

V-SETS AND THE PROPERTY (VLD) IN BANACH SPACES

ABDERRAHMAN RETBI

ABSTRACT. In this paper, we study the notion of V-sets in Banach spaces and Banach lattices, and we give some characterizations of it in terms of sequences. As an application, we establish new properties of unconditionally converging operators and 1-Schur property in Banach lattices. Next, by introducing the concept of the property (VLD) in Banach spaces, we investigate the Dunford-Pettis completely continuous property of unconditionally converging operator. Finally, we derive the relationships between the property (VLD) and the relatively compact Dunford-Pettis property (resp., the Pelczynski's property (V)), and we deduce some examples of Banach spaces with the property (VLD).

V цій роботі ми вивчаємо поняття V-множин у банахових просторах та банахових ґратках та даємо деякі їхні характеристики у термінах послідовностей. Як застосування, ми встановлюємо нові властивості безумовно збіжних операторів і властивість 1-Шура в банахових ґратках. Далі, вводячи поняття (VLD) властивості у банахових просторах, ми досліджуємо властивість цілковитої неперервності Данфорда-Петтіса безумовно збіжного оператора. Нарешті, ми виводимо зв'язки між (VLD) властивістю і властивістю відносної компактності Данфорда-Петтіса (відповідно, властивістю Пельчинського (V)), і виводимо деякі приклади банахових просторів із (VLD) властивістю.

1. Introduction

Recall that a series $\sum x_n$ in a Banach space X is weakly unconditionally converging if and only if $\sum |f(x_n)| < \infty$ for each $f \in X'$. Also, a series $\sum x_n$ is unconditionally converging if and only if $\sum x_{\sigma(n)}$ converges in the norm topology of X for every permutation σ of the natural numbers.

Note that a norm bounded subset A of a topological dual Banach space X' is called a V-subset if every weakly unconditionally converging series $\sum x_n$ in X converges uniformly to zero on A, that is,

$$\lim_{n \to \infty} \sup_{f \in A} f(x_n) = 0.$$

A norm bounded subset A of a Banach space X is said to be Dunford-Pettis set, if every weakly null sequence (f_n) in X' converges uniformly to zero on A, that is,

$$\lim_{n \to \infty} \sup_{x \in A} f_n(x) = 0.$$

Recall from [14] that a norm bounded subset A of a topological dual Banach space X' is an L-Dunford-Pettis if every weakly null sequence (x_n) , which is a Dunford-Pettis subset of X converges uniformly to zero on A, that is,

$$\lim_{n \to \infty} \sup_{f \in A} f(x_n) = 0.$$

This paper is devoted to study V-sets in terms of sequences in Banach spaces and Banach lattices, several equivalent ways of presenting V-sets are given. Next, we establish a characterization of unconditionally converging operator from a Banach space into a

²⁰²⁰ Mathematics Subject Classification. 46A40, 46B40.

Keywords. Banach lattice, V-set, relatively compact Dunford-Pettis property, unconditionally converging operator.

Banach lattice in terms of V-sets (Theorem 4.4). Many authors are interested in the study of the unconditionally converging operators and their relations with other operators. In 1962, A. Pelczynski in his fundamental paper [13] studied Banach spaces on which every unconditionally converging operator is weakly compact. Later, Banach spaces on which every unconditionally converging operator is completely continuous have been studied by Joe Howard [10]. After that, Saab and Smith in their paper [17] looked at spaces on which every unconditionally converging operator is weakly completely continuous. Recently, Dehghani and Moshtaghioun ([5], Theorem 2.12) proved that the Banach space X has the 1-Schur property if and only if every operator $T: X \to Y$ is unconditionally converging for all Banach spaces Y. In the present paper, we continue on this path, and we are looking for the relationships between unconditionally converging operators and Dunford-Pettis completely continuous operators. Note that there is an unconditionally converging operator which is not Dunford-Pettis completely continuous. In fact, the identity operator $Id_{L^1[0,1]}: L^1[0,1] \to L^1[0,1]$ is unconditionally converging operator because $L^1[0,1]$ has the 1-Schur property (see Example 2.5 of [5] and Proposition 4.5), but it fail to be Dunford-Pettis completely continuous operator because $L^{1}[0,1]$ does not have the relatively compact Dunford-Pettis property (see [9], Proposition 3.3 and [15], Corollary 2.7). By introducing the property (VLD) in Banach space which is shared by those Banach space whose V-sets of his topological dual are L-Dunford-Pettis (Definition 5.1), we show that a Banach space X has the property (VLD) if and only if for any Banach space Y, every unconditionally converging operator $T: X \to Y$ is Dunford-Pettis completely continuous (Theorem 5.2). As an application, we get the relations between the property (VLD) and the relatively compact Dunford-Pettis property (resp., the property (V) in Banach spaces. Finally, we find some examples about Banach spaces with the property (VLD). The notions of V-sets, L-Dunford-Pettis sets, unconditionally converging operators and Dunford-Pettis completely continuous operators play a consistent and important role in this study.

