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AN OPERATOR APPROACH TO EXTREMAL PROBLEMS
ON HARDY AND BERGMAN SPACES

MIRON B. BEKKER AND JOSEPH A. CIMA

ABsTRACT. S. Abbott and S. Abbott and B. Hanson developed an operator-theoretic
approach to solve some extremal problems. We give a different proof of a theorem of
S. Abbott and B. Hanson in the case when the corresponding operator is unbounded.
We apply our theorem to the classical Kolmogorov and Szego infimum problems. We
also consider Kolmogorov and Szegé6 type infima, when integration over the unit circle
is replaced by integration over the unit disk.

C. A66otr i B. XeHncon po3BuHyIM TEOPETUKO-ONMEPATOPHUN MiAXiM N0 PO3B’sA3aHH]
JesIKMX eKCTpeMaJibHUX 3a7a4. Mwu gaemo HOBe noBeieHHsi Teopemu C. A66ora i
B. XeHcona jyia BuIlaJIKy, KOJIM BifnoBigHuili oneparop Heobmexkenuit. Teopema
3aCTOCOBYEThHCs Ayl KitacuaHux 3agad Kosmoroposa i Cere npo indimym. Takoxk
posraanyTi 3aga4i Koamoroposa i Cere npo indiMmym 1iist BUNAIKY, KOJIU IHTErpyBAHHS
BEJEeThCs He II0 KOJIy, a IO KPYTY.

1. INTRODUCTION

In 1995 S. Abbott published an article [1] in which, in particular, he proved the
following theorem:

Theorem 1.1. Let W be a bounded nonnegative and invertible operator on a Hilbert
space §) and let P be the orthogonal projection onto a closed subspace L C §). Then for
any k € L

inf{< W(k—f),k—f> fel'}=<[PW'P|7 'k k> .

Remark 1.2. If we do not assume that the operator W is invertible then the right-hand
side of the last formula is equal to

11%1 < [PW P Yk k >,

where W, =W +¢€l, € > 0.

In that article the author applied Theorem 1.1 to some extremal problems. In particular,
the author developed an operator-theoretic approach to the problem of finding Kolmogorov
and Szego infima (see definitions (3.3) and (5.9), respectively). To achieve his results
S. Abbott must assume the absolutely continuous parts of the measures appearing in (3.3)
and (5.9) have bounded densities. The condition of boundedness of the operator W was
removed in article [2]. It allowed the authors to consider problems of finding Kolmogorov
and Szego infima for unbounded weights w.

In the present paper we also remove the condition of boundedness of the operator W
in Theorem 1.1 and give a new proof of the main result of S. Abbott and B. Hanson
(Theorem 2.3 of [2]).
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As in [1] and [2]| we prove the formula for the Kolmogorov infimum with the assumption
that w € L'(T) and the formula for the Szegd infimum with assumption that w € L?(T).
We also apply our theorem to the problem of finding the Kolmogorov type and the Szegt
type infima, when integration over the unit circle T is replaced by integration over the
unit disk D.

The article is organized as follows. In Section 2 we prove our generalization of Theorem
1.1. In Section 3 we discuss Kolmogorov infimum for the circle. In Section 4 we consider
Kolmogorov type infimum for the disk. Surprisingly, this consideration can be done in an
elementary way. In Section 5 we consider Szego infimum on the unit circle and in Section
6 we discuss Szeg6 type infimum for the unit disk. We evaluate the values of the infimum
for two classes of functions w(z), namely when log w(z) is harmonic and when w is radial.
We also provide an estimate for the value of the Szegd type infimum for harmonic w.

2. MAIN THEOREM

We start with the following lemma.

Lemma 2.1. Let ® be a linear set dense in a Hilbert space $ and let M C D be a
(closed) subspace of $. Then M+ ND is dense in M+.

Proof. Pick x € M. Then there exists a sequence {d,, }>°; C D such that z = lim d,,.
n—oo

Denote by P the orthogonal projection from $) onto M+ and put Q = I — P, that is Q is
the orthogonal projection onto 2t. We have

x =Pz = lim Pd, = lim (d, — Qdp).
n—oo n—oo
The vectors Pd, € 9. We also have Pd, = d,, — Qd,, € D since M is closed and
MCD. O

Remark 2.2. Without the condition M C D it is possible that M+ N D={0}. But if
dim 9 < oo then it follows, see [4], that D(W) N ML = m+

The next statement is a generalization of Theorem 1.1 for the case when the operator
W is unbounded. It is equivalent to Theorem 2.3 of [2] but our proof is different.

