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COMPACTNESS PROPERTIES OF LIMITED OPERATORS

FARID AFKIR AND AZIZ ELBOUR

Abstract. The aim of this paper is to investigate the relationship between limited
operators and weakly compact (resp. compact) operators. Mainly, it is proved that
if every limited operator T : E \rightarrow X from a Banach lattice E into Banach space X
is weakly compact (resp. compact) then the norm of E\prime is order continuous or X

has the (BD) property (resp. GP property). Also, it is proved that if every weakly
compact operator T : E \rightarrow X is limited then the norm of E\prime is order continuous or X
has the DP\ast property.

Метою цiєї роботи є дослiдження зв’язку мiж обмежувальними операторами
та слабо компактними (вiдповiдно компактними) операторами. Доведено, що
якщо кожен обмежувальний оператор T : E \rightarrow X з банахової ґратки E в
банаховий простiр X є слабо компактним (вiдповiдно компактним), то норма
в E\prime є порядково неперервною або X має (BD)–властивiсть (вiдповiдно GP–
властивiсть). Також доведено, що якщо кожний слабо компактний оператор
T : E \rightarrow X обмежений, то норма в E\prime є порядково неперервною або X має
DP\ast –властивiсть.

1. Introduction

Throughout this paper X, Y will denote real Banach spaces and E, F will denote real
Banach lattices. The unit closed ball of a Banach space X (resp. Banach lattice E) will
be denoted by BX (resp. BE). We refer to [1, 9, 11] for unexplained terminology of the
Banach lattice theory and positive operators.

A bounded subset A of a Banach space X is called a limited subset of X if for each
weak\ast null sequence (x\prime 

n) in X \prime ,

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\mathrm{s}\mathrm{u}\mathrm{p}\{ | x\prime 
n(x)| : x \in A\} = 0.

A sequence (xn) in X is called limited if \{ xn : n \in \BbbN \} is a limited subset of X. We know
that every relatively (norm) compact subset of a Banach space X is limited, but the
converse of that is false in general. For example, if c0 is the Banach space of convergent
to zero real sequences with the supremum norm, then its closed unit ball Bc0 is a limited
subset of \ell \infty , but it is not relatively compact. If all limited subsets of X are relatively
compact, then X is said to have the Gelfand-Phillips property (abb. GP property).
Alternatively, a Banach space X has the GP property if and only if every weak null
limited sequence (xn) in X is norm null [5]. The following spaces have the Gelfand-Phillips
property: Schur spaces, separable spaces, reflexive spaces, duals of spaces containing no
copy of \ell 1. Some useful and additional properties of limited sets and Banach spaces with
the GP property can be found in [3, 5, 6].

We shall say that X has the (BD) property if any limited set in X is relatively
weakly compact [8]. By using the Eberlein–Šmulian Theorem, we see that X has the
(BD) property if and only if every limited sequence (xn) in X has a weak convergent
subsequence. Gelfand-Phillips spaces and spaces not containing \ell 1 have the (BD) property
[3].
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Recall from [2] that a Banach space X has the Dunford-Pettis\ast property (abb. DP\ast 

property) if every relatively weakly compact subset of X is limited. It turns out that a
Banach space X has the DP\ast property if and only if \mathrm{l}\mathrm{i}\mathrm{m} fn(xn) = 0 for every weakly null
sequence (xn) in X and every weak\ast null sequence (fn) in X \prime . Alternatively, a Banach
space X has the DP\ast property if and only if every weakly compact operator from \ell 1 to
X is limited [7, Corollary 3.3]. As examples, the classical Banach spaces \ell 1, \ell \infty have the
DP\ast property (see [4]).

