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ON THE ASCENT-DESCENT SPECTRUM

NASSIM ATHMOUNI, MONDHER DAMAK, AND CHIRAZ JENDOUBI

Abstract. We establish various properties as well as diverse relations of the ascent
and descent spectra for bounded linear operators. We specially focus on the theory
of subspectrum. Furthermore, we construct a new concept of convergence for such
spectra.

Встановлюються рiзнi властивостi спектрiв пiдйому та спуску для обмежених
лiнiйних операторiв, а також певнi спiввiдношення мiж ними. Ми зосереджуємося
на теорiї пiдспектру. Крiм того, ми пропонуємо нове поняття збiжностi для таких
спектрiв.

1. Introduction and main results

Denote by B(X) the algebra of all bounded linear operators on an infinite-dimensional
complex Banach space X and by \scrF (X) the set of finite rank operators on X. For
T \in B(X), we use N(T ) and R(T ) respectively to denote the null-space and the range
of T . The ascent of T \in B(X), denoted by \mathrm{a}\mathrm{s}\mathrm{c}(T ), is the smallest n \in \BbbN satisfying
N(Tn) = N(Tn+1). If such n does not exist then \mathrm{a}\mathrm{s}\mathrm{c}(T ) = \infty . The descent of T , denoted
by \mathrm{d}\mathrm{s}\mathrm{c}(T ), is the smallest n \in \BbbN satisfying R(Tn) = R(Tn+1). If such n does not exist

then \mathrm{d}\mathrm{s}\mathrm{c}(T ) = \infty . We define the generalized kernel of T by N\infty (T ) =

\infty \bigcup 
n=1

N(Tn) and the

generalized range of T by R\infty (T ) =

\infty \bigcap 
n=1

R(Tn). Next, we denote by \mathrm{A}\mathrm{s}\mathrm{c}(B(X)) the space

of bounded operators T such that \mathrm{a}\mathrm{s}\mathrm{c}(T ) is finite and by \mathrm{D}\mathrm{s}\mathrm{c}(B(X)) the space of bounded
operators T such that \mathrm{d}\mathrm{s}\mathrm{c}(T ) is finite. It is worth noting that this algebraic theory was
mostly developed by M. A. Kaashoek [17] and A.E. Taylor [24]. As an interesting result
which characterizes ascent-descent operators is the following proposition:

Proposition 1.1. [1] Let T be a linear operator on a vector space X and m be a positive
natural number. The following assertions hold true:
i) \mathrm{a}\mathrm{s}\mathrm{c}(T ) \leq m < \infty if and only if for every n \in \BbbN , R(Tm) \cap N(Tn) = \{ 0\} .
ii) \mathrm{d}\mathrm{s}\mathrm{c}(T ) \leq m < \infty if and only if for every n \in \BbbN there exists a subspace Yn \subset N(Tm)
satisfying X = Yn \oplus R(Tn).

As shown in [25], see also [6], the previous proposition can be reformulated as follows:

Remark 1.2.

\mathrm{a}\mathrm{s}\mathrm{c}(T ) is finite \leftrightarrow R(Tn) \cap N(T ) = \{ 0\} , for some n \geq 0. (1.1)

\mathrm{d}\mathrm{s}\mathrm{c}(T ) is finite \leftrightarrow R(T ) +N(Tn) = X, for some n \geq 0. (1.2)

Recently, stability problems of operators under perturbation have attracted many
researchers and undergone important contributions, see for instance [2, 13, 14, 4, 6, 7,
8, 12, 15, 18, 20]. Recall that, in [10], authors have proved nice relations between the
left Browder spectrum and the left invertible spectrum (respectively, between the right
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Browder spectrum and the right invertible spectrum). Motivated by these last works, we
consider the following subsets:

\sigma asc(T ) = \{ \lambda \in \BbbC : T  - \lambda /\in Asc(B(X))\} -the ascent spectrum,

\sigma dsc(T ) = \{ \lambda \in \BbbC : T  - \lambda /\in Dsc(B(X))\} -the descent spectrum.

Focusing on the axiomatic theory of subspectrum which was introduced by Slodowski
and Zelazko [23, 27], we first, recall the following definitions.

Definition 1.3. A subspectrum \~\sigma in B(X) is a mapping which assigns to every n - tuple
(T1, ..., Tn) of mutually commuting elements of B(X) a non-empty compact subset
\~\sigma (T1, ..., Tn) \subset \BbbC n such that:
i) \~\sigma (T1, ..., Tn) \subset \sigma (T1)\times ...\times \sigma (Tn),
ii) \~\sigma (p(T1, ..., Tn)) = p(\~\sigma (T1, ..., Tn)) for every commuting T1, ..., Tn \in B(X) and every
polynomial mapping p = (p1, ..., pm) : \BbbC n \rightarrow \BbbC m.