Theorem 2.3. Let W be a non-negative self-adjoint operator in a Hilbert space ) and
let (W) be the domain of W (D(W) = ). Let M be a finite-dimensional subspace of $
such that M C D(W) and let P = Py be the orthogonal projection of $ onto 9. Then
for any k € M

inf{<W(k—f),k—f> fedW),Pf=0}= (2.1)
< [PW'P| Yk k> .
If the operator W is not boundedly invertible, the right side of (2.1) is understood as
13?8 <[PW +el)'P] Yk ke > .

Proof. Since W is a non-negative operator, the operator W1/2 exists and well defined.
The operator W/? is self-adjoint and ®(W) C D(W/2).

Assume first that the operator W has a bounded inverse W~!. Then the operator
W~1/2 is also bounded. Put

= {W1/2f L feD(WY?) mml}.

Then £ is closed in $. Indeed, let {h,} C £, h,, — h. Then the sequence {h,} is
fundamental. If f,, = W~1/2h,,, then the sequence {fn} is also fundamental and there
exists lim, oo fn = f € ML, Since W'/2 is a closed operator, f € ®D(W'/?) and
h=W*Y2f e g
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Denote by @ the orthogonal projection onto the subspace £. Then we have
inf{<W(k—-f),k—f>fedDW),Pf=0}=
inf{HWl/Qk _2ie ):} = QW Y2k|? =

[sup{| <WY2k,g>|:ge et gl < 1}}2

Now, g € £% means
<WY2f g>=0 VYfedWV?Hnmt.
We write g = g1 + go where g; € 9, go € MM+ and obtain
<WY2f g1 >+ <WY2f go>=0 VfedW/2)nmt.

Since M € D(W) € D(W/?), the first term of the last expression is < f, W'/2g; >.
Thus

<WY2f go >=< f,-WY% > VfeDdWY?)nmt.
Because © (W1/2) M+ is dense in 9+, the right side of the last expression is a continuous

linear functional on M+, consequently so is the left side. Thus there exists g5 € 9+ such
that

<W'Y2f 9o >=< f, g5 > . (2:2)
Note that < WY/2f gy >=< PyWY2fP, gy >, where P, is the orthogonal projection
onto the subspace M. According to Stenger’s lemma (see [6]) P W /2P, is a self-adjoint

operator in 9+, The equality (2.2) means that g, belongs to the domain of the operator
P, WY2P, and PJ_W]'/QPJ_QQ = g5. Thus we can write

<WY2f gy >=< f,PLWY2P g =< f, WY 2gy >
In summary, we have
0=<WY2f g1 >+ <WV2f gy >=< fW'2g, > + < f,W2gy >=
<[, W29 > VfedWYH nomt.

Therefore g € £+ implies g € D(W1'/2) and W'/2g € M. Conversely, if g € D(W/?) and
W1/2g € M, then for any f € D(W/2) N M+ one has

0=< f,W'2g>=<W'2f g >,

ie. ge gt

We have shown that g € £ if and only if g € D(W'/2) and W'/2g € M.

Since the operator W~1/2 is bounded, for any f € 9t we may put g = W~'/2f. Then
g € £+, hence g € D(W'/2). Consequently we have

inf {< W(k — f),k— f > f € D(W),Pf =0}

= { < W hg> g £ hgl < 1))

<WY2k g > 2
:[sup{|g |1962L,95£0H

lgll
1/2p Ww—1/2 2
- {Sup{wnwimf f>':f€m’f7é0H
<k f> 2
- [S“p{'W—1/2f||':f€”"’f*0}] '

Let A be an operator on 9 defined as follows: for f € M set Af = PW~1f = PW-1Pf.
Then A is a non-negative and invertible. Also, for f € 9,

IW=Y2F|12 =< WA, f >=< PWIPf, f >=< Af, f >= | AV2f|%
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We have
<k f>
Sup{’| cfeEM f# 0}

(W2 1|
| < A=V2k, AV2f > |
= sup cfeMf#0
{ [AY2f]]

=sup{| < A7V f > | feM|f| =1} = A7)

Now combining the equalities above we obtain

inf {< W(k— f),k—f> feDW),Pf=0}=||A"?|?
=< Ak k >=< [PW'P| 'k, k > .

