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ON SET-VALUED FUNCTIONAL INTEGRAL EQUATIONS OF
HAMMERSTEIN-STIELTJES TYPE: EXISTENCE OF SOLUTIONS,
CONTINUOUS DEPENDENCE, AND APPLICATIONS

AHMED M. A. EL-SAYED AND SHOROUK M. AL-ISSA

ABsTrACT. We study the existence of continuous solutions of a nonlinear functional
integral inclusion of Hammerstein-Stieltjes type. The continuous dependence of the
solutions on the set of selections and on some other functions will be proved. Nonlinear
set-valued functional integral equations of Chandrasekhar type and nonlinear set-
valued fractional-orders functional integral equations will be given as applications.
An initial value problem of fractional-orders set-valued integro-differential equation
will be considered.

JocmimKyeThcst iCHyBaHHsI HEIIEPEPBHUX PO3B’SI3KiB HEJIIHIHHOTO (DbYHKIIIOHAJIBEHOTO
iHTerpajbHOro BK/OYeHHs Tuny [amepirreiina-Crinrbeca. loBeneHna HenmepepBHA
3aJIEXKHICTh PO3B’SI3KY BiJ] MHOXKMHM BUOOPOK 1 Jiesikux iHImuxX yHKIin. kK 3acrocy-
BaHHs, PO3IVISIIAI0ThCs HeliHiiHI OaraTo3nauni OyHKIIOHAIBHI iHTErpaabHi PiBHSIHHS
Tuny Yauapacekapa i HesiHiiiHI 6araTo3HadHi pyHKIIOHAIBH] IHTErpaabHi PIBHAHHSA
IPOOOBHUX MOPSJIKIB, & TAKOXK 3a/a4i 3 [OYATKOBIUMU YMOBAMHU JIJIs OCTAHHBOI'O KJIACY
PiBHSAHB.

1. INTRODUCTION

The integral equations of Hammerstein-Stieltjes type have been studied by some authors,
for example, see [8, 12]. In this paper, we investigate the existence and uniqueness results
for the functional integral equation of Hammerstein-Stieltjes type

£(t) = p(t) + / K(t, ) (s, /OSfgw,m(so(e)))degz(&9>>dsgl<t,s>, ts €01, (11)

Our results will be generalized for functional integral inclusion of Hammerstein-Stieltjes
type

x(t) Gp(t)+/0 k(t, s) Fl(sa/os f2(0,2(0(0)))dogz(s,0))dsg1(t,s), t,s €1[0,1] (1.2)

where F : [0,1] x R — P(R) is a multivalued map and P(R) is the family of all nonempty
subsets of R.

The Chandrasekhar integral equation has been studied in some papers (for example, see
[1,4,6,9,17]) and references therein. As applications of (1.2) the nonlinear Chandrasekhar
set-valued functional integral equation

1 s S
the Set-valued fractional-orders integral equation

(1) 6p(t)+/0 k(L 5) Fl(s,/os(‘”;("oz;_
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t+ s

f2(0,2(p(0)))d0)ds, s,0 €10,1], (1.4)
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and the set-valued fractional-orders integro-differential equation

dx(t)
dt

e /1 Fi(s, DVa(s))ds, t € (0,1], 7 € (0,1], (1.5)
0

z(0) = zo, (1.6)

where « ,v € (0,1), will be considered.

The paper is organized as follows. In Section 2, we recall some useful preliminaries.
Section 3 is devoted to a study of existence, uniqueness and continuous dependence of
solutions on the functions g;, (i = 1,2) for Single-valued nonlinear Hammerstein-Stieltjes
integral equation (1.1). While in Section 4, we discuss existence results for the set-valued
equation (1.2) with continuous dependence on the set Sp,, we also discuss some special
cases of inclusion by present the existence of solutions for the set-valued Chandrasekhar
nonlinear functional integral equation. As an application on the previous results for
inclusion (1.2), we also discuss the nonlinear Hammerstein functional integral inclusion of
fractional order, the set-valued fractional-order integro-differential equations will be also
considered.

