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AN OPERATOR APPROACH TO EXTREMAL PROBLEMS
ON HARDY AND BERGMAN SPACES

MIRON B. BEKKER AND JOSEPH A. CIMA

Abstract. S. Abbott and S. Abbott and B. Hanson developed an operator-theoretic
approach to solve some extremal problems. We give a different proof of a theorem of
S. Abbott and B. Hanson in the case when the corresponding operator is unbounded.
We apply our theorem to the classical Kolmogorov and Szegö infimum problems. We
also consider Kolmogorov and Szegö type infima, when integration over the unit circle
is replaced by integration over the unit disk.

С. Аббот i Б. Хенсон розвинули теоретико-операторний пiдхiд до розв’язаннi
деяких екстремальних задач. Ми даємо нове доведення теореми С. Аббота i
Б. Хенсона для випадку, коли вiдповiдний оператор необмежений. Теорема
застосовується для класичних задач Колмогорова i Сеге про iнфiмум. Також
розглянутi задачi Колмогорова i Сеге про iнфiмум для випадку, коли iнтегрування
ведеться не по колу, а по кругу.

1. Introduction

In 1995 S. Abbott published an article [1] in which, in particular, he proved the
following theorem:

Theorem 1.1. Let W be a bounded nonnegative and invertible operator on a Hilbert
space \frakH and let P be the orthogonal projection onto a closed subspace \scrL \subset \frakH . Then for
any k \in \scrL 

\mathrm{i}\mathrm{n}\mathrm{f}\{ < W (k  - f), k  - f >: f \in \scrL \bot \} =< [PW - 1P ] - 1k, k > .

Remark 1.2. If we do not assume that the operator W is invertible then the right-hand
side of the last formula is equal to

\mathrm{l}\mathrm{i}\mathrm{m}
\epsilon \downarrow 0

< [PW - 1
\epsilon P ] - 1k, k >,

where W\epsilon = W + \epsilon I, \epsilon > 0.

In that article the author applied Theorem 1.1 to some extremal problems. In particular,
the author developed an operator-theoretic approach to the problem of finding Kolmogorov
and Szego infima (see definitions (3.3) and (5.9), respectively). To achieve his results
S. Abbott must assume the absolutely continuous parts of the measures appearing in (3.3)
and (5.9) have bounded densities. The condition of boundedness of the operator W was
removed in article [2]. It allowed the authors to consider problems of finding Kolmogorov
and Szego infima for unbounded weights w.

In the present paper we also remove the condition of boundedness of the operator W
in Theorem 1.1 and give a new proof of the main result of S. Abbott and B. Hanson
(Theorem 2.3 of [2]).
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As in [1] and [2] we prove the formula for the Kolmogorov infimum with the assumption
that w \in L1(\BbbT ) and the formula for the Szegö infimum with assumption that w \in L2(\BbbT ).
We also apply our theorem to the problem of finding the Kolmogorov type and the Szegö
type infima, when integration over the unit circle \BbbT is replaced by integration over the
unit disk \BbbD .

The article is organized as follows. In Section 2 we prove our generalization of Theorem
1.1. In Section 3 we discuss Kolmogorov infimum for the circle. In Section 4 we consider
Kolmogorov type infimum for the disk. Surprisingly, this consideration can be done in an
elementary way. In Section 5 we consider Szego infimum on the unit circle and in Section
6 we discuss Szegö type infimum for the unit disk. We evaluate the values of the infimum
for two classes of functions w(z), namely when \mathrm{l}\mathrm{o}\mathrm{g}w(z) is harmonic and when w is radial.
We also provide an estimate for the value of the Szegö type infimum for harmonic w.

2. Main Theorem

We start with the following lemma.

Lemma 2.1. Let \frakD be a linear set dense in a Hilbert space \frakH and let \frakM \subset \frakD be a
(closed) subspace of \frakH . Then \frakM \bot \cap \frakD is dense in \frakM \bot .

Proof. Pick x \in \frakM \bot . Then there exists a sequence \{ dn\} \infty n=1 \subset \frakD such that x = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

dn.