The concept of Definition 1.3 is truly suitable since it comprises for example the left
(right) spectrum, the left (right) approximate point spectrum, the Harte (the union of the
left and right) spectrum. Despite, there are also many examples of spectrum, frequently
characterized only for single elements, which are not covered by the axiomatic theory of
\.Zelazko.

Definition 1.4. [19] Let \scrA be a Banach algebra. A non-empty subset R of \scrA is called a
regularity if
i) if a \in \scrA and n \in \BbbN then a \in R \leftrightarrow an \in R,
ii) if a, b, c, d are mutually commuting elements of \scrA and ac+ bd = 1\scrA , then ab \in R \leftrightarrow 
a \in R and b \in R.

Such theory was taken into account by many researchers due to its widespread concept
that generalizes spectra for single elements to spectra for n-tuple elements. We recall
that, in [9], the author introduced regularities and subspectra in a unital noncommutative
Banach algebra and showed that there is a correspondence between them similarly to the
commutative case. In [19], the authors gave the following conditions on a regularity R, to
extend spectra to subspectra:

(C1) ab \in R \leftrightarrow a \in R and b \in R for all commuting elements a, b \in \scrA .

(C2) "Continuity on commuting elements", i.e: If an, a \in \scrA , an converges to a and
ana = aan for every n then \lambda \in \sigma R(a) if and only if there exists a sequence \lambda n \in \sigma R(an)
such that \lambda n converges to \lambda .

It is worth noting that the space of bounded linear operators B(X) is a particular
case of the Banach algebra \scrA and Asc(B(X)) and Dsc(B(X)) are regularities on B(X).
For more information, see [14, 5, 20]. Throughout our work, under suitable optimal
hypothesis, we will prove that conditions (C1) and (C2) are approved properties for the
ascent and descent spectra. For the condition (C1), we need the following assumptions:

(H1): ST = TS and \forall p \in \BbbN , N((TS)p) = N(T p)\oplus N(Sp).
(H2): ST is with finite descent n0 and N(Sn0) \subseteq R(T ) or N(Tn0) \subseteq R(S).

(H
\prime 

2): ST is with finite descent n0 and N(Sn0) \subseteq R(T ) and N(Tn0) \subseteq R(S).

Consider the following subsets:

\~\scrF : =

\biggl\{ 
F \in B(X) such that there exists n0 \in \BbbN for which Fn0 \in \scrF (X)

\biggr\} 
,
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\scrR : =

\biggl\{ 
\lambda \in \BbbC such that if S + T  - \lambda has finite ascent then (S  - \lambda ) and

(T  - \lambda ) do not satisfy (H1)

\biggr\} 
,

\scrM : =

\biggl\{ 
\lambda \in \BbbC such that if S + T  - \lambda has finite descent then (S  - \lambda ) and (T  - \lambda )

do not satisfy (H1) or (H
\prime 

2)

\biggr\} 
.

Our main results assuring condition (C1) reside in:

Theorem 1.5. Assume that S and T be two bounded linear operators satisfying (H1)

and that ST \in \~F . Then,

\scrR \cup \sigma asc(S + T ) \setminus \{ 0\} = \scrR \cup (\sigma asc(S) \cup \sigma asc(T )) \setminus \{ 0\} .

In the descent case we obtained the following results:

Theorem 1.6. Assume that S and T are two bounded linear operators, satisfying (H1)

and (H
\prime 

2). Then,

dsc(T ) \leq n0 and dsc(S) \leq n0 if and only if dsc(TS) \leq n0.

Corollary 1.7. If ST = TS \in \~\scrF then:
i)

\sigma dsc(S + T ) \setminus \{ 0\} \subseteq (\sigma dsc(S) \cup \sigma dsc(T )) \setminus \{ 0\} .
ii)

\scrM \cup \sigma dsc(S + T ) \setminus \{ 0\} = \scrM \cup (\sigma dsc(S) \cup \sigma dsc(T )) \setminus \{ 0\} .

In [19], the authors show that if R is a regularity in a Banach algebra \scrA then we have,
if a, b \in \scrA , ab = ba and a \in Inv(\scrA ) then:

ab \in R \leftrightarrow a \in R and b \in R. (1.3)

In our work, dealing with ascent and descent operators as a special case of a regularity,
we prove in Lemma 2.1 and Theorem 1.6 that property (1.3) is satisfied without needing
the invertibility of any of the bounded operators T and S.

On the other hand, inspired by the continuity concept of families of magnetic pseudo-
differential operators given in [3], we create a concept of convergence of spaces to prove
condition (C2). To start off, we recall the concept of the reduced minimum modulus:

Definition 1.8. Let X be a Banach space and let T : X \rightarrow X be a non zero operator.
We define the reduced minimum modulus of T by

\gamma (T ) := \mathrm{i}\mathrm{n}\mathrm{f}\{ \| Tx\| ; x \in X, dist(x,N(T )) = 1\} .

Formally, we set \gamma (0) = \infty .

