .

Proof. Let A be the infinitesimal generator of a C0-semigroup \{ T (t)\} t\geq 0 with domain
D(A) \subset \scrX , and let \scrC (t) be the Cesàro averages defined in (1.2).

For z \in N(A), hence Lemma 2.1 implies that T (t)z = z. It follows that

\scrC (t)z =
1

t

\int t

0

T (s)zds = z for all t \geq 0.

Let y \in R(A), then there exists w \in D(A) such that y = Aw. Then, we get

\scrC (t)y =
1

t

\int t

0

T (s)yds =
1

t

\int t

0

T (s)Awds =
1

t

\int t

0

d

ds
[T (s)w]ds =

1

t
[T (t)w  - w].
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Therefore \bigm\| \bigm\| \bigm\| 1
t

\int t

0

T (s)yds
\bigm\| \bigm\| \bigm\| \leq 

\bigm\| \bigm\| \bigm\| T (t)w
t

\bigm\| \bigm\| \bigm\| +
\bigm\| \bigm\| \bigm\| w
t

\bigm\| \bigm\| \bigm\| \leq Cste
\bigm\| \bigm\| \bigm\| w
t

\bigm\| \bigm\| \bigm\| .
Then

1

t

\int t

0

T (s)(y + z)ds = z +O
\Bigl( 1
t

\Bigr) 
, as t \rightarrow \infty .

\square 

We denote by \scrX me the subspace of all x \in \scrX such that the Cesàro averages \scrC (t)x
converges strongly on \scrB (\scrX ), in the case where \scrX me equal to the space \scrX , then we get that
C0-semigroup \{ T (t)\} t\geq 0 is mean ergodic. The following theorem gives a characterization
of the subspace \scrX me.

Theorem 3.6. Let \{ T (t)\} t\geq 0 be a C0-semigroup of bounded linear operators on \scrX and
A be its infinitesimal generator. If T (t) satisfies the following conditions:

(1) \mathrm{s}\mathrm{u}\mathrm{p}t\geq 0 \| \scrC (t)\| < \infty , and
(2) \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| T (t)x\| 

t = 0, for every x \in \scrX .

Then, \scrX me is closed and T (t)-invariant subspace for all t \geq 0. Moreover,

\scrX me = R(A)\oplus N(A).

Proof. Let A be the infinitesimal generator of a C0-semigroup \{ T (t)\} t\geq 0 with domain
D(A) \subset \scrX , and let \scrX me be a subspace of \scrX defined by:

\scrX me :=
\bigl\{ 
x \in \scrX : \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\scrC (t)x exists

\bigr\} 
.

First, we have each of the assumptions (1) or (2) alone implies that

R(A) \cap N(A) = \{ 0\} .
And by Lemma 3.5, we observe that

R(A)\oplus N(A) \subset \scrX me.

For reverse inclusion, the first hypothesis implies that \scrX me is closed and T (t)-invariant
subspace of \scrX for all t \geq 0. Let us show that any x \in \scrX me is belong to R(A) +N(A). To do
that, let x \in \scrX me, then there exists an operator P \in \scrB (\scrX ), for which \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| \scrC (t)x - Px\| = 0.

Hence, we have the follows:\bigl( 
I  - T (t)

\bigr) 
Px =

\bigl( 
I  - T (t)

\bigr) 
\mathrm{l}\mathrm{i}\mathrm{m}
s\rightarrow \infty 

\scrC (s)x

= \mathrm{l}\mathrm{i}\mathrm{m}
s\rightarrow \infty 

\scrC (s)x - \mathrm{l}\mathrm{i}\mathrm{m}
s\rightarrow \infty 

T (t)\scrC (s)x

= \mathrm{l}\mathrm{i}\mathrm{m}
s\rightarrow \infty 

\scrC (s)x - \mathrm{l}\mathrm{i}\mathrm{m}
s\rightarrow \infty 

1

s

\int s

0

T (t)T (k)xdk

= \mathrm{l}\mathrm{i}\mathrm{m}
s\rightarrow \infty 

\scrC (s)x - \mathrm{l}\mathrm{i}\mathrm{m}
s\rightarrow \infty 

1

s

\int s

0

T (t+ k)xdk

= \mathrm{l}\mathrm{i}\mathrm{m}
s\rightarrow \infty 

\scrC (s)x - \mathrm{l}\mathrm{i}\mathrm{m}
s\rightarrow \infty 

1

s

\int s+t

t

T (\nu )xd\nu 

= 0.