2. PRELIMINARIES

Here we recall some theorem, definitions, and preliminary facts.
First, denote by I = [0,1] a fixed interval, and by C(I,R) the Banach space of
continuous functions from the interval I into R with the standard norm

[z]lc = sup |z(t)].
tel
The product space X = C(I,R) x C(I,R) turns out to be a Banach space with the norm

(@ 9)llx = llzllo + lyllo-

Definition 2.1. Let F be a set-valued map defined on a Banach space E, f is called a
selection of F' if f(x) € F(x), for every z € E and we denote by

Sp={f:f(z) e F(z),z € E}
the set of all selections of F' (for properties of the selection of F see [7, 18, 19]).

Definition 2.2. A set-valued map F' from I x E to family of all nonempty closed subsets
of F is called Lipschitzian if there exists k > 0 such that for all ¢,s € I and all x1,22 € F,
we have

h(F(t,x1), F(s,x2)) < k(|t — s| + |x1 — z2|), (2.7)

where h(A, B) is the Hausdorff distance between subsets A, B C I x E. (For properties
of the Hausdorff distance see [3]).

The following Theorem [3, Sect. 9, Chap. 1, Th. 1] assumes the existence of a Lips-
chitzian selection.

Theorem 2.3. Let M be a metric space and F be Lipschitzian set-valued function from
M into nonempty compact convex subsets of R™. Assume, moreover, that for some X\ > 0,
F(x) C AB for all € M where B is the unit ball on R™. Then there exists a constant
¢ and a single-valued function f : M — R™, f(x) € F(x) for x € M; this function is
Lipschitzian with a constant k.

Next, we recall some properties of the Stieltjes integral that will be used in our
considerations (cf. [2]).
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Lemma 2.4. Assume that x is Stieltjes integrable on the interval [a,b] with respect to a
function ¢ of bounded variation. Then

|/ d¢|</Wx\d

Lemma 2.5. Let x1 and xo be Stieltjes integrable functions on the interval [a,b] with
respect to a nondecreasing function ¢ such that x1(t) < xa2(t) for t € [a,b]. Then the
following inequality is satisfied:

b b
/xl(t)dgb(t)g/ xo(t)do(t).

Finally, we recall some basic facts related to fractional calculus.

Definition 2.6. The Riemann-Liouville of fractional integral of a function f € L'(I,R™)
of order o € RY is defined by (see |21, 22, 23] )

t _Safl
o= [ @F&)ﬂ$@,

where I'(.) is the Euler gamma function and when a = 0, we have I® f(t) = I§ f(t).

Definition 2.7. The Liouville-Caputo fractional derivative of f(t) of o a € (0,1] is
defined as follows

D f(t) = ' L is) = / D2 L f(s)) ds.

O[

For further properties of fractional calculus operator (see [10, 22, 23])

3. EXISTENCE AND UNIQUENESS RESULTS FOR SINGLE-VALUED PROBLEM

Here, we are regarding the integral nonlinear functional integral value Hammerstein-
Stieltjes type (1.1)

1 s
(t(t) :p(t)+/(3 k(tvs)fl(sv/o f2(97x(@(9)))d992(870))dsgl(ta S)a l,s € [Oa 1]

This equation will be studied under the following assumptions:

(i) p: I — I is a continuous function, with p* = sup,¢; [p(t)|.
(ii) ¢ : I — I is a continuous function.
(iii) f1: I xR — R is a continuous function and there exist two constants k and f;
such that

[fu(t, )| < f1 + Kl
(iv) fo: I xR — R is a continuous function and there exist two constants a and b
such that

|f2(t,2)] < a+ bz vVt elandzeR.
(v) k(t,s) is a continuous function such that

K =sup|k(t,s)|, and K is a positive constant.
tel

(vi) The functions g; are continuous on the triangle A; for i = 1,2, where
Ny ={(t,s):0<s<t<T}
Do ={(s,0):0<0<s<T}.
(vii) The functions s — g¢;(¢, s) are of bounded variation on [0, t] for each ¢ € I, (i=1,2).
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(viii) For any e > 0 there exists 6 > 0 such that, for all ¢1;¢5 € I such that ¢; < t3 and
to — t1 < 6, the following inequality holds:
t1

V1gi(t2, s) = gi(t1,5)] < e

0
fori=1,2.
(ix) g¢i(t,0) =0 for any t € I (i=1,2).

In the sequel we will need the following lemmas.
Lemma 3.1 ([13]). The function z — \/>_, g(t, s) is continuous on [0,t] for any t € I.