Our main result in this context follow on:

Theorem 1.9. Let (Tn)n\in \BbbN be a sequence of bounded linear operators convergent to T in
the operator norm.

(1) If (\lambda n)n is a sequence convergent to \lambda \in \sigma asc(T ) when T  - \lambda has a closed range
and for all x in N(T  - \lambda ), dist(x,N(Tn  - \lambda n)) is reached from some rank, then
\lambda n \in \sigma asc(Tn) from some rank.

(2) Assume that for every n \in \BbbN , \lambda n \in \sigma asc(Tn) and \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p} \gamma (Tn - \lambda n) > 0. If (\lambda n)n
converges to \lambda then \lambda \in \sigma asc(T ).
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(3) Let (\lambda n)n be a sequence converge to \lambda \in \sigma dsc(T ). If \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p} \gamma (Tn  - \lambda n) > 0, then
\lambda n \in \sigma dsc(Tn) from some rank.

(4) Assume that for every n \in \BbbN , \lambda n \in \sigma dsc(Tn). If \lambda n converges to \lambda , then \lambda \in 
\sigma dsc(T ).

Theorem 1.9 is based on the fact that the limit operator T has a closed range. We do
not need neither the commutativity of the operators (Tn)n nor the fact that Tn has a
closed range for every n \in \BbbN . It suffices that the range of (Tn)n is closed from some p \in \BbbN .
Note that in the case of Hilbert space, the distance hypothesis in 1) is always satisfied.

Finally, we illustrate our theoretical results by an application. It might be said that our
approach throughout this paper is purely algebraic. This is different from the approaches
used in [16], which is based on the use of analytic functions and the SVEP condition.
Note that, The paper is structured as follows: the next section is devoted to proving our
main results (Theorem 1.5, Theorem 1.6, Corollary 1.7 and Theorem 1.9), In the third
section, we give some properties of corresponding spectra. In the last section, we provide
an application.

2. Proofs of Main Results

2.1. Results assuring condition C1.

2.1.1. Theorem 1.5. First, we demonstrate the following lemmas.

Lemma 2.1. Let T and S be two bounded linear operators satisfying (H1). Then, T and
S have finite ascents if and only if TS has a finite ascent.

Proof. Let T and S be respectively with finite ascents. Then, there exists n0 \in \BbbN such
that for all p \geq n0, we have: \left\{   T px = 0 \Rightarrow Tn0x = 0,

and
Spx = 0 \Rightarrow Sn0x = 0.

On the other hand, we have (TS)px = 0 \Rightarrow T p(Spx) = 0 \Rightarrow Tn0(Spx) = 0 \Rightarrow Sp(Tn0x) =
0 \Rightarrow Sn0(Tn0x) = 0 \Rightarrow (TS)n0x = 0. This gives that TS is with finite ascent.

Concerning the inverse assertion, we have TS is with finite ascent means that there
exists n0 \in \BbbN such that for all p \geq n0, we have:

x \in N((TS)p) \Rightarrow x \in N((TS)n0). (2.4)

Now, without loss of generality, let x \in N(Sp) such that p \geq n0 and let us show that
x \in N(Sn0). In fact, x \in N(Sp) implies that x \in N((ST )p). In view of (2.4), it yields
that x \in N((ST )n0). Thus, by (H1), there exists x1 \in N(Sn0) and x2 \in N(Tn0) such
that x = x1 + x2. Since N(Sp) \subseteq N(Sp+1) and N(T p) \subseteq N(T p+1) for all p \in \BbbN then
x1 \in N(Sp) and x2 \in N(T p). Furthermore, as N(Sp) is a vector subspace and x2 = x - x1,
it yields that x2 \in N(Sp) \cap N(T p). By assumption (H1), we obtain x2 = 0. Hence,
x = x1 \in N(Sn0). This proves that S has a finite ascent. \square 

Lemma 2.2. Let S and T be two bounded operators satisfying ST = TS \in \~\scrF then:

\sigma asc(S + T ) \setminus \{ 0\} \subseteq (\sigma asc(S) \cup \sigma asc(T )) \setminus \{ 0\} .

Proof. Let \lambda \not = 0 and \lambda \in \rho asc(S) \cap \rho asc(T ), then:\left\{   (S  - \lambda ) \in Asc(B(X)),
and

(T  - \lambda ) \in Asc(B(X)).
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Since ST = TS, then
(S  - \lambda )(T  - \lambda ) = (T  - \lambda )(S  - \lambda ).

By the direct assertion of Lemma 2.1 which is true for any two commutative operators,
we obtain that

(S  - \lambda )(T  - \lambda ) \in Asc(B(X)).