An operator T : X  - \rightarrow Y from a Banach space X into a Banach space Y is called
limited (resp. weakly compact) if T maps the closed unit ball of X to limited (resp.
relatively weakly compact) subset of Y . Clearly, every compact operator is limited but
there exists a limited operator which is not compact (weakly compact). Indeed, the
canonical injection i : c0 \lhook \rightarrow \ell \infty is a limited operator (see [1, Theorem 4.67]), but it is not
compact (weakly compact). Also, there exists a weakly compact operator which is not
limited (for example, the identity operator Id\ell 2 : \ell 2  - \rightarrow \ell 2 is weakly compact but it is
not limited).

In this paper, we investigate the relationship between limited operators and weakly
compact (resp. compact) operators. More precisely, we prove that if every limited
operator T : E \rightarrow X from a Banach lattice E into Banach space X is weakly compact
(resp. compact) then the norm of E\prime is order continuous or X has the (BD) property
(resp. GP property). Also, it is proved that if every weakly compact operator T : E \rightarrow X
is limited then the norm of E\prime is order continuous or X has the DP\ast property.

2. Main Results

We start the section with a characterization of (BD) property (resp. GP property).

Proposition 2.1. Let X be a Banach space.
(1) A sequence (xn) in X is limited if and only if the operator T : \ell 1 \rightarrow X defined by

T ((\lambda n)) =
\sum \infty 

n=1 \lambda nxn is limited;
(2) X has the (BD) property if and only if every limited operator T : \ell 1 \rightarrow X is

weakly compact;
(3) X has the GP property if and only if every limited operator T : \ell 1 \rightarrow X is

compact.

Proof. (1) Assume that (xn) is a limited sequence in X. Then (xn) is norm bounded and
so the operator T : \ell 1 \rightarrow X defined by

T ((\lambda n)) =

\infty \sum 
n=1

\lambda nxn

is well defined. If T \prime : X \prime \rightarrow \ell \infty denotes the adjoint of T , then for each weak* null
sequence (fn) in X \prime we have

\| T \prime (fn)\| \infty = \mathrm{s}\mathrm{u}\mathrm{p}
k\geq 1

| fn (xk)|  - \rightarrow 0,

as (xn) is a limited sequence in X. Thus, T is limited.
For the converse, assume that the operator T : \ell 1 \rightarrow X defined by

T ((\lambda n)) =

\infty \sum 
n=1

\lambda nxn

is limited, that is T (B\ell 1) is a limited subset of X. Now let (en) denote the sequence
of basis vectors of \ell 1. From xn = T (en) \in T (B\ell 1) we conclude that (xn) is a limited
sequence in X.
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(2) The “only if” part is trivial. The “if” part needs proof. So, assume that every
limited operator from \ell 1 to X is weakly compact. Let (xn) be a limited sequence in X.
Then by (1) the operator T : \ell 1 \rightarrow X defined by

T ((\lambda n)) =

\infty \sum 
n=1

\lambda nxn

is limited, and so by our hypothesis T is weakly compact. From T (en) = xn we conclude
that (xn) has a weakly convergent subsequence, and this proves that X has the (BD)
property.

(3) As in (2) the “only if” part is trivial. The “if” part needs proof. So, assume that
every limited operator from \ell 1 to X is compact. Let (xn) be a weak null limited sequence
in X. Then by (1) the operator T : \ell 1 \rightarrow X defined by

T ((\lambda n)) =

\infty \sum 
n=1

\lambda nxn,

is limited, and so by our hypothesis T is compact. Clearly, T (en) = xn
w\rightarrow 0 holds. On the

other hand, since T is compact, we see that every subsequence of (xn) has a subsequence
converging in norm to zero. Therefore, \| xn\| \rightarrow 0 holds, and this proves that X has the
GP property. \square 

The following result tells us what happens when every limited operator T : E \rightarrow X is
always weakly compact.

Theorem 2.2. Let E be a Banach lattice and X be a Banach space. If every limited
operator T : E \rightarrow X is weakly compact then one of the following conditions is valid:

(1) the norm of E\prime is order continuous;
(2) X has the (BD) property.