Lemma 3.2 ([13]). Let the assumptions (vi)-(iz) be satisfied. Then, for arbitrary fized
number 0 < to € I and for any € > 0, there exists 6 > 0 such that if t1 € I, t; < to and

to —t1 < 6§, we have
ta

\/ g(ta;s) <e.

s=t1

Lemma 3.3 ([13]). Under the the assumptions (vi)-(iz), the function t — \/'_, g(t,s) is
continuous on I.

Moreover, let us note that based on Lemma 3.3, we conclude that there is a positive

fixed constant H,
t
H—sup{\/gg (t,s }

tel s=0

In what follows we will assume that the functions t — ¢1(¢,1) and t — g¢1(¢,0) are
continuous on I. Let us put

p=sup |g1(t, 1)| + sup g1 (¢, 0)],
tel tel

€) = SUP{\/(gz(tz,S) —g2(t1,8)) s t1,ta € I, t1 <tg; ta —t1 <€}
s=0

Now, let
/fgsa: )))dsga(t,s) t € I.

Then (1.1) can be written in the form of the following coupled system
1
£(t) = p(t) + / Kt sy dai(ts),  tel, (38)

/ fa(s,z(p(s))dsga(t, s), tel. (3.9)
Definition 3.4. By solutions of the coupled system (3.8), (3.9), we mean functions
x,y € C(I,R) satisfying (3.8), (3.9).

Theorem 3.5. Let the assumptions (i) — (iz) be satisfied. Then there exists at least one
continuous solution u = (x,y), x,y € C(I,R) of the coupled system (3.8), (3.9).

Proof. Let the set @, be defined as
Qr ={u=(z,9): (z,y) € X, |zl <71, [lyl <72, [Jull <7 =r1+72},

P+ Kp + aH

where r = == yom o2 1t is clear that the set (), is nonempty, bounded, closed,

and convex.
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Let A be any operator defined by
Au(t) = A(z(t),y(t)) = (Ary(t), A2z(1)),
Ay(t) = / k(t,s) f1(s,y(s))dsq1(t, s), tel,
and
Agx(t) / Ja(s,2(é(s))dsga(t, s), tel,

where for u = (z,y) € Q,,
|Ary()] = p(t) + / k(1 $) 1 (5,4(5) dun (8, 5)|
1
< ()] + / Ikt )L (5. 9(3))] |dugn (8, )]

<p +/ K(kly| + f7)d \/91 ,p))

p=0
Taking the supremum over t € I, we get
Ayl < p* + K(kes + f7 / dugn(t,)

( )
p"+ K(kri + f)[91(t, 1) — g1(¢,0)]
"+ K(kri + f1)[lg1(t, 1) + [91(2,0)]]
p*+ K(kr1 + fl)[Suplgl(t 1) +Sup|91(t 0)]]

IN A IA

P+ fiKp
1-kKp -~

IN

prH Kkt fp=r, =
Also,

Ase(t)] = | / fols, 2(0(5)) dsga(t, )|
< / Fa(s, 2(p(5)))] daga(t, 5)]

s/o[a+b|ar (\/g2tp>

Taking the supremum over t € I, we get

|Asz| < (a+bro) (\/ g2(t, s )
t
< (a+bry) sup <s\/og2 (t,s )
aH
< (a+bro)H =19, r2:1—bH'
Thus, we obtain
[Aullx = [[Awyllc + |A2zllc < 71472
< p*+ffKu+ aH .

=TT _Kku | 1—_bH
Then AQ, C Q, and the class {Au}, u € Q, is uniformly bounded.

161
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Now, for u = (z,y) € Q. for all e > 0, 6 > 0 and for each t1,ts € I, t; < ta such that
|ta — t1] < 0, we have

|Avy(t2) — Ary(t1)] < |p(t2) — p(t1)]

‘/ (t2,8) f1(s,y(s))dsg1(t2,5) — /1 (thS)fl(svy(s))dsgl(tl,s)‘

< Ip(t2) — p(t1)|

| bt 010Dt 129) [ K01, u(oD et 1,)
1
+ / K(t1, $) Fa (5. 0(5))dugi (t2. 8) — / K(t1, $) fu(s. 9(5))duga (11, 5)

< 12) =000+ | [ 802,5) — K1, 5,060 o 9|
[ b1 60D e 02,6) ~ 10,0

< fts) =00 + [ 5(.9) = bt 9y e ,5)
[ 0 A D 1) ~ e 1,5)