As,
(S  - \lambda )(T  - \lambda ) = ST  - \lambda (S + T  - \lambda ), (2.5)

it yields that,
ST  - \lambda (S + T  - \lambda ) \in Asc(B(X)). (2.6)

Since,
ST (S + T  - \lambda ) = (S + T  - \lambda )ST and ST \in \~\scrF ,

we obtain by [18, Theorem 2.2], in view of (2.6), that (S + T  - \lambda ) \in Asc(B(X)).
Consequently,

\sigma asc(S + T ) \setminus \{ 0\} \subseteq (\sigma asc(S) \cup \sigma asc(T )) \setminus \{ 0\} . (2.7)
\square 

Proof of Theorem 1.5. The direct inclusion follows from Lemma 2.2.
To prove the reciprocal inclusion, let \lambda \in (\sigma asc(S) \cup \sigma asc(T )) \setminus \{ 0\} and assume that
\lambda /\in \sigma asc(S+T ) \setminus \{ 0\} and \lambda /\in \scrR . Then, S+T  - \lambda \in Asc(B(X)) and (S - \lambda ) and (T  - \lambda )

satisfy (H1). Since, ST = TS \in \~\scrF , then by [18, Theorem 2.2], we obtain in view of (2.5)
that:

(S  - \lambda )(T  - \lambda ) = (T  - \lambda )(S  - \lambda ) \in Asc(B(X)).

As (S  - \lambda ) and (T  - \lambda ) satisfy (H1), it follows from Lemma 2.1 that (S  - \lambda ) and (T  - \lambda )
have finite ascents, which is absurd. This proves the second inclusion. \square 

2.1.2. Theorem 1.6. In order to prove Theorem 1.6, we first prove some auxiliary results.

Lemma 2.3. Let T and S be two bounded linear operators such that TS = ST . Then,

T and S have finite descents \Rightarrow TS has a finite descent.

Proof. Let T and S be respectively with finite descents. Then there exists n0 \in \BbbN such
that for all p \geq n0 we have \left\{   T p(X) = T p+1(X),

and
Sp(X) = Sp+1(X).

Furthermore, we have

(ST )p(X) = SpT p(X) = SpT p+1(X) = Sp+1T p+1(X) = (ST )p+1(X).

Consequently, ST has a finite descent. \square 

Lemma 2.4. Let T and S be two bounded linear operators.
1) If T and S satisfy (H1) and (H2), then, T or S has a finite descent.
2) If T and S satisfy (H1) and (H

\prime 

2), then, T and S have finite descents.

Proof. Since dsc(TS) = n0 is finite, we obtain by Proposition 1.1 that for every x \in X
there exists w \in R(TS) and x2 \in N((TS)n0) satisfying:

x = w + x2.

In other words, there exists x1 \in X such that w = TSx1 and Tn0Sn0x2 = 0. By (H1),
there exists x\prime 

2 \in N(Sn0) and x\prime \prime 
2 \in N(Tn0) satisfying:

x = (TS)x1 + x\prime 
2 + x\prime \prime 

2 .
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1) If T and S satisfy (H2), without loss of generality, we assume that N(Sn0) \subseteq R(T ).
Hence, there exists y2 \in X such that x\prime 

2 = Ty2. Put y1 := Sx1, it follows that

x = T (y1 + y2) + x\prime \prime 
2 .

The result follows from Remark 1.2, (1.2).
2) If T and S satisfy (H

\prime 

2), then there exists y2 \in X such that x\prime 
2 = Ty2. Put y1 := Sx1,

it implies that
x = T (y1 + y2) + x\prime \prime 

2 .

and there is also z2 \in X such that x\prime \prime 
2 = Sz2. Set z1 := Tx1, it yields that

x = S(z1 + z2) + x\prime 
2.

Then, from Remark 1.2, (1.2), S and T have finite descents. \square 

Proof of Theorem 1.6. The direct sense, it follows from Lemma 2.3.
The reciprocal sense, it is obtained from Lemma 2.4, 2). \square 

Proof of Corollary 1.7: i) Let \lambda \not = 0 and \lambda \in \rho dsc(S) \cap \rho dsc(T ), then:\left\{   (S  - \lambda ) \in Dsc(B(X)),
and

(T  - \lambda ) \in Dsc(B(X)).

Since ST = TS, then
(S  - \lambda )(T  - \lambda ) = (T  - \lambda )(S  - \lambda ).

Using Lemma 2.3, we obtain

(S  - \lambda )(T  - \lambda ) \in Dsc(B(X)).

Since,
(S  - \lambda )(T  - \lambda ) = ST  - \lambda (S + T  - \lambda ), (2.8)

we have,
ST  - \lambda (S + T  - \lambda ) \in Dsc(B(X)). (2.9)

Remark that,
ST (S + T  - \lambda ) = (S + T  - \lambda )ST and ST \in \~\scrF .