Proof. Assume by way of contradiction that the norm of E\prime is not order continuous and
X does not have the (BD) property. To finish the proof, we have to construct a limited
operator from E into X which is not weakly compact.

Since the norm of E\prime is not order continuous, by Theorem 116.1 of [11], there exists a
norm bounded disjoint sequence (un) of positive elements in E which does not converge
weakly to zero. Hence, we may assume that | | un| | \leqslant 1 for all n and also satisfies \phi (un) = 1
for some 0 \leqslant \phi \in E\prime and all n. Consider each un \in E as an element in E\prime \prime and let

Nun
:= \{ f \in E\prime : | f | (| un| ) = 0\} 

and
Cun := Nd

un
= \{ f \in E\prime : f \bot Nun\} .

Let Pn be the order projection of E\prime = Nun
\oplus Cun

onto the carrier Cun
of un, and let

\phi n := Pn (\phi ) be the component of \phi in Cun .
By Theorem 116.3 of [11] the components \phi n of \phi in Cun form an order bounded

disjoint sequence in (E\prime )+ such that \phi n(un) = \phi (un) = 1 for all n and \phi n(um) = 0 if
n \not = m. Define the operator P : E \rightarrow \ell 1 by

P (x) = (\phi n(x))
\infty 
n=1 for all x \in E.

Note that in view of the inequality
\infty \sum 

n=1

| \phi n(x)| \leqslant 
\infty \sum 

n=1

\phi n(| x| ) \leqslant \phi (| x| ),

we see that P (x) \in \ell 1 and \| P (x)\| 1 \leq \| \phi \| \| x\| holds for each x \in E. Then P is a bounded
linear operator.
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On the other hand, since X does not have the (BD) property there exists a limited
sequence (yn) in X which does not have any weakly convergent subsequence. Define the
positive operator S : \ell 1  - \rightarrow X by

S((\lambda n)) =

\infty \sum 
n=1

\lambda nyn for all (\lambda n) \in \ell 1.

Clearly S is well defined and is limited (Proposition 2.1). Next, we consider the product
operator T = S \circ P : E \rightarrow \ell 1 \rightarrow X defined by

T (x) =

\infty \sum 
n=1

\phi n(x)yn for all x \in E.

Since S is limited then T = S \circ P is limited. Indeed, if (fn) is a weak\ast null sequence in
X \prime , then \| S\prime (fn)\| \infty \rightarrow 0, and hence \| T \prime (fn)\| = \| P \prime (S\prime (fn))\| \rightarrow 0. Thus T is limited. If
T is a weakly compact operator, then the sequence (T (un)) = (yn) contains a weakly
convergent subsequence which contradicts the choice of (yn), and the proof is finished. \square 

Corollary 2.3. Let E be a Banach lattice and X be a Banach space. If E is KB-space
then the following statements are equivalent:

(1) Every limited operator T : E  - \rightarrow X is weakly compact;
(2) One of the conditions is valid:

(a) E is reflexive;
(b) X has the (BD) Property.

Proof. (1) \Rightarrow (2) Follows from Theorem 2.2 by noting that E is reflexive if and only if E
and E\prime are KB-spaces.

(2.a) \Rightarrow (1) In this case, every operator T : E  - \rightarrow X is weakly compact.
(2.b) \Rightarrow (1) Obvious. \square 

The next result tells us what happens when every weakly compact operator T : E \rightarrow X
is always limited.

Theorem 2.4. Let E be a Banach lattice and X be a Banach space. If every weakly
compact operator T : E  - \rightarrow X is limited then one of the following conditions is valid:

(1) the norm of E\prime is order continuous;
(2) X has the DP\ast property.

Proof. Assume that the norm of E\prime is not order continuous. We have to show that X
has the DP\ast property. To this end, let (yn) be a weak null sequence in X and (gn) be a
weak\ast null sequence in X \prime . Consider the operator S : \ell 1  - \rightarrow X defined by

S((\lambda n)) =

\infty \sum 
n=1

\lambda nyn for all (\lambda n) \in \ell 1.