< Ip(t2) — t1|+/|k‘t28 k(ty, s)|[kly(s)| + fid \/glt2p

S

" / (s, $)[Fly(3)] + 1105\ 91 (12, ) — daga (11, )]

p=0

1
< Ip(t2) — p(t2)] + [k + ] / (k(ta, ) — k{1, 5)|duga (t2. 5))
K[kﬂ‘l —|—f1*]/ ds[g1(t2,3) _dsgl(ths)]
0
< Ip(ts) — p(t2)] + [y + f5] / kb2, )] + k| (b1, ) daga (t2, )

1
+ Klkr + f7] / A9 (t2.5) — dug (1, 5)]

< |p(t2) = p(tr)| + 2KT[kry + f1][[g1(t2,1) — g1(t2,0)]
+ K[kr1 + fiDllg1(t2, 1) — g1(t1, )| + |g1(t2,0) — g1(t1,0)]]

and

ta t1

[Aaalte) = Axa(t)| < | [ Pls.a(e())da(tas) = [ fals.alels))dugaltr. )
+\/ fols, 2(0(5))))daga(t2, 5) / fols, 2(0(5))) duga(ty. )|
<|/ " o5, 2((5))) ) daga (s, )|

+ /O  fals.2((5))[dagalter s) — duga(tr, )|
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ta
g/ [a + bla(yp \/92 (t2,p)
t1

s

+ / 1[a+b|x<so<s)>uds<\/[ggm,p)—ggul,p)]

p=0
< (a+bry)| / ds<]¥)gz<t27p>>] + / 1 ds(p\:/o[m(t%p) — ga(t1,p)]
<(a+ b7’2)[\/ 92(ta, s) — \/ g(t2,s) + \/ [92(t2,5) = 92 (t1, 5)]]
s=0 s=0 s=0
< (a+bro)] \/ ga(t2,8) + N(e)].

For the operator A and u € ), we have
Au(tz) — Au(tr) = A(z,y)(t2) — Az, y)(t1)
= (A1y(t2), Azz(tz)) — (Ary(tr), Azz(ts))
= (Ary(t2) — Ary(t1), A2z (t2) — Agz(t1)),
and consequently, we obtain
[Au(te) — Au(t)llx = [[(A1y(t2) — Ary(ta), Asz(t2) — Axz(t1))llx
= [[Awy(t2) — Avy(ta)lle + | A2z (t2) — Azz(ta)llc,
= |p(t2) — p(t1)| + 2KT[kr1 + f][[g1(t2, 1) — g1(t2,0)]
+ Kkr1 + f{Dllg1(t2, 1) — g1(t1, )| + 191 (t2,0) — g1(t1,0)]]

to

+ (a+bro)| \/ g2(t2, s) + N(e)].

s=t1

This means that the class of functions {Au} is equicontinuous on @Q,. Then by the
Arzela-Ascoli Theorem [11], the operator A is compact.

It remains to prove the continuity of 4 : @, — Q,. Let w, = (z,,y.) be a sequence
in Q, with z, — 2 and y, — «, and since fi(t,y(t)) and fo(t,z(t)) are continuous
in X, fi(t,yn(t)) and fa(t,z,(t)) converges to fi(t,y(t)) and fo(t,x(¢)), we have that
fa(t,zn(p(t))) converges to fo(t, z(p(t))) (see assumption (ii))-(iv)) and applying the
Lebesgue Dominated Convergence Theorem, we get

¢

lim [ fals,2a((5)degs(,5) / fo(5,2((5))daga(t, ),

n— o0 O
and

1
lim i k(t,s)f1(s,yn(s ))dsg1(t,8)—/0 k(t, ) f1(s,y(s))dsg1(t, s),
then
1
nlgroloAlyn(t) p(t )+nhHH;o k(t,s)f1(s,yn(s))dsg1 (2, s)
/ Kt 5) (s, y())dsgn () = Ay(),  tel,

and

t

lim Asx,(t) = lim fa(s, 20 (0(8)))dsg2(t, s)

n—oo n—oQ 0
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/ fa(s,2(0(8)))dsga(t, s) = Aqx(t), tel.
Hence,
HILH;O Auy(t) = nlLH;O(Aly”(t)’ Asx, (b)),
= (nh_{rolo Alyn(t)7nli_>rrolo Aoz, (1)) = (A1y(t), A2z (t)) = Au(t).
Since all conditions of the Schauder fixed-point theorem [20] hold, we concluded that A
has a fixed point u € @,, and then the system (3.8), (3.9) has at least one continuous
solution v = (z,y) € Q,, z,y € C(I,R).