Denote by P the orthogonal projection from \frakH onto \frakM \bot and put Q = I  - P , that is Q is
the orthogonal projection onto \frakM . We have

x = Px = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

Pdn = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

(dn  - Qdn).

The vectors Pdn \in \frakM \bot . We also have Pdn = dn  - Qdn \in \frakD since \frakM is closed and
\frakM \subset \frakD . \square 

Remark 2.2. Without the condition \frakM \subset \frakD it is possible that \frakM \bot \cap \frakD ={0}. But if
\mathrm{d}\mathrm{i}\mathrm{m}\frakM < \infty then it follows, see [4], that \frakD (W ) \cap \frakM \bot = \frakM \bot 

The next statement is a generalization of Theorem 1.1 for the case when the operator
W is unbounded. It is equivalent to Theorem 2.3 of [2] but our proof is different.

Theorem 2.3. Let W be a non-negative self-adjoint operator in a Hilbert space \frakH and
let \frakD (W ) be the domain of W (\frakD (W ) = \frakH ). Let \frakM be a finite-dimensional subspace of \frakH 
such that \frakM \subset \frakD (W ) and let P = P\frakM be the orthogonal projection of \frakH onto \frakM . Then
for any k \in \frakM 

\mathrm{i}\mathrm{n}\mathrm{f} \{ < W (k  - f), k  - f >: f \in \frakD (W ), Pf = 0\} = (2.1)

< [PW - 1P ] - 1k, k > .

If the operator W is not boundedly invertible, the right side of (2.1) is understood as

\mathrm{l}\mathrm{i}\mathrm{m}
\epsilon \downarrow 0

< [P (W + \epsilon I) - 1P ] - 1k, k > .

Proof. Since W is a non-negative operator, the operator W 1/2 exists and well defined.
The operator W 1/2 is self-adjoint and \frakD (W ) \subset \frakD (W 1/2).

Assume first that the operator W has a bounded inverse W - 1. Then the operator
W - 1/2 is also bounded. Put

\frakL =
\Bigl\{ 
W 1/2f : f \in \frakD (W 1/2) \cap \frakM \bot 

\Bigr\} 
.

Then \frakL is closed in \frakH . Indeed, let \{ hn\} \subset \frakL , hn \rightarrow h. Then the sequence \{ hn\} is
fundamental. If fn = W - 1/2hn, then the sequence \{ fn\} is also fundamental and there
exists \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty fn = f \in \frakM \bot . Since W 1/2 is a closed operator, f \in \frakD (W 1/2) and
h = W 1/2f \in \frakL .
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Denote by Q the orthogonal projection onto the subspace \frakL \bot . Then we have

\mathrm{i}\mathrm{n}\mathrm{f} \{ < W (k  - f), k  - f >: f \in \frakD (W ), Pf = 0\} =

\mathrm{i}\mathrm{n}\mathrm{f}
\Bigl\{ 
\| W 1/2k  - l\| 2 : l \in \frakL 

\Bigr\} 
= \| QW 1/2k\| 2 =\Bigl[ 

\mathrm{s}\mathrm{u}\mathrm{p}
\Bigl\{ 
| < W 1/2k, g > | : g \in \frakL \bot , \| g\| \leq 1

\Bigr\} \Bigr] 2
.

Now, g \in \frakL \bot means

< W 1/2f, g >= 0 \forall f \in \frakD (W 1/2) \cap \frakM \bot .

We write g = g1 + g2 where g1 \in \frakM , g2 \in \frakM \bot and obtain

< W 1/2f, g1 > + < W 1/2f, g2 >= 0 \forall f \in \frakD (W 1/2) \cap \frakM \bot .

Since \frakM \in \frakD (W ) \subset \frakD (W 1/2), the first term of the last expression is < f,W 1/2g1 >.
Thus

< W 1/2f, g2 >=< f, - W 1/2g1 > \forall f \in \frakD (W 1/2) \cap \frakM \bot .