2. Definitions and notations

Recall from [6] that an operator T from a Banach space X into a another Banach space Y is called unconditionally converging if it maps weakly unconditionally converging series in X into unconditionally converging series in Y. An operator T from a Banach space X into a another Banach space Y is called Dunford-Pettis completely continuous (DPcc for short) if each weakly null sequence (x_n) , which is a Dunford-Pettis set in X, we have $||T(x_n)|| \to 0$, as $n \to \infty$ [18].

A Banach space X has

- the 1-Schur property if every weakly unconditionally converging (weakly 1-summable) series $\sum x_n$ in X, we have $||x_n|| \to 0$, as $n \to \infty$ [5].
- the relatively compact Dunford-Pettis property (DPrcP for short) if every weakly null sequence, which is a Dunford-Pettis set in X, is norm null [18].
- the L-Dunford-Pettis property if every L-Dunford-Pettis set in X' is relatively weakly compact [14].
- the Pelczynski's property (V) (property (V) for short) if every V-set of X' is relatively weakly compact, equivalently, if for any Banach space Y, every unconditionally converging operator T from X into Y is weakly compact [13].

To state our results, we need to fix some notations and recall some definitions. A Banach lattice is a Banach space $(E, \|\cdot\|)$ such that E is a vector lattice and its norm satisfies the following property: for each $x,y\in E$ such that $|x|\leq |y|$, we have $\|x\|\leq \|y\|$. If E is a Banach lattice, its topological dual E', endowed with the dual norm, is also a Banach lattice. A norm $\|\cdot\|$ of a Banach lattice E is order continuous if for each generalized sequence (x_{α}) such that $x_{\alpha}\downarrow 0$ in E, the sequence (x_{α}) converges to 0 for the norm $\|\cdot\|$, where the notation $x_{\alpha}\downarrow 0$ means that the sequence (x_{α}) is decreasing, its infimum exists and $\inf(x_{\alpha})=0$. The sequence (x_{n}) of a Banach lattice E is disjoint

if $|x_n| \wedge |x_m| = 0$ for $n \neq m$ (we denote by $x_n \perp x_m$). Recall that a nonzero element x of a vector lattice G is discrete if the order ideal generated by x equals the subspace generated by x. The vector lattice G is discrete, if it admits a complete disjoint system of discrete elements. We will use the term operator $T: X \longrightarrow Y$ between two Banach spaces to mean a bounded linear mapping, its dual operator T' is defined from Y' into X' by T'(f)(x) = f(T(x)) for each $f \in Y'$ and for each $x \in X$. The reader is referred to Aliprantis-Burkinshaw [1], Diestel [7] and Dunford-Schwartz [8] for undefined notation and terminology.

3. V-SETS IN A TOPOLOGICAL DUAL BANACH SPACE

We start this article by some characterizations of V-set in terms of sequences.

Proposition 3.1. Let X be a Banach space and let A be a norm bounded subset of X'. The following statements are equivalent:

- (1) A is a V-set in X'.
- (2) For every sequence (f_n) in A and for every weakly unconditionally converging series $\sum x_n$ in X, we have $f_n(x_n) \to 0$ as $n \to \infty$.

Proof. (2) \Rightarrow (1) Assume by way of contradiction that A is not a V-set in X'. Then, there exists a weakly unconditionally converging series $\sum x_n$ in X such that $\sup_{f \in A} |f(x_n)| > \varepsilon > 0$ for some $\varepsilon > 0$ and each n. Hence, for every n there exists some f_n in A such that $|f_n(x_n)| > \varepsilon$, which is impossible from our hypothesis (2). This proves that A is a V-set in X'.

 $(1) \Rightarrow (2)$ Let (f_n) be a sequence in A and $\sum x_n$ be a weakly unconditionally converging series in X. Since

$$|f_n(x_n)| \le \sup_{f \in A} |f(x_n)|,$$

for every n, and A is a V-set in X', then $f_n(x_n) \to 0$ as $n \to \infty$. This finishes the proof.