Consequently, the functional integral equation (1.1) has at least one solution z €
C(I,R). O

3.1. Uniqueness of the solution. In this subsection, we give a sufficient condition for
uniqueness of the solution of the Hammerstein-Stieltjes functional integral equation (1.1).
To this end we replace assumptions (ii7) and (iv), respectively, by the following ones:

(#i1)* f1: I x R — R is continuous and satisfies the Lipschitz condition
|f1(t, z1) = fit, z2)| < Koy — @2
(iv)* fa:I xR — R is continuous and satisfies the Lipschitz condition
|fa(t,z) = fot,y)] < clz —yl.
From this assumption (#i7)*, we have
[f1(t,, z(@)] = [f1(£,0)] < [f1(t,2(2) — f1(2,0)] < K],
then
[fits, ()] < Kl + [f1(2,0)],
and
[fi(t,, x(8)] < Klz| + f7,

where f? = supye; |/1(t,0)].
Similarly, from assumption (iv)*, we have

|fa(t, z(t)] < clz(t)] + | f2(2,0)],
and
|[fa(t, 2(t)] < cla] + f5,
where f3 = sup,¢; | f2(t,0)].

Theorem 3.6. Let the assumptions of Theorem 3.5 be satisfied with replacing condition
() by (iv)*, if uckKH < 1. Then the Hammerstein-Stieltjes functional integral equation
(1.1) has a unique solution on I.

Proof. Let x1,x2 be two solution of equation (1.1), then

1 () — ot |</ Ikt )1 (s /mxl 6)))dogs (5, 9))
~ fi(s. / £2(6,22(0(0)))daga (5. 0))|duga (1, ).

Hence, using Lipschitz condition for f;, we obtain

a1 (£) — a(1)|
< kK| / / F2(6,21(0(6))dogs (5. 0)) / Fa(6,22(0(8))daga(s, 0))]|duga (. 5)
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< kK/ / £2(0,21(p(0))) — f2(0, 22(2(0)))|dog2(s,0))[|dsg1 (L, 5)]-

Further, using Lipschitz condition for fs, we obtain

1 s 6 s
() = 2a(0)] < ki [ [ 121(0(0) ~ 2a(0(0)ldo Vg2t 20V 31(0.0)
p=0

p=0

1 s 0 s
SckKuxl—xQn/o /O do(\/ 92(5.9)ds(\/ g1(t.4))
p=0 q=0

s 1
< ckK ||z — a2 \/ 92(5,9)/ dsg1(t, s)
=0 0

< kK |a1 — 22[91(t,1) — g1(t,0)] sup \/ g2(s,0)
s€[0,T] g—

< ek oy — aalllgs (1) + los (2, 0) 1
< ek Hlfo ~ o] [sup g1 (¢, 1) + sup g1 (1, 0]

Taking the supremum over t € I, we get
|1 = @2f| < pck K H|[z1 — x2]|.
Thus
(1 — ,uckKH)Hxl — LEQH < 0.

This proves the uniqueness of the solution of equation (1.1) on I. O
3.1.1. Continuous dependence on the functions g;(t, s).

Definition 3.7. The solutions of the functional integral equation (1.1), depends continu-
ously on the functions g;(¢, s), i=1,2, if Ve > 0 3§ > 0 such that

|9i(t;s) = gi (L, 5)| <0 = |z —2™]| < e

Theorem 3.8. Let the assumptions of Theorem 3.6 be satisfied. Then the solution of
the equation (1.1) depends continuously on functions g;(t,s).

Proof. Let § > 0 be given such that |g;(¢,s) — g7 (t,s)| <, V¢t > 0. Then
oty =2 O1 < | [ 10051 (5 [ 0560 dosn(5.0) s 19

[ rwon(s [ o ()))degz(svg))dsgl(t73)
# [ k(s [ 500 00060 ) e .5)

- [ (s [ 505 )osi6.0) )i 0.0

< / Ikt )| 1 (5 / a6, 2(0(0)))doga (5,0))

(s [ 205 GO on(s,0))

1 s
+ / Kt ) [ (s, / fo(6, 2" (9(8)))dogs (5. 0))

dsgl (ta 3)
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A, /‘fex* (0)))dogs (5,0))]dagi (¢, 5)