Because \frakD (W 1/2)\cap \frakM \bot is dense in \frakM \bot , the right side of the last expression is a continuous
linear functional on \frakM \bot , consequently so is the left side. Thus there exists g\ast 2 \in \frakM \bot such
that

< W 1/2f, g2 >=< f, g\ast 2 > . (2.2)
Note that < W 1/2f, g2 >=< P\bot W

1/2fP\bot , g2 >, where P\bot is the orthogonal projection
onto the subspace \frakM \bot . According to Stenger’s lemma (see [6]) P\bot W

1/2P\bot is a self-adjoint
operator in \frakM \bot . The equality (2.2) means that g2 belongs to the domain of the operator
P\bot W

1/2P\bot and P\bot W
1/2P\bot g2 = g\ast 2 . Thus we can write

< W 1/2f, g2 >=< f, P\bot W
1/2P\bot g> =< f,W 1/2g2 > .

In summary, we have

0 =< W 1/2f, g1 > + < W 1/2f, g2 >=< f,W 1/2g1 > + < f,W 1/2g2 >=

< f,W 1/2g >, \forall f \in \frakD (W 1/2) \cap \frakM \bot .

Therefore g \in \frakL \bot implies g \in \frakD (W 1/2) and W 1/2g \in \frakM . Conversely, if g \in \frakD (W 1/2) and
W 1/2g \in \frakM , then for any f \in \frakD (W 1/2) \cap \frakM \bot one has

0 =< f,W 1/2g >=< W 1/2f, g >,

i.e. g \in \frakL \bot .
We have shown that g \in \frakL \bot if and only if g \in \frakD (W 1/2) and W 1/2g \in \frakM .
Since the operator W - 1/2 is bounded, for any f \in \frakM we may put g = W - 1/2f . Then

g \in \frakL \bot , hence g \in \frakD (W 1/2). Consequently we have

\mathrm{i}\mathrm{n}\mathrm{f} \{ < W (k  - f), k  - f >: f \in \frakD (W ), Pf = 0\} 

=
\Bigl[ 
\mathrm{s}\mathrm{u}\mathrm{p}

\Bigl\{ 
| < W 1/2k, g > | : g \in \frakL \bot , \| g\| \leq 1

\Bigr\} \Bigr] 2
=

\biggl[ 
\mathrm{s}\mathrm{u}\mathrm{p}

\biggl\{ 
| < W 1/2k, g >

\| g\| 
| : g \in \frakL \bot , g \not = 0

\biggr\} \biggr] 2
=

\biggl[ 
\mathrm{s}\mathrm{u}\mathrm{p}

\biggl\{ 
| < W 1/2k,W - 1/2f >

\| W - 1/2f\| 
| : f \in \frakM , f \not = 0

\biggr\} \biggr] 2
=

\biggl[ 
\mathrm{s}\mathrm{u}\mathrm{p}

\biggl\{ 
| < k, f >

\| W - 1/2f\| 
| : f \in \frakM , f \not = 0

\biggr\} \biggr] 2
.

Let A be an operator on \frakM defined as follows: for f \in \frakM set Af = PW - 1f = PW - 1Pf .
Then A is a non-negative and invertible. Also, for f \in \frakM ,

\| W - 1/2f\| 2 =< W - 1f, f >=< PW - 1Pf, f >=< Af, f >= \| A1/2f\| 2.
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We have

\mathrm{s}\mathrm{u}\mathrm{p}

\biggl\{ 
| < k, f >

\| W - 1/2f\| 
| : f \in \frakM , f \not = 0

\biggr\} 
= \mathrm{s}\mathrm{u}\mathrm{p}

\biggl\{ 
| < A - 1/2k,A1/2f > | 

\| A1/2f\| 
: f \in \frakM , f \not = 0

\biggr\} 
= \mathrm{s}\mathrm{u}\mathrm{p}

\Bigl\{ 
| < A - 1/2k, f > | : f \in \frakM , \| f\| = 1

\Bigr\} 
= \| A - 1/2f\| .

Now combining the equalities above we obtain

\mathrm{i}\mathrm{n}\mathrm{f} \{ < W (k  - f), k  - f >: f \in \frakD (W ), Pf = 0\} = \| A - 1/2k\| 2

=< A - 1k, k >=< [PW - 1P ] - 1k, k > .