It follows by [6, Theorem 3.1] and (2.9) that (S + T  - \lambda ) \in Dsc(B(X)). Hence,

\sigma dsc(S + T ) \setminus \{ 0\} \subseteq (\sigma dsc(S) \cup \sigma dsc(T )) \setminus \{ 0\} . (2.10)

ii) According to i), we have:

\scrM \cup \sigma dsc(S + T ) \setminus \{ 0\} \subseteq \scrM \cup (\sigma dsc(S) \cup \sigma dsc(T )) \setminus \{ 0\} . (2.11)

Now, concerning the inverse inclusion, let \lambda \in (\sigma dsc(S) \cup \sigma dsc(T )) \setminus \{ 0\} and assume that
\lambda /\in \sigma dsc(S + T ) \setminus \{ 0\} and \lambda /\in \scrM . Then, S + T  - \lambda \in Dsc(B(X)). Since ST = TS \in \~\scrF ,
then by [6, Theorem 3.1] and (2.8), we obtain

(S  - \lambda )(T  - \lambda ) = (T  - \lambda )(S  - \lambda ) \in Dsc(B(X)).

Using the fact that (S + T  - \lambda ) \in Dsc(B(X)) and \lambda /\in \scrM , it follows that (S  - \lambda ) and
(T - \lambda ) satisfy (H1) and (H

\prime 

2). Hence, by Theorem 1.6, we obtain dsc(S - \lambda ) and dsc(T - \lambda )
are finite, which is absurd. Thus,

\scrM \cup (\sigma dsc(S) \cup \sigma dsc(T )) \setminus \{ 0\} \subseteq \scrM \cup \sigma dsc(S + T ) \setminus \{ 0\} . (2.12)

The result follows from (2.11) and (2.12). \square 
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2.2. Results assuring condition (C2). We, first give the following concept of conver-
gence of spaces.

Definition 2.5. Let (En)n be a sequence of normed subspaces of X.
i) We say that (En)n upper-converges to a vector space E, and we write u - \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty En =
E, if x is an adherent point of a sequence (xn)n \subset X such that xn \in En from some rank
implies that x \in E.
ii) We say that (En)n lower-converges to a vector space E, and we write l - \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty En = E,
if x belongs to E implies that x is an adherent point of a sequence (xn)n \subset X such that
xn \in En from some rank.

Let X be a Banach space and let Y , Z be subspaces of X and define

\delta (Y, Z) := \mathrm{s}\mathrm{u}\mathrm{p}
x\in Y,\| x\| \leq 1

dist(x, Z).

The gap \widehat \delta (Y,Z) is defined by \widehat \delta (Y,Z) = \mathrm{m}\mathrm{a}\mathrm{x}(\delta (Y, Z), \delta (Z, Y )).

To prove Theorem 1.9, the main result of this subsection we need to prove next lemmas:

Lemma 2.6. i) Let (En)n be a sequence of normed subspaces of a Banach space X,
upper-convergent to a normed vector space E. Then \delta (En, E) converges to 0.
ii) Let (En)n be a sequence of normed subspaces of a Banach space X, lower-convergent
to a normed vector space E. Then \delta (E,En) converges to 0.
iii) Let (En)n be a sequence of Banach subspaces, upper-convergent to \{ 0\} . Then En = \{ 0\} 
from some rank.
iv) Let (En)n be a sequence of Banach subspaces, lower-convergent to X. Then En = X
from some rank.

Proof. It is easy to prove i) and ii). Concerning iii) and iv), it suffices to use i), ii) as
well as Theorem 17 page 102 in [21]. \square 

Lemma 2.7. Let (Tn)n be a sequence of bounded linear operators convergent to T in the
operator norm. Then, (N(Tn))n upper-converges to N(T ).

Proof. Let (xn)n \subset X such that xn \in N(Tn) from some rank. Next, we prove that for
every adherent point x of (xn)n, we have x \in N(T ). Indeed, for every n \in \BbbN 

\| Tx\| = \| Tx+ Txn  - Txn + Tnxn  - Tnxn\| 
\leq \| T\| \| x - xn\| + \| (T  - Tn)xn\| + \| Tnxn\| . (2.13)

Since xn \in N(Tn) from some rank n0 \in \BbbN , then \| Tnxn\| = 0, for all n \geq n0. Let \varepsilon > 0,
for all N \in \BbbN there exists n \geq N , such that \| xn  - x\| < \varepsilon . Besides, there is n1 \in \BbbN 
such that for every n \geq n1, we have \| (T  - Tn)x\| < \varepsilon for all x \in X. Thus, we obtain by
(2.13) that for all N0 = \mathrm{s}\mathrm{u}\mathrm{p}(n0, n1) there exists n \geq N0 satisfying \| Tx\| < (\| T\| + 1)\varepsilon .
Consequently, x \in N(T ). \square 

Lemma 2.8. Let (Tn)n be a sequence of bounded linear operators convergent to T in the
operator norm. Assume that T has a closed range and for all x in N(T ), dist(x,N(Tn))
is reached from some rank, then (N(Tn))n lower-converges to N(T ).