Therefore
T (t)Px = Px, for all t \geq 0.

So, we get
\scrC (t)Px = Px, for all t \geq 0.

Hence
P 2x = Px = T (t)Px = PT (t)x, for all t \geq 0.

Now, we suppose that \scrX me = \scrX , which means that \{ T (t)\} t\geq 0 is mean ergodic. Then,

P 2 = P = T (t)P = PT (t), for all t \geq 0.
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In particular, P is a projection corresponding to the following decomposition

\scrX = R(P )\oplus N(P ).

Since N(A) = \{ x \in \scrX : T (t)x = x, t \geq 0\} , it is easy to check that

R(P ) = N(A).

Next, let’s show that N(P ) = R(A). Indeed, as shown above in Lemma 3.5, that for
every y \in R(A), we have \scrC (t)y \rightarrow 0, as t \rightarrow \infty , which means that R(A) \subset N(P ), then we
get R(A) \subset N(P ).

For the inverse inclusion, let x \in N(P ) and we denote by S(t) =
\int t

0
T (u)du. Then, we

have
\mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

\scrC (t)x = \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

S(t)x

t
= 0.

Fix a > 0, and using integration by parts, we obtain the following inequality:

\| \scrA (\lambda )x\| = \| \lambda \scrR (\lambda ,A)x\| 

\leq 
\bigm\| \bigm\| \lambda 2

\int \infty 

0

e - \lambda tS(t)xdt
\bigm\| \bigm\| 

\leq \lambda 2

\int a

0

e - \lambda t\| S(t)x\| dt+ \lambda 2

\int \infty 

a

e - \lambda tt
\bigm\| \bigm\| \bigm\| S(t)x

t

\bigm\| \bigm\| \bigm\| dt
\leq \lambda 2a \mathrm{s}\mathrm{u}\mathrm{p}

t\leq a
\| S(t)x\| + \mathrm{s}\mathrm{u}\mathrm{p}

t>a

\bigm\| \bigm\| \bigm\| S(t)x
t

\bigm\| \bigm\| \bigm\| dt.
Since \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 

S(t)x

t
= 0, then it easy to see from the above estimation that

\mathrm{l}\mathrm{i}\mathrm{m}
\lambda \rightarrow 0+

\lambda \scrR (\lambda ,A)x = 0.

It follows that
\mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

\scrC (t)x = \mathrm{l}\mathrm{i}\mathrm{m}
\lambda \rightarrow 0+

\lambda \scrR (\lambda ,A)x = 0.

And the following identity:

A
\bigl( 
\scrR (\lambda ,A)

\bigr) 
x = \lambda \scrR (\lambda ,A)x - x, for every x \in \scrX ,

implies that
\mathrm{l}\mathrm{i}\mathrm{m}

\lambda \rightarrow 0+
A
\bigl( 
\scrR (\lambda ,A)x

\bigr) 
= x.

Therefore, x \in R(A), hence N(P ) \subset R(A) and the equality holds.
Finally, we deduce that \scrX me = R(A)\oplus N(A), and the proof is finished. \square 

As a consequence of the previous theorem, we get the following corollary.

Corollary 3.7. Let \{ T (t)\} t\geq 0 be a C0-semigroup of bounded linear operators on \scrX and
A be their infinitesimal generator with domain D(A) \subset \scrX . We assume that \{ T (t)\} t\geq 0

satisfies the following conditions:
(1) \mathrm{s}\mathrm{u}\mathrm{p}t\geq 0 \| \scrC (t)\| < \infty , and
(2) \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| T (t)x\| 

t = 0, for every x \in \scrX .

If the Cesàro averages \scrC (t)x converges strongly (resp. weakly) for all x \in D(A), then
\{ T (t)\} t\geq 0 is mean (resp. weakly) ergodic.