If the operator W is not boundedly invertible we use the same argument that was used in
[1] to finish the proof. \square 

Remark 2.4. We may slightly relax the hypotheses of Theorem 2.3 and assume that
the finite-dimensional subspace \frakM satisfies condition

\frakM \subset \frakD (W 1/2).

3. The Kolmogorov Infimum

Denote by \scrQ the set of trigonometric polynomials of the form
\sum M

 - N cke
ik\theta and by

\scrQ 0 \subset \scrQ the set of trigonometric polynomials with c0 = 0. Let \mu be a finite positive
measure on the unit circle \BbbT and let \tau be the normalized Lebesgue measure on the unit
circle. Denote by 1 the constant function from L2(\BbbT , d\tau ) which assumes the value 1 at
each point of the circle.

The Kolmogorov infimum for the circle, K\BbbT (\mu ), is defined as follows:

K\BbbT (\mu ) = \mathrm{i}\mathrm{n}\mathrm{f}\{ 
\int 
\BbbT 
| 1 - q(ei\theta )| 2d\mu (\theta ) : q \in \scrQ 0\} . (3.3)

If the measure \mu is absolutely continuous with respect to the Lebesgue measure, d\mu =
w(\theta )d\tau , w \geq 0, w \in L1(\BbbT , d\tau ) we write KT (w) instead of K\BbbT (\mu ).

Using the same arguments that are given in [5], pp.44-45, one deduces that K\BbbT (\mu )
depends only on the absolutely continuous part of \mu .

Theorem 3.1. Let \mu be a positive measure on the unit circle \BbbT . If d\mu (\theta ) = w(\theta )d\tau + d\mu s

(\mu s is the singular part of \mu ), then

K\BbbT (\mu ) = K\BbbT (w) =
\Bigl[ \int 

\BbbT 

1

w(\theta )
d\tau 

\Bigr]  - 1

. (3.4)

If w /\in L1(\BbbT , d\tau ), then K\BbbT (\mu ) = 0.

Proof. We use Theorem 2.1 and Remark 2.4. Put \frakH = L2(\BbbT , d\tau ) and denote by W 1/2 =
Mw1/2 the operator of multiplication by w1/2. The domain \frakD (W 1/2) of W 1/2 is the set
of all f \in L2(\BbbT , d\tau ) such that

\sqrt{} 
w(\theta )f(\theta ) \in L2(\BbbT , d\tau ). Since L\infty (\BbbT , d\tau ) \subset \frakD (W 1/2), the

operator W 1/2 is densely defined and clearly self-adjoint. Then the operator W = Mw is
also densely defined and self-adjoint.

Also, put \frakM = \mathrm{l}.\mathrm{h}.\{ 1\} (l.h. means linear hull), the subspace generated by the constant
function 1, and the vector k is that constant function 1. Then according to Theorem 2.1
we have

K(w) =< [PM - 1
w P ] - 1

1,1 >,

where P is the orthogonal projection in \frakH onto \frakM .
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Put [PM - 1
w P ] - 1

1 = h. Then K(\omega ) =< h,1 >= h0. We have

1 = PM - 1
w Ph = h0PM - 1

\omega 1 = h0

\biggl( \int 
\BbbT 

d\tau 

w(\theta )

\biggr) 
P1 = h0

\biggl( \int 
\BbbT 

d\tau 

w(\tau )

\biggr) 
1.

Therefore, h0 =
\bigl( \int 

\BbbT 
d\tau 

w(\theta 

\bigr)  - 1. The theorem is proved. \square 

4. The Kolmogorov Type Infimum

Denote by \scrP = \scrP (z, \=z) the set of polynomials p(z, \=z) of variables z and \=z, z \in \BbbD , and
by \scrP 0 \subset \scrP polynomials satisfying the condition p(0, 0) = 0.

Under the Kolmogorov type infimum we understand the quantity K(\mu ) defined as
follows:

K\BbbD (\mu ) = \mathrm{i}\mathrm{n}\mathrm{f}
\Bigl\{ \int 

\BbbD 
| 1 - p(z, \=z)| 2d\mu (z) : f \in \scrP 0)

\Bigr\} 
, (4.5)

where \mu is a positive measure on the unit disk \BbbD . The quantity K\BbbD (\mu ) is the square of
the distance from 1 to the closure of \scrP 0 in the Hilbert space L2(\BbbD , d\mu ).