< Kk / / 1200, 2(0(0))) — 20,2 (2(8))) |dogs (5, 0)|[dsga (1, 5)

/0 k(t,s)f1 <s,/0 fa( 0,x*(go(&)))dogz(s,0)>dsgl(ta s))

- [ ran (s [ 500 @060 en.5)
v/ kit ), (5 [ 7200 (000D g (5.0 ) 0.5)

+

1 s
/’ktsﬁ(s/mfex* (0)))dogs (s, 0))dsg’ (, ))
0

<Kk/ / clx(0) — z*(0)|dgga(s, 0))dgg1(t s)

+/O k(t,s)|f ( / fa(0, 2" )))doga(s, 9))

A ( / a6, (@(9)))4992(579)) degn (1, 5)

o el (s [ 2ts.0°Ois(s.0))

< ch/ /0 |(0) — 7 (0)||doga(s, 0)[|dsga (t, 5)]

[dsgl (t’ S) - dsg;{(t S)]

0
i ' (5. [ 22,0 (0 (5.6)) [ den(t.5) = gt 5)

1 s 0 s
< Kiela o) [ [ (/a2 don(19)

p=0

1 s 0
+K/ k(/ | f2(s,0,2%(6))|[do(\/ [92(s,p) — 928p> \/gltp
0 0 p=0

x| (Iffl k[ |f2<e,x*(so(e)))u@(p\_/og;(s,p))d5<v (91(t,) — 97 (t,p)]

p=0

< Kkel|lz — 27[|( \/ 92(s,0))[g1(t,1) — 91(2,0)]

+K/ (/ [1f2(s,0)| + cla™ (2(0))]]

0

[do(\/ l92(s,p) — g5(s,p) > \/91 t,p))

p=0
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1 s
+K/ (Ifl*(S) +k/ [1f2(5,0)] + cla™ ((0))]]
0 0

6 s
do(\/ g;<s,p>)ds(\/ (91(t,) — 956, p))

S

< Kkellw — 2| Hp + KE[f5 + er] \/ [92(5,0) — g5 (s,0)][g1(t, 1) — ga(t, 0)]
6=0

+ K (ff +E[(f5 +er) \/ 95(5.0)]) \[91(t,5) = gi (t,5)]

9=0 5=0
< ckKHpllz — o*|| + kK[ f5 + cr]([g2(s, 8) — g5 (s, 5)]

+ [92(5,0) — g3 (5,0 + K (F5 + K[(f3 + er) H)) (g1 (¢, 1) — g7 (£, 1)]
+191(¢,0) — g1 (¢, 0)]).
Taking the supremum over t € I, we get
|z —2*|| < keKHpl|z — 2*|| + kK H [ f5 + cr]26
+ K (ff +k[(f5 4+ cr)p])26 + k[r + kr + m]2ué.
Thus

_ 2K E, [f5 +cr]6 + 2K (ff + k[(f5 4 cr)H])d
- 1 — (kcKHp)

This completes the proof. O

[l — 2]

= €.

4. EXISTENCE RESULTS FOR THE SET-VALUED PROBLEM

Consider the set-valued functional integral equation of Hammerstein-Stieltjes type
(1.2),

J,‘(t) € p(t) + /O k(t7 5)F1(57 /Os fQ(G,J?((,O(Q)))d@QQ(S, 9))dsgl(t7 8)7 t,s € [07 1]7

which is considered under the following assumptions:

(i) p: I — I, is a continuous function, where p* = sup,c; [p(?)|.
(ii) ¢ : I — I, is a continuous function.
(iii*) The set-valued map F; : I x R — 28 is a Lipschitzian set-valued map with a
nonempty compact convex subset of 2%, and a Lipschitz constant k& > 0,

We remark that from this assumption and Theorem 2.3, we can deduce the set
of Lipschitz selections of F} is not empty and there exists f; € Fj such that

[f1(t, ) = fult,y)| < Kl —yl.

(iv) fo: I x R — R, is a continuous function and there exist two constants a and b,
such that

|fa(t, )] < a+ blx|, Vtel0,T] and x€R.
(v) k(t,s) is a continuous function, such that

K =sup|k(t, s)], and K is a positive constant.
tel
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(vi) The functions g; are continuous on the triangle A;, for i = 1,2, where
Ny ={(t,s):0<s<t<T},

Do ={(s,0):0<0<s<T}.