As a simple consequence, we obtain:

Corollary 3.2. Let X be a Banach space and let (f_n) be a norm bounded sequence in X'. The following statements are equivalent:

- (1) The subset $\{f_n : n \in \mathbb{N}\}$ is a V-set in X';
- (2) For every sequence (g_m) of $\{f_n : n \in \mathbb{N}\}$ and for every weakly unconditionally converging series $\sum x_n$ in X, we have $g_m(x_m) \to 0$ as $m \to \infty$;
- (3) For every unconditionally converging series $\sum x_n$ in X, we have $f_n(x_n) \to 0$ as $n \to \infty$.

In the next result, we establish the following characterization.

Proposition 3.3. Let X be a Banach space. Then the following statements are equivalent:

- (1) every relatively weakly compact set in X' is a V-set;
- (2) every weakly null sequence (f_n) in X', the subset $\{f_n : n \in \mathbb{N}\}$ is a V-set;
- (3) for every unconditionally converging series $\sum x_n$ in X and every weakly null sequence (f_n) in X', we have $f_n(x_n) \to 0$ as $n \to \infty$.

Proof. (1) \Rightarrow (2) Let (f_n) be a weakly null sequence in X', so the subset $\{f_n : n \in \mathbb{N}\}$ is relatively weakly compact in X', and by our hypothesis we see that $\{f_n : n \in \mathbb{N}\}$ is V-set.

 $(2) \Rightarrow (3)$ Let $\sum x_n$ be a weakly unconditionally converging series in X and (f_n) be a weakly null sequence in X', then the subset $\{f_n : n \in \mathbb{N}\}$ is V-set in X', and from Proposition 3.1 we deduce that $f_n(x_n) \to 0$ as $n \to \infty$.

 $(3)\Rightarrow (1)$ Let K be a relatively weakly compact subset of X' and let $\sum x_n$ be a weakly unconditionally converging series in X, we show that (x_n) converges uniformly on K. Otherwise, there exist a sequence (f_n) of K and some $\varepsilon>0$ such that $|f_n(x_n)|>\varepsilon$ for all n. As K is relatively weakly compact, there exists a subsequence (f_{n_m}) of (f_n) such that (f_{n_m}) converges weakly to f in X'. By our hypothesis, we get that

$$0 < \varepsilon < |f_{n_m}(x_{n_m})| \le |(f_{n_m} - f)(x_{n_m})| + |f(x_{n_m})| \to 0$$

as $m \to \infty$, which is impossible, and this completes the proof.

Now, we are in a position to give the following result about the order interval in Banach lattices.

Proposition 3.4. Let T be an operator from a Banach space X into a Banach lattice F and let $f \in (F')^+$. The following statements are equivalent:

- (1) T'([-f, f]) is a V-set in X'.
- (2) For weakly unconditionally converging series $\sum x_n$ in X, $f(|T(x_n)|) \to 0$ as $n \to \infty$.

Proof. Let (x_n) be a weakly unconditionally converging series $\sum x_n$ in X, then the result follows from the equality:

$$f(|T(x_n)|) = \sup\{|g(x_n)| : g \in T'([-f, f])\},\$$

for every $f \in (F')^+$ and every $n \in \mathbb{N}$.

As a consequences, we derive

Corollary 3.5. For an operator T from a Banach space X into a Banach lattice F, the following statements are equivalent:

- (1) T'([-f, f]) is a V-set in X', for each $f \in (F')^+$;
- (2) for weakly unconditionally converging series $\sum x_n$ in X, $|T(x_n)| \to 0$ weakly in F.

In particular, If we put $T = Id_E : E \to E$, we deduce

Corollary 3.6. Let E be a Banach lattice, the following statements are equivalent:

- (1) For each $f \in (E')^+$, [-f, f] is a V-set in E'.
- (2) For weakly unconditionally converging series $\sum x_n$ in E, $|x_n| \to 0$ weakly in E.

Recall that the lattice operations in a Banach lattice E are weakly sequentially continuous whenever $x_n \to 0$ weakly in E implies $|x_n| \to 0$ weakly in E.

Remark 3.7. Let E be a Banach lattice.

- (1) If the lattice operations of E are weakly sequentially continuous, then each order interval of E' is a V-set (see Corollary 3.6).
- (2) It follows from Corollary of Chen-Wickstead [4] we see that if E is discrete with order continuous norm, then each order interval of E' is a V-set.
- 4. Some characterizations of unconditionally converging operators

In order to prove the next Theorem, we need the following Lemma.