If the operator W is not boundedly invertible we use the same argument that was used in
[1] to finish the proof. O

Remark 2.4. We may slightly relax the hypotheses of Theorem 2.3 and assume that
the finite-dimensional subspace 9 satisfies condition

mc DWW,

3. THE KOLMOGOROV INFIMUM

Denote by Q the set of trigonometric polynomials of the form >™ cre?*® and by
Qp C Q the set of trigonometric polynomials with ¢g = 0. Let p be a finite positive
measure on the unit circle T and let 7 be the normalized Lebesgue measure on the unit
circle. Denote by 1 the constant function from L?(T,d7) which assumes the value 1 at
each point of the circle.

The Kolmogorov infimum for the circle, Kt(u), is defined as follows:

Ka() = inf{ [ 11— a(e)duto) : g € Qu}. (3.3)

If the measure p is absolutely continuous with respect to the Lebesgue measure, du =
w(0)dr, w >0, w € LY(T,dr) we write Kr(w) instead of Kr(u).

Using the same arguments that are given in [5], pp.44-45, one deduces that Kr(u)
depends only on the absolutely continuous part of p.

Theorem 3.1. Let p be a positive measure on the unit circle T. If du(0) = w(0)dr + dus
(s is the singular part of u), then

Kr(p) = Kn(w) = [/T wia)df}l. (3.4)

If w¢ LY(T,dr), then Kr(u) = 0.

Proof. We use Theorem 2.1 and Remark 2.4. Put $ = L?(T, dr) and denote by W'/2 =
M,,1/2 the operator of multiplication by w'/2. The domain ©(W/2) of W'/2 is the set
of all f € L?(T,dr) such that \/w(0)f(9) € L*(T,dr). Since L=(T,dr) C D(W'/2), the
operator W1/2 is densely defined and clearly self-adjoint. Then the operator W = M,, is
also densely defined and self-adjoint.

Also, put 9 = Lh.{1} (L.h. means linear hull), the subspace generated by the constant
function 1, and the vector k is that constant function 1. Then according to Theorem 2.1
we have

K(w) =< [PM,'P]7'1,1 >,

where P is the orthogonal projection in $ onto 9.
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Put [PM;'P]711 = h. Then K (w) =< h,1 >= hg. We have

1= PM_'Ph = hoPM:'1 = hy (/ dT) P1 = hy (/ dT) 1
T w(0) T w(T)

dr
w(@

Therefore, hy = ( fT ~'. The theorem is proved. O

4. THE KOLMOGOROV TYPE INFIMUM

Denote by P = P(z, Z) the set of polynomials p(z, Z) of variables z and z, z € D, and
by Py C P polynomials satisfying the condition p(0,0) = 0.

Under the Kolmogorov type infimum we understand the quantity K (u) defined as
follows:

Kmm=ﬂﬁ{éﬂ—p@ﬁwﬂwd:f€ﬂﬁ} (4.5)

where 1 is a positive measure on the unit disk . The quantity Kp(u) is the square of
the distance from 1 to the closure of Py in the Hilbert space L?(D, du).
Denote by po(z) the Dirac measure at the origin.

Lemma 4.1. Let pu be a finite measure on the unit disk D which annihilates all p € Py.
Then p(z) = Apo(2), where X is a constant.

Proof. Put A = [} du(z) and dp(z) = du(z) — Adpo(z). For any p € P we have

AMaa@ma:Am@a—p@mum+mmm4@ma:a

Hence, the measure pq annihilates all polynomials p € P and consequently is the zero
measure. g

Let p be a finite positive measure on the unit disk . Denote by 91 the closure of Py
in the the space L?(ID, du) and suppose that 1 ¢ 9. Let F be the orthogonal projection
of 1 onto 1. Then

/D|1 — F(z,2)2du(z) > 0. (4.6)

The function 1 — F is orthogonal to 9. But (1 — F')p is also orthogonal to 91 for every
p € Po. Indeed, F is the limit in L?(D, du) of the sequence of elements p,, from Py and
if p is a fixed element from Py, then (1 — p,)p € Py and converges to (1 — F)p. The
statement that (1 — F') is orthogonal to (1 — F)p for each p € Py means

[ 2l = P, 2)Pdutz) =0 (4.7)
D
Now Lemma 4.1 gives
11— F2du(z) = Mdpo(2), AeR. (4.8)
Denote by Dy the punctured unit disk, Dy = D\ {0}. Then from (4.8) it follows
11— Fdu(z) = 0.
Do