Proof. By Lemma 2.6 i) and Lemma 2.7, \delta (N(Tn), N(T )) tends to 0 as n \rightarrow \infty . Using
Theorem 17 page 102 in [21], we have that if T is with closed range then \delta (N(T ), N(Tn))
tends to 0 as n \rightarrow \infty . This implies that

\mathrm{s}\mathrm{u}\mathrm{p}
x\in N(T ), \| x\| \leq 1

\mathrm{i}\mathrm{n}\mathrm{f}
y\in N(Tn)

\| x - y\| tends to 0 as n \rightarrow \infty ,
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which implies that

\forall x \in N(T ), \| x\| \leq 1, \mathrm{i}\mathrm{n}\mathrm{f}
y\in N(Tn)

\| x - y\| tends to 0 as n \rightarrow \infty .

That is, for all x \in N(T ) and \| x\| \leq 1, there exists n0 \in \BbbN such that for all n \geq n0 there
is yn \in N(Tn) satisfying \| x - yn\| = \mathrm{i}\mathrm{n}\mathrm{f}

y\in N(Tn)
\| x - y\| . \square 

Lemma 2.9. Let (Tn)n be a sequence of bounded linear operators convergent to T in
the operator norm. Assume that \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p} \gamma (Tn) > 0. Then, (R(Tn))n upper-converges to
R(T ).

Proof. See Corollary 19 page 103 in [21]. \square 

Lemma 2.10. Let (Tn)n be a sequence of bounded linear operators convergent to T in
the operator norm. Then, (R(Tn))n lower-converges to R(T ).

Proof. Consider,

F = \{ (yn)n \subset X such that yn \in R(Tn) from some rank\} .

Assume that y \in R(T ). We will prove that y is a limit of a sequence (yn)n belonging
to F . In fact, y \in R(T ) means that there exists x \in X satisfying Tx = y. Consider the
sequence yn = Tnx, from some rank n0 \in \BbbN . Since Tn converges to T in the operator
norm, then for all \varepsilon > 0, there exists n1 \in \BbbN such that every n \geq n1, \| Tx  - Tnx\| < \varepsilon .
That is \| y  - yn\| < \varepsilon . Hence, (yn)n converges to y and (yn)n \in F . \square 

Proof of Theorem 1.9. 1) Let \lambda \in \sigma asc(T ). By Proposition 1.1, this is equivalent to say
that:

For all m \geq 0, there exists d \geq m satisfying R((T  - \lambda )d) \cap N(T  - \lambda ) \not = \{ 0\} . (2.14)

Since Tn - \lambda n converges to T  - \lambda in the operator norm, then by Lemma 2.10 (respectively
Lemma 2.8), R(T - \lambda )d (respectively N(T - \lambda )) is the l - limit of the sequence R(Tn - \lambda n)

d

(respectively N(Tn  - \lambda n)). Thus, (2.14) is equivalent to say that:

l  - \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\bigl( 
N(Tn  - \lambda n) \cap R((Tn  - \lambda n)

d)
\bigr) 
\not = \{ 0\} . (2.15)

From (2.15) and Lemma 2.6 ii), for every m \geq 0 there exists d \geq m satisfying:

N(Tn  - \lambda n) \cap R((Tn  - \lambda n)
d) \not = \{ 0\} , from some rank n \in \BbbN .

Therefore, according to Proposition 1.1, \lambda n \in \sigma asc(Tn), from some rank.
2) Let \lambda n \in \sigma asc(Tn). This means, in view of Proposition 1.1, that from some rank n \in \BbbN ,

for all m \geq 0, there exists d \geq m satisfying R((Tn  - \lambda n)
d)\cap N(Tn  - \lambda n) \not = \{ 0\} , (2.16)

Since (Tn  - \lambda n)n converges to (T  - \lambda ) in the operator norm, then by Lemma 2.7 and
Lemma 2.9, N(Tn  - \lambda n) upper-converges to N(T  - \lambda ) and R(Tn  - \lambda n)

d upper-converges
to R((T  - \lambda )d). Using Lemma 2.6 iii), (2.16) implies, For all m \geq 0 there exists d \geq m
satisfying:

R((T  - \lambda )d) \cap N(T  - \lambda ) \not = \{ 0\} .
Consequently, by Proposition 1.1, asc(T  - \lambda ) is infinite. Hence, \lambda \in \sigma asc(T ).
3) Let \lambda \in \sigma dsc(T ). Using Proposition 1.1, we have:

For all m \geq 0, there exists d \geq m satisfying R(T  - \lambda ) +N((T  - \lambda )d) \subsetneq X. (2.17)

Since (Tn  - \lambda n)n converges to (T  - \lambda ), then by Lemma 2.7 (respectively, Lemma 2.9),
N(T  - \lambda ) (respectively, R(T  - \lambda )) is the u  - limit of the sequence (N(Tn  - \lambda n))n
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(respectively, (R(Tn  - \lambda n))n). Thus, (2.17) is equivalent to say that, for every m \geq 0
there exists d \geq m satisfying:

u - \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\bigl( 
R(Tn  - \lambda n) +N((Tn  - \lambda n)

d)
\bigr) 
\subsetneq X.