Lemma 4.1. Let E be a Banach lattice, and let (g_n) be a norm bounded sequence of E^+ . Then the sequence defined for $n \ge 2$ by

$$f_n = \left(g_n - 4^n \sum_{i=1}^{n-1} g_i - 2^{-n} \sum_{i=1}^{\infty} 2^{-i} g_i\right)^+,$$

is a disjoint sequence.

Proof. Let $n > m \ge 2$, then

$$0 \le f_n \le (g_n - 4^n g_m)^+,$$

and

$$0 \le 4^n f_m \le 4^n (g_m - 4^{-n} g_n)^+$$

= $(4^n g_m - g_n)^+$
= $(g_n - 4^n g_m)^-$.

Since $(g_n - 4^n g_m)^+ \perp (g_n - 4^n g_m)^-$, we see that $f_n \perp f_m$, and we are done.

Now, we establish some equivalent condition for T'(A) to be V-set where A is a norm bounded solid subset of F' and $T: X \to F$ is an operator from a Banach space into a Banach lattice.

Theorem 4.2. Let T be an operator from a Banach space X into a Banach lattice F, and let A be a norm bounded solid subset of F'. The following statements are equivalent:

- (1) T'(A) is a V-set in X';
- (2) T'([-f, f]) and $\{T'(f_n), n \in \mathbb{N}\}$ are V-sets in X', for each $f \in A^+$ and for each disjoint sequence $(f_n) \subset A^+ = A \cap (F')^+$.

Proof. (1) \Rightarrow (2) Let $f \in A^+$ and (f_n) be a disjoint sequence in A^+ , then T'([-f, f]) and $\{T'(f_n), n \in N\}$ are two subsets of T'(A), and by our hypothesis we see that T'([-f, f]) and $\{T'(f_n), n \in N\}$ are V-sets in X'.

 $(2)\Rightarrow (1)$ Let $\sum x_n$ be a weakly unconditionally converging series in X. To finish the proof, we have to show that $\sup_{g\in A}|T'(g)(x_n)|\to 0$ as $n\to\infty$. Assume by way of contradiction that $\sup_{g\in A}|T'(g)(x_n)|$ does not converge to 0 as $n\to\infty$. So there exists some $\varepsilon>0$ such that $\sup_{g\in A}|T'(g)(x_n)|>\varepsilon$ for each n. Hence, there exists $g_n\in A^+$ such that $g_n(|T(x_n)|)>\varepsilon$ for all natural number n. Now, by our hypothesis we have that T'([g,g]) is a V-set in E' for every $g\in A^+$. By Proposition 3.4 we see that $g(|T(x_n)|)\to 0$ as $n\to\infty$ for every $g\in A^+$. Let $n_1=1$, since $g_{n_1}(|T(x_n)|)\to 0$ as $n\to\infty$, there exists some natural number n_2 such that $n_2>n_1=1$ and $g_{n_1}(|T(x_{n_2})|)<\frac{\varepsilon}{2^{2\times 2+2}}$. Also, because $\sum_{k=1}^2 g_{n_k}(|T(x_n)|)\to 0$ as $n\to\infty$, there exists some natural number n_3 such that $n_3>n_2>n_1=1$ and $\sum_{k=1}^2 g_{n_k}(|T(x_{n_3})|)<\frac{\varepsilon}{2^{2\times 3+2}}$. By induction, we get a strictly increasing subsequence (n_k) of $\mathbb N$ such that

$$(\sum_{k=1}^{m-1} g_{n_k})(|T(x_{n_m})|) < \frac{\varepsilon}{2^{2m+2}}$$

for all $m \geq 2$. Now, let

$$h = \sum_{k=1}^{\infty} 2^{-k} g_{n_k}$$

and

$$f_m = (g_{n_m} - 4^m \sum_{k=1}^{m-1} g_{n_k} - 2^{-m}h)^+$$

for all $m \geq 2$. So by Lemma 4.1, we see that (f_m) is a disjoint sequence in $(F')^+$, as $0 \leq f_m \leq g_{n_m}$, $g_{n_m} \in A$ and A is a solid subset of F' then, $f_m \in A^+$. Hence, we have

$$f_m(|T(x_{n_m})|) = (g_{n_m} - 4^m \sum_{k=1}^{m-1} g_{n_k} - 2^{-m}h)^+(|T(x_{n_m})|)$$