Therefore F = 1 p— almost everywhere on Dy. If, in addition, #({0}) = 0 (x has no mass
at the origin), then

[ 1= PPt =0
D

which contradicts (4.6).
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Suppose now that p({0}) > 0. Since 1 — F = 0 yu— almost everywhere on Dy we have

[ 1= Fa)ldnt) = tim [ 1 pa(e.2) P = n(fo)),
D D

where p,, € Py are polynomials that converge to F in L?(DD, du).
Thus we obtained the following result:

Theorem 4.2. . Let p be a finite positive measure on the unit disk D. Then

Kp(p) = p({0}).

Remark 4.3. Instead of the unit disk D we may consider the unit ball B in C™ and a
positive finite measure v on B. The definition of the Kolmogorov type infimum Kpg(v) is
clear. Using the same arguments as above one obtains

Kp(v) =v({0}).
5. THE SZEGO INFIMUM
First we recall the classical Szeg6-Kolmogorov-Krein theorem:

Theorem 5.1. Let u be a finite positive measure on the unit circle T. Put dy =
w(0)dT + dus, where T is the normalized Lebesgue measure on the unit circle and ug is
the singular component of the measure . Then

1nf /|1 )2 du (o Zc] “9]}
1nf /|1 ) |2w(h)dr : ple Z wj} = exp [/Tlogw(Q)dT] (5.9)

In particular,

St(ps) = inf / 11— p(e")[2dus () : Zc 6193} = 0.

For the proof of Theorem 5.1 we refer for example, to the book [5]. St(u) is called
the Szegd infimum. The operator-theoretic proof of formula (5.9) under the assumption
w € L>®(T,dr) was presented in [1]. Below we give a proof of formula (5.9) using Theorem
2.3 under the assumption that w € L?(T,dr).

Put $ = H?(T) (the Hardy space on the unit circle) and for € > 0 denote W = T}, =
Ty + €I, a (generally speaking unbounded) Toeplitz operator on $ with symbol w + €,
given by

Tyief =Ps(w+e)f, feD(Ty) (5.10)
where Ps is the (Szegd) projection from L?(T,dr) onto H?. The domain of T, is the
set of all f € H? for which right-hand side of (5.10) is in H2. From our assumption
about the function w it follows that H*> C ®(T,,+.). Hence the operator T, . is densely
defined. Since w is a nonnegative real-valued function, Ty, 4. is self-adjoint, T,y > 0,
and T+ has bounded inverse. Also, put 9t = 1.h.{1}. Note, that

N
J = nE P u@)i =< T =) (1= >, ple) = 3™
j=1

consequently, according to Theorem 2.3 one obtains

Sr(w) =lim < [PT, 1 P]7'L 1 >,
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where P is the orthogonal projection of H? onto 1. Now we proceed in the way similar
to that one in [1]. Put

i0
ge(z) = exp [/ eie tz log (w(8) + 6)1/2d7’
TE" —Z

Then g, is an outer function from H*, w(#) + € = |g.(e'?)|?,

19¢(0)|? = exp [ [ log (w(0) + €)dr], and Tyt = Ty Ty, . Hence
Tore =Ty M5 = Tig (Tiy) ™

Now we proceed in the same way as in the proof of Theorem 3.4 and obtain
< [PT, 1. P7'7'1,1 >=g(0)]* = exp [/ log (w(0) + €)dr].
T

Therefore
St(p) = liﬁ)lexp [/ log (w(0) + €)dr].
€ T

Existence of the limit is guaranteed by the monotone convergence theorem.
O

6. THE SzEGO TYPE INFIMUM

Let p be a positive finite measure on the unit disk . We define a Szeg6 type infimum
Sp(p) by the following formula

N
Sp(p) = inf{/D 11— p(2)]Pdu(2) : p(z) = chzj,N is finite} (6.11)
1

Note the essential difference between St(u) and Sp(p). There are singular measures fis
on D such that S(us) >0 (compare with Theorem 5.1!).