Proof. From the closure of \scrX me and density of the domain D(A) of the infinitesimal
generator A, we deduce the proof. \square 

Theorem 3.8. Let A be the infinitesimal generator of C0-semigroup \{ T (t)\} t\geq 0, and
assume that T (t) satisfies the following conditions:

(1) \mathrm{s}\mathrm{u}\mathrm{p}t\geq 0 \| \scrC (t)\| < \infty , and
(2) \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
\| T (t)x\| 

t = 0, for every x \in \scrX .
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If descent des(A) of A is finite, then \{ T (t)\} t\geq 0 is mean ergodic.

Proof. Let \{ T (t)\} t\geq 0 be a C0-semigroup on a Banach space \scrX and A be their infinitesimal
generator. As shown above, in Theorem 3.6, that if T (t) satisfies the conditions (1) and
(2), then \scrX me be closed and T (t)-invariant subspace. Moreover, we have each of the
assumptions (1) or (2) alone implies that

R(A) \cap N(A) = \{ 0\} ,

which yields that asc(A) \leq 1.
Now, we suppose that descent des(A) of A is finite, then there exists an integer n \geq 1
such that R(An) = R(An+1). So, to prove that \scrX = R(A) \oplus N(A) it suffices to show
R(Ak) =

\bigl( 
\lambda \scrR (\lambda ,A) - I

\bigr) k\scrX for all integer k \geq 1.
Indeed, the equality

\bigl( 
\lambda \scrR (\lambda ,A)  - I

\bigr) 
= A\scrR (\lambda ,A), shows that the assertion is true for

k = 1. Assuming that R(Ak) =
\bigl( 
\lambda \scrR (\lambda ,A) - I

\bigr) k\scrX for some k > 1, hence\bigl( 
\lambda \scrR (\lambda ,A) - I

\bigr) k+1
=

\bigl( 
\lambda \scrR (\lambda ,A) - I

\bigr) \bigl( 
\lambda \scrR (\lambda ,A) - I

\bigr) k
= A\scrR (\lambda ,A)Ak\scrR (\lambda ,A)k,

which implies that R(Ak+1) =
\bigl( 
\lambda \scrR (\lambda ,A) - I

\bigr) k+1\scrX .
Therefore

R(Ak) =
\bigl( 
\lambda \scrR (\lambda ,A) - I

\bigr) k\scrX , for all integer k \geq 1.

Since R(An) = R(An+1), then
\bigl( 
\lambda \scrR (\lambda ,A) - I

\bigr) n\scrX =
\bigl( 
\lambda \scrR (\lambda ,A) - I

\bigr) n+1\scrX , which means
that des

\bigl( 
\lambda \scrR (\lambda ,A)  - I

\bigr) 
< \infty . In addition, from

\bigl( 
\lambda \scrR (\lambda ,A)  - I

\bigr) 
is a bounded linear

operator on \scrX and asc
\bigl( 
\lambda \scrR (\lambda ,A)  - I

\bigr) 
= asc(A) \leq 1, then des

\bigl( 
\lambda \scrR (\lambda ,A)  - I

\bigr) 
and

asc
\bigl( 
\lambda \scrR (\lambda ,A) - I

\bigr) 
are both equals. Consequently,

\scrX =
\bigl( 
\lambda \scrR (\lambda ,A) - I

\bigr) 
\scrX \oplus N

\bigl( 
\lambda \scrR (\lambda ,A) - I

\bigr) 
.

From the Lemma 2.1, we get \scrX = R(A)\oplus N(A).
Next, we apply Theorem 3.6, we get \scrX = \scrX me, which means that T (t) is mean ergodic.
This completes the proof. \square 

We end this section with the following result.

Theorem 3.9. Let \{ T (t)\} t\geq 0 be a C0-semigroup of bounded linear operators on a Banach
space \scrX , and let A be their infinitesimal generator. Suppose that \{ T (t)\} t\geq 0 satisfies the
following conditions:

(i) \mathrm{s}\mathrm{u}\mathrm{p}t\geq 0 \| \scrC (t)\| < \infty , and
(ii)

\bigl\{ T (t)x
t

\bigr\} 
t\geq 0

converges to 0 in some operator topology.