Denote by \mu 0(z) the Dirac measure at the origin.

Lemma 4.1. Let \mu be a finite measure on the unit disk \BbbD which annihilates all p \in \scrP 0.
Then \mu (z) = \lambda \mu 0(z), where \lambda is a constant.

Proof. Put \lambda =
\int 
\BbbD d\mu (z) and d\mu 1(z) = d\mu (z) - \lambda d\mu 0(z). For any p \in \scrP we have\int 

\BbbD 
p(z, \=z)d\mu 1(z) =

\int 
\BbbD 
[p(z, \=z) - p(0, 0)]d\mu 1 + p(0, 0)

\int 
\BbbD 
d\mu 1(z) = 0.

Hence, the measure \mu 1 annihilates all polynomials p \in \scrP and consequently is the zero
measure. \square 

Let \mu be a finite positive measure on the unit disk \BbbD . Denote by \frakN the closure of \scrP 0

in the the space L2(\BbbD , d\mu ) and suppose that 1 /\in \frakN . Let F be the orthogonal projection
of 1 onto \frakN . Then \int 

\BbbD 
| 1 - F (z, \=z)| 2d\mu (z) > 0. (4.6)

The function 1 - F is orthogonal to \frakN . But (1 - F )p is also orthogonal to \frakN for every
p \in \scrP 0. Indeed, F is the limit in L2(\BbbD , d\mu ) of the sequence of elements pn from \scrP 0 and
if p is a fixed element from \scrP 0, then (1  - pn)p \in \scrP 0 and converges to (1  - F )p. The
statement that (1 - F ) is orthogonal to (1 - F )p for each p \in \scrP 0 means\int 

\BbbD 
p(z, \=z)| 1 - F (z, \=z)| 2d\mu (z) = 0. (4.7)

Now Lemma 4.1 gives

| 1 - F | 2d\mu (z) = \lambda d\mu 0(z), \lambda \in \BbbR . (4.8)

Denote by \BbbD 0 the punctured unit disk, \BbbD 0 = \BbbD \setminus \{ 0\} . Then from (4.8) it follows\int 
\BbbD 0

| 1 - F | 2d\mu (z) = 0.

Therefore F = 1 \mu  - almost everywhere on \BbbD 0. If, in addition, \mu (\{ 0\} ) = 0 (\mu has no mass
at the origin), then \int 

\BbbD 
| 1 - F | 2d\mu (z) = 0

which contradicts (4.6).



OPERATOR APPROACH TO EXTREMAL PROBLEMS 147

Suppose now that \mu (\{ 0\} ) > 0. Since 1 - F = 0 \mu  - almost everywhere on \BbbD 0 we have\int 
\BbbD 
| 1 - F (z, \=z)| d\mu (z) = \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

\int 
\BbbD 
| 1 - pn(z, \=z)| 2d\mu = \mu (\{ 0\} ),

where pn \in \scrP 0 are polynomials that converge to F in L2(\BbbD , d\mu ).
Thus we obtained the following result:

Theorem 4.2. . Let \mu be a finite positive measure on the unit disk \BbbD . Then

K\BbbD (\mu ) = \mu (\{ 0\} ).

Remark 4.3. Instead of the unit disk \BbbD we may consider the unit ball B in \BbbC n and a
positive finite measure \nu on B. The definition of the Kolmogorov type infimum KB(\nu ) is
clear. Using the same arguments as above one obtains

KB(\nu ) = \nu (\{ 0\} ).