(vii) The functions s — g;(¢, s) are of bounded variation on [0, ] for each ¢t € I, i=1,2.
(viii) For any e > 0 there exists § > 0 such that, for all ¢1;to € I such that ¢; < t5 and
to — t1 < § the following inequality holds:

ty

\/[91‘(75275) —gi(t1,8)] <e

0

fori=1,2.
(ix) gi(t,0)=0forany teI,i=1,2.

4.1. Existence of solution.

Theorem 4.1. Let the assumptions (i)-(ii)-(i1i)*** and (iv)-(iz) be satisfied. Then
the Hammerstein-Stieltjes functional integral inclusion (1.2) has at least one solution
xz € C(I,R).

Proof. Tt is clear that from Theorem 2.3 and assumption (i4)*** that the set of Lipschitz
selection of Fj is not empty. So, a solution of the single-valued integral equation (1.1)
where f; € Sp,, is a solution to the inclusion (1.2).

It must be noted that the Lipschitz selection f; : I x R — R, satisfies the Lipschitz
condition

lfi(t,21) = fi(t, 22)| < klzg — 22|
From this condition with f; = sup,c; |fi(¢,0)|, we have
|fi(t,z(s))] — [f1(£,0)] < [fr(t,z(s)) — f1(t,0)] < K[z],
then
|f1(t,z(s))| < klz| + fi(t,0)]

and

|f1(t,2(s))| < Kla] + /T,
i.e., assumption (iii) of Theorem 3.5 is satisfied. So, all the conditions of Theorem 3.5
hold.

Observe that if z € C(I,R) is a solution of the functional integral equation (1.1), then
x is a solution to the functional integral inclusion (1.2). This completes the proof. O

4.2. Continuous dependence on the set of selections S, .

Definition 4.2. The solutions of the Hammerstein-Stieltjes functional integral inclusion
(1.2) depends continuously on the set Sp, of selections of the set-valued function Fy, if
Ve > 0 39 > 0 such that

lfitz(t) — filt,z@®)] <0,  f1,fi €Sm, tEL,
then

|z —z*| <e.
Now, we have the following theorem

Theorem 4.3. The solution of the Hammerstein-Stieltjes inclusion (1.2) depends con-
tinuously on the Sg, of all Lipschitzian selection of F}.
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Proof. For two solutions z(t) and x*(t) of (1.2) corresponding to the two selections
f1, fi € Sk, we have

x(t) — 2" (t) =P(t)+/0 k(t,s)fl(&/os f2(0,2(0(0)))dogz(s,0))dsg1 (¢, 5)
1 s
—p(t) 7/0 k(tvs)ff(sa/o fg(@,IE*(QD(H)))dggQ(S,9))dsg1(t,S),

hence

) —a* |<\/ (t,s)[f1(s /fgﬂx )))doga(s,0))
e / F2(8,27(0(6)))doga(5,0))dug (£, 5)|
/wmufl /szx 1))doga(s, 8))
s / F2(8, 2% ((0)))daga(s,0))|[dugi (£, )|
/ |k(t, s)[| f1(s / J2(0,(p(0)))doga(s, 0))
~his, / 12060, 2 ((8)))dogs (s, 0))|[dagi (1, )|
/Ikt8||f1 /fzsx gt 5))
s / F2(8. 2% (0(0)))doga(s, 0))||dug (£, 9)
<K/ |f1(s /fg@ﬂc )))dog2(s,0))
~hs, / £2(0, 2% (£(0)))doga(s, 0)) dagi (2, 5)]
1 s
LK / s, / Ja(6, 2" (9(6)))dogs (5. 0))
s / £2(8, 2% (0(0)))doga(s, 0))|dug (¢, 9)
<K/ s /fzex 1))doga(s, 8))
1
s, / F26, 2 (0(6)))doga(s, 0))|[dgi (¢, 5)| + K5 / dagi (1, )|
0 0

1 s
SkK//|f29$
0 0

— 126,27 ((6)))ldo g (5, 0)) s (1, 5 |+K6/ (\ 01(t.9)

p=0

< kK / / (e 0))ldoga(s, 0))|dsg (2, 5)]