Indeed, let ps(z) = cuo(z), po(z) is the Dirac measure at the origin. Then for any
analytic polynomial p(z), p(0) = 0 we have

[ 1= s =
D

But there are singular measures s such that S(us) = 0. Indeed, if the support of the
measure g consists of a finite number of points zx, k = 1,..., N, off the origin, we can
always find an analytic polynomial p(z), p(0) = 0, such that p(zx) = 1. Then for such
polynomial p we have
N
[ =P () = - 1= pla) () =0,

D k=1
Later on we assume that the measure p is absolutely continuous with respect to Lebesgue
measure, that is du(z) = w(z)do(z), w > 0, w € L*(D,do) and write Sp(w) instead of
Sp(wdo). Here do is the normalized Lebesgue measure of the unit disk D.

For a nonnegative function w(z) we denote by T, a Toeplitz operator on the Bergman
space A%(D,do). Recall that T,, is defined by the formula

w
wa:PBwf:/Lf(*nga(g% feg(Tw)7
p (1 —2()
where Pp is the Bergman projection from L?(D,do) onto A%(D,do). We assume that

the domain ©(T),) of the operator T, contains function 1, T, is densely defined and
selfadjoint (this condition, w € L?(D, do), guarantees this, and of course there are other
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functions w € L'(D,do) for which these conditions are satisfied). If we now set in
Theorem 2.3, $§ = A%(D, do), M = L.h.{1}, and W = T,, we obtain

Sp(w) =< [PT,*P]7'1,1 > . (6.12)
Below we give two applications of formula (6.12).

Theorem 6.1. Suppose that a function w is defined on the unit disk D and satisfies the
following conditions:

(1) w(z) >0 for z € D;

(2) we L*(D,o0);

(3) logw is harmonic in D.
Then

Sp(w) = w(0) = exp [/ log w(z)do(2)].

D

Proof. At first we note that condition 3 of the above theorem is necessary and sufficient for
w to admit a factorization w(z) = |g(2)|?, where g is analytic in D. Since w € L*(D, do),
the function g belongs to the Bergman space A*(ID, do). Therefore, the Toeplitz operator
T,, admits a factorization T, = T;T,. Now direct calculations gives Sp(w) = |g(0)|> =
w(0). O

Theorem 6.2. Let a nonnegative function w(z), z € D be of the form

w(z) =(r), z= re'?,

where ¢ € L1([0,1],dr). Then

Sp(w) = 2/01 o(r)rdr = /Dwda

Proof. For a Toeplitz operator T, on Bergman space A?(D,do) with a radial symbol w,
each of the functions ¥, k = 0,1,... is an eigenfunction,

Twzk = )\kzk

where the corresponding eigenvalue A\ is given by

1
A =2(k+ 1)/ o(r)yr T dr = (k+ 1) / wr*do.
0 D

Therefore the domain ©(T;,) of the operator T,, is dense in A?(D)do and TA1 = \;'1.
Now the proof completed as in the proof of Theorem 3.1. O

Corollary 6.3. Let w be a positive harmonic function. Then
/ w(z)do(z) > S(w) > (3 —4log2)w(0) ~ 0.2274w(0).
D
Proof. Indeed, according to the Harnack’s inequality

1-— )
Tw(O), z=re?.

>
w(z) = 1+7r

Now we have

S(w) > w(0) inf{/DH —p(z)|21jr:da(z) p= icjzj}

1—1r

1
= 2w(0) / S dr = (3 —4log 2)w(0) ~ 0.2274w(0).
0 T

It is also obvious that S(w) < [ w(z)do(z) = w(0). O
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Expression (6.11) is the square of the distance in the Hilbert space L*(D, dy) from the
function 1 to the closed subspace generated by analytic polynomials p(z), p(0) = 0. The
following statement is well known (see, for example [3]).

Let hg, hy, ..., be vectors from a Hilbert space §). Let § > 0 be the distance in ) from
ho to the subspace generated by vectors hy,hs...,. Then
det G(ho hl ]’Ln)
6 = L 6.13
oo det Gy, ha, -+, i) (6.13)
where G(hg, h1, ..., hy) is the Gram matriz of vectors hg, h1, ..., hy, and similarly for the

denominator.

In the case of a radial function w the corresponding Gram matrix is diagonal and the
statement of Theorem 6.2 is immediate. Theorem 6.1 can be reformulated as follows:
Let w(z), 2 € D be a nonnegative function, w € L*(D,do) and define

Vik :/ 22w (2)do(2), Jk=0,1,...
D
Suppose that logw(z) is harmonic in D.Then

det (ij)?,k:()
1 n
n—oo det (ij)j’kzl

= w(0).
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