By Theorem 5.26 of [1], the operator S is weakly compact. Since the norm of E\prime is not
order continuous, by Theorem 2.4.2 of [9], there exists a positive order bounded disjoint
sequence (x\prime 

n) \subset E\prime satisfying | | x\prime 
n| | = 1 for all n. Let x\prime \in (E\prime )+ such that 0 \leqslant x\prime 

n \leqslant x\prime 

for all n. Defined the operator P : E  - \rightarrow \ell 1 by

P (x) = (x\prime 
n(x))

\infty 
n=1 for all x \in E.

Since
\sum n

k=1 | x\prime 
k(x)| \leq 

\sum n
k=1 x

\prime 
k(| x| ) \leq x\prime (| x| ), the operator P is well defined. Now,

consider the composed operator T = S \circ P : E  - \rightarrow \ell 1  - \rightarrow X such that

T (x) =

\infty \sum 
n=1

x\prime 
n(x)yn for all x \in E.
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Clearly, T is a weakly compact operator. So, by our hypothesis T is limited. Its adjoint
T \prime : X \prime  - \rightarrow E\prime defined by

T \prime (y\prime ) =

\infty \sum 
n=1

y\prime (yn)x
\prime 
n for all y\prime \in X \prime .

Since (gn) is a weak\ast null sequence in X \prime , | | T \prime (gn)| |  - \rightarrow 0 as n  - \rightarrow \infty . Now from the
inequality,

| T \prime (gn)| =
\infty \sum 
i=1

| gn(yi)| x\prime 
i \geqslant | gn(yn)| x\prime 

n \geqslant 0,

we conclude that
| gn(yn)| = | gn(yn)| | | x\prime 

n| | \leqslant | | T \prime (gn)| |  - \rightarrow 0,

and hence gn(yn)  - \rightarrow 0, and the proof is finished. \square 

Corollary 2.5. If E is an infinite dimensional AL-space, then the following conditions
are equivalent:

(1) Every weakly compact operator T : E  - \rightarrow X is limited;
(2) X has DP\ast property.

Remark 2.6. The first necessary condition in the previous theorem is not sufficient. In
fact, if we take E = \ell \infty and X = c0, it is known that every operator from \ell \infty into c0
is weakly compact (because \ell \infty has the Grothendieck property). On the other hand,
it follows from a result of Wnuk [10, p. 198] that there exists a non regular operator
T : \ell \infty \rightarrow c0 which is necessarily not compact (and hence not limited).

However, if E\prime has the Schur property then every weakly compact operator T : E  - \rightarrow X
is compact (and hence limited).

Finally we obtain the following result that tells us what happens when every limited
operator T : E \rightarrow X is always compact.

Theorem 2.7. Let E be a Banach lattice and X be a Banach space. If every limited
operator T : E \rightarrow X is compact then one of the following conditions is valid:

(1) the norm of E\prime is order continuous;
(2) X has Gelfand-Phillips property.

Proof. The proof is very similar to the proof of Theorem 2.2. Assume by way of contra-
diction that the norm of E\prime is not order continuous and X does not have the GP property.
To finish the proof, we have to construct a limited operator from E into X which is not
compact.

We consider the same operators P : E \rightarrow \ell 1 and S : \ell 1  - \rightarrow X defined as in the proof
of Theorem 2.2, but now we assume that (yn) is a weakly null limited sequence in X
such that \| yn\| \nrightarrow 0. By Proposition 2.1, the operator S is limited and hence T = S \circ P
is limited. But T is not compact. To see this, note that T (un) = yn

w - \rightarrow 0. If T is a
compact operator, every subsequence of (yn) has a subsequence converging in norm to
zero. Therefore, \| yn\| \rightarrow 0 holds, which contradicts the choice of (yn), and the proof is
finished. \square 
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