Using Lemma 2.6 i) it follows:
From some rank n \in \BbbN , for every m \geq 0, there exists d \geq m satisfying

R(Tn  - \lambda n) +N((Tn  - \lambda n)
d) \subsetneq X. (2.18)

Hence, \lambda n \in \sigma dsc(Tn), from some rank.
4) Just using [6, Proposition 1.1] and [19, Proposition 1.6]. \square 

3. Properties of corresponding spectra

Denote by \scrP (X) the set of all projections P \in B(X) such that codimR(P ) is finite. For
T \in B(X) and P \in \scrP (X), the compression TP : R(P ) \rightarrow R(P ) is defined by TP y = PTy,
y \in R(P ), i.e. TP = PT| R(P ) where T| R(P ) : R(P ) \rightarrow X is the restriction of T . Clearly,
R(P ) is a Banach space and TP \in B(R(P ))).

Lemma 3.1. Let T \in B(X) and X be a direct sum of closed subspaces X1 and X2 which
are T - invariant. If T1 = T| X1

: X1 \rightarrow X1 and T2 = T| X2
: X2 \rightarrow X2 then the following

statements hold true:
i) T has a finite ascent if and only if T1 and T2 have respectively finite ascents.
ii) T has a finite descent if and only if T1 and T2 have respectively finite descents.

We prove the next result analogously as in [10]:

Proposition 3.2. For T \in B(X) and P \in \scrP (X), the following assertions hold:
i) If TP = PT then T \in Asc(B(X)) if and only if TP \in Asc(B(X)).
ii) If TP = PT then T \in Dsc(B(X)) if and only if TP \in Dsc(B(X)).

Proof. i) Assume that T \in B(X), P \in \scrP (X) and TP = PT . Then, X = R(P )\oplus N(P )
and the subspaces R(P ) and N(P ) are invariant by PTP \in B(X). The operator PTP
has the following matrix form:

PTP =

\biggl( 
TP 0
0 0

\biggr) 
:

\biggl( 
R(P )
N(P )

\biggr) 
\rightarrow 

\biggl( 
R(P )
N(P )

\biggr) 
.

From Lemma 3.1 i) (respectively, ii)), it yields that PTP is with finite ascent (respectively,
descent) if and only if TP is with finite ascent (respectively, descent). Since,

T = PT + (I  - P )T = PTP + PT (I  - P ) + (I  - P )T,

and PT (I - P )+ (I - P )T is a finite rank operator commuting with PTP it yields by [18,
Theorem 2.2] (respectively, [6, Theorem 3.1]), that PTP is with finite ascent (respectively.
descent) if and only if T is with finite ascent (respectively. descent). \square 

We are now ready to express our first main result of this section.

Theorem 3.3. Let S and T be two bounded linear operators satisfying (H1) and (H2).
Assume codimR(Sn0) and codimR(Tn0), for some n0 \in \BbbN \ast are finite and let MSn0

(respectively. MTn0 ) be the subspace of X satisfying X = R(Sn0)\oplus MSn0 (respectively.
X = R(Tn0)\oplus MTn0 ). If we suppose that MSn0 is T -invariant and MTn0 is S-invariant,
then

dsc(T ) \leq n0 and dsc(S) \leq n0 if and only if dsc(TS) \leq n0.

Remark 3.4. The existence of MSn0 and MTn0 is an immediate consequence of [21,
Lemma 2, p.156] and [22, Lemma 5.3]. The [22, Lemma 5.3] proved also that MSn0 and
MTn0 have finite dimensions.
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Proof. Concerning the direct sense, it follows from Lemma 2.3.
Now, concerning the reciprocal sense, we obtain from Lemma 2.4 1) that dsc(T ) \leq n0

or dsc(S) \leq n0. Without loss of generality, we assume that dsc(S) \leq n0. Using the fact
that TS has a finite descent, and TS = ST , we obtain that for all n \geq n0,

(TS)nX = (TS)n+1X, SnX = Sn+1X = Sn0X.

This means that for all n \geq n0,

TnSn0X = Tn+1Sn0X. (3.19)

Using Remark 3.4, MSn0 has a finite dimension, the fact that MSn0 is T -invariant and
from [26, Proposition 1.1], we infer that T| MSn0

: MSn0 \rightarrow MSn0 has a finite descent. Let
T| R(Sn0 ) : R(Sn0) \rightarrow R(Sn0). In view of 3.19, we have that for all n \geq n0,

Tn
| R(Sn0 )(R(Sn0)) = (TSn0)nX = Tn+1Sn0X = (TSn0)n+1X = Tn+1

| R(Sn0 )(R(Sn0)),

which means that T| R(Sn0 ) has a finite descent. Hence, using Lemma 3.1, dsc(T ) is
finite. \square 

Before given our second main result of this section, we start by recalling an interesting
result that is useful in its proof.