+K6/ dsgl t78)
0
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<ck:K||;v—3c||/ ds \/gltp/de\/!hsq + Kd[g1(t,1) — 91 (2, 0)]

p=0 0 q=0

<kl o) [ danttn) [ a0V o) + K1)+ .0
0 =0

< ckK|lz — 2*[|[g1(¢,1) — g1(¢, 0)] \/ 92(s,0) + Ko[lgr(t, 1)[ + (91 (¢, 0)]
0=0

< kK lw = 2||[g1(t, 1) + g1 (1:0)] \/ 92(5,0) + K5[lgr (¢, 1)] + |91(¢,0)]]
0=0

Kllgr (&, D] + [g1 (¢, 0) [} (el — =™ || ses[l(l)p] \/ 92(s,0) +9).
Taking the supremum over t € I, we get
| —2*[| < pK(ckH ||z — z"[| + 9).
Hence
lz —z*|| < pK§(1 — pkeKH)™' =
which proves the continuous dependence of the solutions on the set Sg, of all Lipschitzian

selection of Fy. This completes the proof. O

4.3. Set-valued Chandrasekhar nonlinear functional integral equation. Now,
as an application of the nonlinear a set-valued functional integral equation of the
Hammerstein-Stieltjes type (1.2), we have the following.

Let the functions g;, i = 1,2, be defined by

(ts) = tln‘”rs7 fort € (0,1], s eI,
g = 0, fort =0, sel,
and
st0 - for s € (0,1], A €1,
92(s,0) = {07 fors=0, el

Let fo(t,x(t)) = b1(t)z(t), k(t,s) =1, and p(t) =t in (1.2).

Further, using the fact that functions g;, ¢ = 1,2, satisfy assumptions (vi)-(ix) in
Theorem 4.1 (see [5]), we obtain the set-valued Chandrasekhar nonlinear functional
integral inclusion (1.3)

z(t) € alt) + /01 - i _Fy (3, /0 - j ebl(e)x(a)dQ)dsa el

Now, we can formulate the following existence result for the nonlinear Chandrasekhar
functional integral inclusions (1.3).

Theorem 4.4. Under the assumptions of Theorem 4.1, the functional integral inclusions
(1.8) has at least one continuous solution x € C(I,R).

4.4. Set-valued Hammerstein nonlinear functional integral equation of frac-
tional order. In this section, we will consider the fractional integral inclusion (1.4)

(1) Ep(t)—i—/o k(t,s)Fl(&/Os(s;(e(z;_

where I'(«) denotes the gamma function and o« € (0, 1).

f2(0,2(p(0)))dd)ds, s,0 el
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Let us mention that (1.4) represents the so-called nonlinear Hammerstein integral
inclusion of fractional orders. Recently, the inclusion of such a type was intensively
investigated in some papers, see [13, 14, 15].

Now, we show that the functional integral inclusion of fractional orders (1.4) can be
treated as a particular case of the set-valued functional integral equation of Hammerstein-
Stieltjes (1.2) studied in Section 3.

Indeed, we can consider functions g;(w,z) = ¢; : &; = R, i = 1,2, defined by the
formula

gl<t78):87 Se],
s — (s —0)~

0) = ———
92(5:0) = =0, 1y
Note that the functions g and g satisfy assumptions (vi)-(ix) in Theorem 3.5, see [5, 16].

Now, we can formulate the following existence results concerning the fractional integral
inclusion of fractional order (1.4).

s,0 el

Theorem 4.5. Under the assumptions (i)-(iv) of Theorem 4.1, the fractional integral
inclusion (1.4) has at least one continuous solution x € C(I,R).

4.4.1. Differential inclusion. Consider now the initial value problem of the differential
inclusion (1.5) with the initial data (1.6).

Theorem 4.6. Let the assumption of Theorem 4.5 be satisfied. Then the initial value
problem (1.5)-(1.6) has at least one positive solution x € C(I,R)

Proof. Let y(t) = dzgf). Then the inclusion (1.5), will be

1
y(t)e/o Fi(s, I'"Ty(s))ds. (4.10)

By letting fa(t,z) = z(t), ¢(t) =t, k(t,s) = 1, and &« = 1 — 7, and applying Theorem

4.5 to the functional inclusion (1.4), we deduce that there exists a continuous solution

y € C(I,R) of the functional inclusion (1.4) and this solution depends on the set S, .
This implies existence of a solution z € C(I,R),

t
z(t) = xo —|—/ y(s)ds,
0
of the initial-value problem (1.5)-(1.6). O
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