5. The Szegö Infimum

First we recall the classical Szegö-Kolmogorov-Krein theorem:

Theorem 5.1. Let \mu be a finite positive measure on the unit circle \BbbT . Put d\mu =
w(\theta )d\tau + d\mu s, where \tau is the normalized Lebesgue measure on the unit circle and \mu s is
the singular component of the measure \mu . Then

S\BbbT (\mu ) = \mathrm{i}\mathrm{n}\mathrm{f}
\Bigl\{ \int 

\BbbT 
| 1 - p(ei\theta )| 2d\mu (\theta ) : p(ei\theta ) =

N\sum 
j=1

cje
i\theta j

\Bigr\} 

= \mathrm{i}\mathrm{n}\mathrm{f}
\Bigl\{ \int 

\BbbT 
| 1 - p(ei\theta )| 2w(\theta )d\tau : p(ei\theta ) =

N\sum 
j=1

cje
i\theta j

\Bigr\} 
= \mathrm{e}\mathrm{x}\mathrm{p}

\Bigl[ \int 
\BbbT 
\mathrm{l}\mathrm{o}\mathrm{g}w(\theta )d\tau 

\Bigr] 
. (5.9)

In particular,

S\BbbT (\mu s) = \mathrm{i}\mathrm{n}\mathrm{f}
\Bigl\{ \int 

\BbbT 
| 1 - p(ei\theta )| 2d\mu s(\theta ) : p(e

i\theta ) =

N\sum 
j=1

cje
i\theta j

\Bigr\} 
= 0.

For the proof of Theorem 5.1 we refer for example, to the book [5]. S\BbbT (\mu ) is called
the Szegö infimum. The operator-theoretic proof of formula (5.9) under the assumption
w \in L\infty (\BbbT , d\tau ) was presented in [1]. Below we give a proof of formula (5.9) using Theorem
2.3 under the assumption that w \in L2(\BbbT , d\tau ).

Put \frakH = H2(\BbbT ) (the Hardy space on the unit circle) and for \epsilon > 0 denote W = Tw+\epsilon =
Tw + \epsilon I, a (generally speaking unbounded) Toeplitz operator on \frakH with symbol w + \epsilon ,
given by

Tw+\epsilon f = PS(w + \epsilon )f, f \in \frakD (Tw) (5.10)
where PS is the (Szegö) projection from L2(\BbbT , d\tau ) onto H2. The domain of Tw+\epsilon is the
set of all f \in H2 for which right-hand side of (5.10) is in H2. From our assumption
about the function w it follows that H\infty \subset \frakD (Tw+\epsilon ). Hence the operator Tw+\epsilon is densely
defined. Since w is a nonnegative real-valued function, Tw+\epsilon is self-adjoint, Tw+\epsilon \geq 0,
and Tw+\epsilon has bounded inverse. Also, put \frakM = \mathrm{l}.\mathrm{h}.\{ 1\} . Note, that\int 

\BbbT 
| 1 - p(ei\theta )| 2w(\theta )d\theta =< Tw(1 - p), (1 - p) >, p(ei\theta ) =

N\sum 
j=1

cje
i\theta j .

consequently, according to Theorem 2.3 one obtains

S\BbbT (\mu ) = \mathrm{l}\mathrm{i}\mathrm{m}
\epsilon \downarrow 0

< [PT - 1
w+\epsilon P ] - 1

1,1 >,
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where P is the orthogonal projection of H2 onto 1. Now we proceed in the way similar
to that one in [1]. Put

g\epsilon (z) = \mathrm{e}\mathrm{x}\mathrm{p}

\biggl[ \int 
\BbbT 

ei\theta + z

ei\theta  - z
\mathrm{l}\mathrm{o}\mathrm{g} (w(\theta ) + \epsilon )1/2d\tau 

\biggr] 
Then g\epsilon is an outer function from H4, w(\theta ) + \epsilon = | g\epsilon (ei\theta )| 2,
| g\epsilon (0)| 2 = \mathrm{e}\mathrm{x}\mathrm{p} [

\int 
\BbbT \mathrm{l}\mathrm{o}\mathrm{g} (w(\theta ) + \epsilon )d\tau ], and Tw+\epsilon = T \=g\epsilon Tg\epsilon . Hence

T - 1
w+\epsilon = T - 1

g\epsilon T - 1
\=g\epsilon = T - 1

1/g\epsilon 
(T \ast 

1/g\epsilon 
) - 1.