If either of the following hold
(1) R(An) is closed for some n > 1, or
(2) R(Aj) +N(Ak) is closed for some positive integers j, k \geq 1.

Then, \scrX is the direct sum of the closed subspaces R(A) and N(A). Moreover, the Cesàro
averages \scrC (t) converges in some operator topology.

We need the following auxiliary result to prove this theorem.

Lemma 3.10. Let A be a closed linear operator with domain D(A) \subset \scrX such that
asc(A) = d < \infty . If either of the following hold:

(i) R(An) is closed for some n > d, or
(ii) R(Aj) +N(Ak) is closed for some positive integers j, k with j + k = n \geq d.

Then, R(An) is closed for all n \geq d, and R(Aj) + N(Ak) is closed for all integers j, k
with j + k \geq d.
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Proof. Whenever A and B are linear operators on a vector space, we have the following
identity:

A - 1R(AB) = R(B) +N(A).

Then, for a linear operator A on a vector space and for some integers j, k \geq 1, we have

A - kR(AjAk) = R(Aj) +N(Ak).

Then, we infer the following properties:
(a) If R(An) is closed, so is R(Aj) +N(Ak) whenever j + k = n.
(b) For n \geq d, the range R(An) is closed whenever R(An) +N(Am) is closed for some

m \geq 1.
Assume that A be a closed linear operator on X with domain D(A) \subset \scrX such that

asc(A) = d < \infty , then

R(Ad) \cap N(Am) = \{ 0\} , for all m = 1, 2, ....

Now, we separate the hypothesis. Let R(An) is closed for some n > d, hence by (a) we
get, R(Aj) +N(Ak) is closed whenever j + k = n. So take j = n  - 1 and k = 1, then
by (b), R(An - 1) is closed. Therefore, by induction R(Aj) is closed for all d \leq j \leq n.
Since R(An - 1) \cap N(A) = \{ 0\} , then the restriction of A to the closed invariant subspace
R(An - 1) is one to one. Thus the restriction is a Banach space isomorphism from the
closed subspace R(An - 1) onto the closed subspace R(An). It carries the subspace R(An)
onto R(An+1), which must be also closed. Hence R(An) is closed for all n \geq d.

Next, suppose R(An) +N(Am) is closed for some n > d and m \geq 1. Hence, by (b) we
get R(An) is closed for some n > d. Again, we applied the first argument, we deduce that
R(An) is closed for all n \geq d, so is R(An) +N(Am) for all n \geq d and m \geq 1. \square 

Proof. of Theorem 3.9: Let \{ T (t)\} t\geq 0 be a C0-semigroup on a Banach space \scrX and A be
their infinitesimal generator. we have each of the assumptions (i) or (ii) alone implies
that R(A) \cap N(A) = \{ 0\} , which yields that asc(A) \leq 1. From Lemma 3.10, we have if
(1) or (2) holds, then R(An) is closed for all n \geq 1 and R(Aj) +N(Ak) is closed for all
positive integers j, k \geq 1.

On the other hand, we have the adjoint T \ast (t) of C0-semigroup T (t) is a semigroup not
necessary strongly continuous, and its generator is exactly the adjoint of A. Since T (t)
satisfies the conditions (i) and (ii), then so is T \ast (t). Therefore

R(A\ast ) \cap N(A\ast ) = \{ 0\} .
Consequently

asc(A\ast ) \leq 1.

Since R(An) is closed for all n \geq 1, then we get

R(A2) =\bot \bigl( 
N(A\ast 2)

\bigr) 
=\bot \bigl( 

N(A\ast )
\bigr) 
= R(A).

Finally, we apply the Theorem 3.6 and Theorem 3.8 to complete the proof. \square 
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[15] M. Mbekhta and J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci.
Paris Sér. I Math. 317 (1993), no. 12, 1155–1158.

[16] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied
Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983, doi:10.1007/978-1-4612-5561-1.

[17] F. Riesz, Some Mean Ergodic Theorems, J. London Math. Soc. 13 (1938), no. 4, 274–278, doi:
10.1112/jlms/s1-13.4.274.