Proposition 3.5. [6, Proposition 1.1] Let T \in B(X) be an operator with finite descent
d := d(T ), then there exists \delta > 0 such that for every 0 <| \lambda | < \delta :

(1) d(T  - \lambda ) = 0;
(2) dimN(T  - \lambda ) = dim(N(T ) \cap R(T d)).

Proposition 3.6. [11, Proposition 2.2] Let X be a Banach space and T \in B(X). We
denote by T \ast the adjoint of T . If codimR(T ) is finite, then

(1) a(T \ast ) = d(T );
(2) a(T ) = d(T \ast ).

Proposition 3.7. Let X be a Banach reflexive space. Let T be a bounded operator on X
with finite ascent a. We assume that one of the following properties is satisfied:

(1) \mathrm{d}\mathrm{i}\mathrm{m}(N(T )) is finite,
(2) co\mathrm{d}\mathrm{i}\mathrm{m}(N(T a)) is finite.

Then, there exists \delta > 0 such that for every \lambda with 0 <| \lambda | < \delta , we have T  - \lambda is injective.

Proof. 1) The hypothesis, T \in B(X), gives that T \ast \in B(X\ast ) and (T \ast )\ast = T . Since
dimN(T ) < +\infty , then dimR(T \ast )\bot < \infty , in other words codimR(T \ast ) is finite. Thanks
to the Proposition 3.6 (1), and by using the fact that T has a finite ascent, we obtain
that d(T \ast ) = a((T \ast )\ast ) = a(T ) = a < +\infty . Now, according to Proposition 3.5, there is
\delta > 0 such that for all 0 <| \lambda | < \delta , T \ast  - \lambda is surjective. Consequently, by applying again
Proposition 3.6, we deduce that T  - \lambda is injective.
2) We recall that R(T a\ast ) \subset N(T a)\bot . By using [22, Lemma 5.3], this implies that
dimR(T a\ast ) < +\infty , therefore R(T a\ast ) is closed and T a\ast has a finite descent. Subsequently,
we infer that T \ast has also a finite descent. Applying Proposition 3.5, there is \delta > 0 such
that T \ast  - \lambda is surjective for all 0 < \lambda < \delta , we deduce that T  - \lambda is injective for all
0 < \lambda < \delta . \square 

4. Application

Let \scrH 1 and \scrH 2 be two Hilbert spaces. We consider the two 2 \times 2 block operator
matrices defined on \scrH 1 \times \scrH 2 by

M =

\biggl( 
T 0
0 S

\biggr) 
\in B(\scrH 1 \times \scrH 2) and MC =

\biggl( 
T C
0 S

\biggr) 
\in B(\scrH 1 \times \scrH 2),
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where, T \in B(\scrH 1), S \in B(\scrH 2) and C \in B(\scrH 2,\scrH 1). Observe that

M 1
kC =

\biggl( 
I 0
0 kI

\biggr) \biggl( 
T C
0 S

\biggr) \biggl( 
I 0
0 1

k I

\biggr) 
, for k \in \BbbN \ast .

We assume that S and T have closed ranges. Since MC and M 1
kC are similar, it follows

that \sigma i(M 1
kC) = \sigma i(MC), i \in \{ asc, dsc\} .

Let \scrT and \scrS be two 2\times 2 block operator matrices defined by

\scrT =

\biggl( 
T 0
0 0

\biggr) 
\in B(\scrH 1 \times \scrH 2) and \scrS =

\biggl( 
0 0
0 S

\biggr) 
\in B(\scrH 1 \times \scrH 2).

It is easy to verify that hypothesis of Corollary 1.7 and Lemma 2.2 are satisfied. Conse-
quently, \sigma i(M)\setminus \{ 0\} \subset (\sigma i(\scrT ) \cup \sigma i(\scrS ))\setminus \{ 0\} . Using Lemma 3.1, \sigma i(M) = \sigma i(T ) \cup \sigma i(S) =
\sigma i(\scrT ) \cup \sigma i(\scrS ). By Theorem 1.9, \sigma \mathrm{d}\mathrm{e}\mathrm{s}\mathrm{c}(MC) \subset \sigma \mathrm{d}\mathrm{e}\mathrm{s}\mathrm{c}(T ) \cup \sigma \mathrm{d}\mathrm{e}\mathrm{s}\mathrm{c}(S) and by previous
proposition and [21, Proposition 1.6] we obtain \sigma \mathrm{a}\mathrm{s}\mathrm{c}(MC) \subset \sigma \mathrm{a}\mathrm{s}\mathrm{c}(T ) \cup \sigma \mathrm{a}\mathrm{s}\mathrm{c}(S).
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