Now we proceed in the same way as in the proof of Theorem 3.4 and obtain

< [PT - 1
w+\epsilon P

 - 1] - 1
1,1 >= | g\epsilon (0)| 2 = \mathrm{e}\mathrm{x}\mathrm{p} [

\int 
\BbbT 
\mathrm{l}\mathrm{o}\mathrm{g} (w(\theta ) + \epsilon )d\tau ].

Therefore

S\BbbT (\mu ) = \mathrm{l}\mathrm{i}\mathrm{m}
\epsilon \downarrow 0

\mathrm{e}\mathrm{x}\mathrm{p} [

\int 
\BbbT 
\mathrm{l}\mathrm{o}\mathrm{g} (w(\theta ) + \epsilon )d\tau ].

Existence of the limit is guaranteed by the monotone convergence theorem.
\Box 

6. The Szegö Type Infimum

Let \mu be a positive finite measure on the unit disk \BbbD . We define a Szegö type infimum
S\BbbD (\mu ) by the following formula

S\BbbD (\mu ) = \mathrm{i}\mathrm{n}\mathrm{f}\{ 
\int 
\BbbD 
| 1 - p(z)| 2d\mu (z) : p(z) =

N\sum 
1

cjz
j , N is finite\} (6.11)

Note the essential difference between S\BbbT (\mu ) and S\BbbD (\mu ). There are singular measures \mu s

on \BbbD such that S(\mu s) > 0 (compare with Theorem 5.1!).
Indeed, let \mu s(z) = c\mu 0(z), \mu 0(z) is the Dirac measure at the origin. Then for any

analytic polynomial p(z), p(0) = 0 we have\int 
\BbbD 
| 1 - p(z)| 2d\mu s(z) = c.

But there are singular measures \mu s such that S(\mu s) = 0. Indeed, if the support of the
measure \mu s consists of a finite number of points zk, k = 1, . . . , N, off the origin, we can
always find an analytic polynomial p(z), p(0) = 0, such that p(zk) = 1. Then for such
polynomial p we have\int 

\BbbD 
| 1 - p(z)| 2d\mu s(z) =

N\sum 
k=1

| 1 - p(zk)| 2\mu s(\{ zk\} ) = 0.

Later on we assume that the measure \mu is absolutely continuous with respect to Lebesgue
measure, that is d\mu (z) = w(z)d\sigma (z), w \geq 0, \omega \in L1(\BbbD , d\sigma ) and write S\BbbD (w) instead of
S\BbbD (wd\sigma ). Here d\sigma is the normalized Lebesgue measure of the unit disk \BbbD .

For a nonnegative function w(z) we denote by Tw a Toeplitz operator on the Bergman
space A2(\BbbD , d\sigma ). Recall that Tw is defined by the formula

Twf = PBwf =

\int 
\BbbD 

w(\zeta )f(\zeta )

(1 - z\=\zeta )2
d\sigma (\zeta ), f \in \frakD (Tw),

where PB is the Bergman projection from L2(\BbbD , d\sigma ) onto A2(\BbbD , d\sigma ). We assume that
the domain \frakD (Tw) of the operator Tw contains function 1, Tw is densely defined and
selfadjoint (this condition, w \in L2(\BbbD , d\sigma ), guarantees this, and of course there are other
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functions w \in L1(\BbbD , d\sigma ) for which these conditions are satisfied). If we now set in
Theorem 2.3, \frakH = A2(\BbbD , d\sigma ), \frakM = \mathrm{l}.\mathrm{h}.\{ 1\} , and W = Tw we obtain

S\BbbD (w) =< [PT - 1
w P ] - 1

1,1 > . (6.12)

Below we give two applications of formula (6.12).

Theorem 6.1. Suppose that a function w is defined on the unit disk \BbbD and satisfies the
following conditions:

(1) w(z) > 0 for z \in \BbbD ;
(2) w \in L2(\BbbD , \sigma );
(3) \mathrm{l}\mathrm{o}\mathrm{g}w is harmonic in \BbbD .

Then
S\BbbD (w) = w(0) = \mathrm{e}\mathrm{x}\mathrm{p} [

\int 
\BbbD 
\mathrm{l}\mathrm{o}\mathrm{g}w(z)d\sigma (z)].