[18] R. Sato, On a mean ergodic theorem, Proc. Amer. Math. Soc. 83 (1981), no. 3, 563–564, doi:
10.2307/2044119.

[19] S. Y. Shaw, Uniform ergodic theorems for locally integrable semigroups and pseudoresolvents, Proc.
Amer. Math. Soc. 98 (1986), no. 1, 61–67, doi:10.2307/2045768.

[20] S. Y. Shaw, Mean ergodic theorems and linear functional equations, J. Funct. Anal. 87 (1989), no. 2,
428–441, doi:10.1016/0022-1236(89)90018-9.

[21] A. Tajmouati, M. Karmouni, and F. Barki, Abel ergodic theorem for C0-semigroups, Adv. Oper.
Theory 5 (2020), no. 4, 1468–1479, doi:10.1007/s43036-020-00059-5.

[22] A. E. Taylor and D. C. Lay, Introduction to functional analysis, second ed., John Wiley & Sons,
New York-Chichester-Brisbane, 1980.

[23] J. Von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. 18 (1932), no. 1, 70–82,
doi:10.1073/pnas.18.1.70.

[24] T. Yoshimoto, Uniform and strong ergodic theorems in Banach spaces, Illinois J. Math. 42 (1998),
no. 4, 525–543, http://projecteuclid.org/euclid.ijm/1255985459.

[25] K. Yosida and S. Kakutani, Operator-theoretical treatment of Markoff’s process and mean ergodic
theorem, Ann. of Math. (2) 42 (1941), 188–228, doi:10.2307/1968993.

Fatih Barki : fatih.barki@usmba.ac.ma
Laboratory of Mathematical Sciences and Applications (LaSMA). Sidi Mohamed Ben Abdellah

University, Faculty of Sciences Dhar Al Mahraz. Fez, Morocco.

Abdelaziz Tajmouati : abdelaziz.tajmouati@usmba.ac.ma
Laboratory of Mathematical Sciences and Applications (LaSMA). Sidi Mohamed Ben Abdellah

University, Faculty of Sciences Dhar Al Mahraz. Fez, Morocco.

Abdeslam El Bekkali : aba0101q@yahoo.fr
Chouaib Doukkali University, Faculty of Sciences. El Jadida, Morocco.

Received 26/07/2020; Revised 12/03/2021

http://dx.doi.org/10.2307/2044711
http://dx.doi.org/10.1016/0022-247X(84)90136-7
http://dx.doi.org/10.1007/s00013-013-0515-2
http://dx.doi.org/10.1515/9783110844641
http://dx.doi.org/10.2307/2161091
http://dx.doi.org/10.2307/2038891
http://dx.doi.org/10.2307/2038891
http://dx.doi.org/10.2307/2039898
http://dx.doi.org/10.2307/2039898
http://dx.doi.org/10.14232/actasm-012-307-4
http://dx.doi.org/10.1090/S0002-9904-1939-07122-X
http://dx.doi.org/10.1016/0001-8708(76)90076-1
http://dx.doi.org/10.1007/978-1-4612-5561-1
http://dx.doi.org/10.1112/jlms/s1-13.4.274
http://dx.doi.org/10.1112/jlms/s1-13.4.274
http://dx.doi.org/10.2307/2044119
http://dx.doi.org/10.2307/2044119
http://dx.doi.org/10.2307/2045768
http://dx.doi.org/10.1016/0022-1236(89)90018-9
http://dx.doi.org/10.1007/s43036-020-00059-5
http://dx.doi.org/10.1073/pnas.18.1.70
http://projecteuclid.org/euclid.ijm/1255985459
http://dx.doi.org/10.2307/1968993
mailto:fatih.barki@usmba.ac.ma
mailto:abdelaziz.tajmouati@usmba.ac.ma
mailto:aba0101q@yahoo.fr

	1. Introduction
	2.  Preliminaries
	3. Main results and proofs
	3.1. Uniform ergodicity of C0-semigroups
	3.2. Mean ergodicity of C0-semigroups

	Acknowledgments
	References