Proof. At first we note that condition 3 of the above theorem is necessary and sufficient for
w to admit a factorization w(z) = | g(z)| 2, where g is analytic in \BbbD . Since w \in L2(\BbbD , d\sigma ),
the function g belongs to the Bergman space A4(\BbbD , d\sigma ). Therefore, the Toeplitz operator
Tw admits a factorization Tw = T\=gTg. Now direct calculations gives S\BbbD (w) = | g(0)| 2 =
w(0). \square 

Theorem 6.2. Let a nonnegative function w(z), z \in \BbbD be of the form

w(z) = \varphi (r), z = rei\theta ,

where \varphi \in L1([0, 1], dr). Then

S\BbbD (w) = 2

\int 1

0

\varphi (r)rdr =

\int 
\BbbD 
wd\sigma 

Proof. For a Toeplitz operator Tw on Bergman space A2(\BbbD , d\sigma ) with a radial symbol w,
each of the functions zk, k = 0, 1, . . . is an eigenfunction,

Twz
k = \lambda kz

k

where the corresponding eigenvalue \lambda k is given by

\lambda k = 2(k + 1)

\int 1

0

\varphi (r)r2k+1dr = (k + 1)

\int 
\BbbD 
wr2kd\sigma .

Therefore the domain \frakD (Tw) of the operator Tw is dense in A2(\BbbD )d\sigma and T1

w1 = \lambda  - 1
0 1.

Now the proof completed as in the proof of Theorem 3.1. \square 

Corollary 6.3. Let w be a positive harmonic function. Then\int 
D

w(z)d\sigma (z) \geq S(w) \geq (3 - 4 \mathrm{l}\mathrm{o}\mathrm{g} 2)w(0) \approx 0.2274w(0).

Proof. Indeed, according to the Harnack’s inequality

w(z) \geq 1 - r

1 + r
w(0), z = rei\theta .

Now we have

S(w) \geq w(0) \mathrm{i}\mathrm{n}\mathrm{f}
\Bigl\{ \int 

\BbbD 
| 1 - p(z)| 2 1 - r

1 + r
d\sigma (z) : p =

N\sum 
j=1

cjz
j
\Bigr\} 

= 2w(0)

\int 1

0

r
1 - r

1 + r
dr = (3 - 4 \mathrm{l}\mathrm{o}\mathrm{g} 2)w(0) \approx 0.2274w(0).

It is also obvious that S(w) \leq 
\int 
\BbbD \omega (z)d\sigma (z) = w(0). \square 
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Expression (6.11) is the square of the distance in the Hilbert space L2(\BbbD , d\mu ) from the
function 1 to the closed subspace generated by analytic polynomials p(z), p(0) = 0. The
following statement is well known (see, for example [3]).

Let h0, h1, . . . , be vectors from a Hilbert space \frakH . Let \delta \geq 0 be the distance in \frakH from
h0 to the subspace generated by vectors h1, h2 . . . ,. Then

\delta 2 = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\mathrm{d}\mathrm{e}\mathrm{t}G(h0, h1, . . . , hn)

\mathrm{d}\mathrm{e}\mathrm{t}G(h1, h2, . . . , hn)
(6.13)

where G(h0, h1, . . . , hn) is the Gram matrix of vectors h0, h1, . . . , hn and similarly for the
denominator.

In the case of a radial function w the corresponding Gram matrix is diagonal and the
statement of Theorem 6.2 is immediate. Theorem 6.1 can be reformulated as follows:
Let w(z), z \in \BbbD be a nonnegative function, w \in L2(\BbbD , d\sigma ) and define

\gamma jk =

\int 
D

zk \=zjw(z)d\sigma (z), j, k = 0, 1, . . .

Suppose that \mathrm{l}\mathrm{o}\mathrm{g}w(z) is harmonic in \BbbD .Then

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\mathrm{d}\mathrm{e}\mathrm{t} (\gamma jk)
n
j,k=0

\mathrm{d}\mathrm{e}\mathrm{t} (\gamma jk)nj,k=1

= w(0).
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