$$\geq (g_{n_m} - 4^m \sum_{k=1}^{m-1} g_{n_k} - 2^{-m}h)(|T(x_{n_m})|)$$

$$> \varepsilon - \frac{\varepsilon}{4} - 2^{-m}h(|T(x_{n_m})|).$$

This proves that $f_m(|T(x_{n_m})|) > \frac{\varepsilon}{2}$ for m sufficiently large (because $2^{-m}h(|T(x_{n_m})|) \to 0$). Since $f_m(|T(x_{n_m})|) = \sup\{|T'(y)(x_{n_m})|, |y| \le f_m\}$, for m sufficiently large there exist some $y_m \in F'$ such that $|y_m| \le f_m$ and $|T'(y_m)(x_{n_m})| > \frac{\varepsilon}{2}$. It is clear that (y_m^+) and (y_m^-) are norm bounded disjoint sequences in A^+ and so, by our hypothesis we obtain

$$\frac{\varepsilon}{2} < |T'(y_m)(x_{n_m})|
\leq |T'(y_m^+)(x_{n_m})| + |T'(y_m^-)(x_{n_m})|
\leq \sup_{k \in \mathbb{N}} |T'(y_k^+)(x_{n_m})| + \sup_{k \in \mathbb{N}} |T'(y_k^-)(x_{n_m})| \to 0,$$

as $m \to \infty$. This leads to a contradiction, and we are done.

As a consequence of Theorem 4.2, we get

Corollary 4.3. Let E be a Banach lattice and let A be a norm bounded solid subset of E'. The following statements are equivalent:

- (1) A is a V-set in E';
- (2) [-f, f] and $\{(f_n), n \in \mathbb{N}\}$ are V-sets in E', for each $f \in A^+$ and for each disjoint sequence $(f_n) \subset A^+ = A \cap (E')^+$.

The next result characterizes unconditionally converging operator from a Banach space into a Banach lattice by V-set and sequences.

Theorem 4.4. For an operator T from a Banach space X into a Banach space Y, the following statements are equivalent:

- (1) T is unconditionally converging operator;
- (2) $||T(x_n)|| \to 0$ as $n \to \infty$ for every weakly unconditionally converging series $\sum x_n$ in X;
- (3) $T'(B_{Y'})$ is a V-set in X'. If Y is a Banach lattice, we may add:
- (4) T'([-f, f]) and $\{T'(f_n), n \in \mathbb{N}\}$ are V-sets in X', for each $f \in B_{Y'}^+$ and for each disjoint sequence $(f_n) \subset B_{Y'}^+$;
- (5) $|T(x_n)| \to 0$ weakly in Y and $f_n(T(x_n)) \to 0$ for every weakly unconditionally converging series $\sum x_n$ in X and for each disjoint sequence $(f_n) \subset B_{Y'}^+$.

Proof. $(1) \Rightarrow (2)$ Obvious.

- $(2)\Rightarrow (1)$ Suppose that T is not unconditionally converging. Then, there exist a weakly unconditionally converging series $\sum x_n$ in $X, \varepsilon > 0$, a permutation σ of \mathbb{N} , and intertwining sequences of positive integers (m_k) and (n_k) such that $\left\|\sum_{n=m_k}^{n_k} T(x_{\sigma(n)})\right\| > \varepsilon$ for each $k \in \mathbb{N}$. Now, if we take $z_k = \sum_{n=m_k}^{n_k} x_{\sigma(n)}$, we see that $\sum z_k$ is weakly unconditionally converging series in X and $\|T(z_k)\| = \left\|\sum_{n=m_k}^{n_k} T(x_{\sigma(n)})\right\| > \varepsilon$ for each $k \in \mathbb{N}$, which is impossible by our hypothesis.
- (2) \Leftrightarrow (3) Follows from the equality $\sup_{f \in T'(B_{Y'})} |f(x_n)| = ||T(x_n)||$ for every weakly unconditionally converging series $\sum x_n$ in X.
 - $(3) \Leftrightarrow (4)$ Follows from Theorem 4.2.
 - $(4) \Leftrightarrow (5)$ Follows from Proposition 3.4 and Corollary 3.5.

Now, by Corollaries 2.9 and 2.12 of [5], Corollary 1.9 of [3] and Theorem 4.4, we derive the following characterization of 1-Schur property in Banach lattice.

Proposition 4.5. Let X be a Banach space, the following statements are equivalent:

- (1) X has the 1-Schur property;
- (2) X contains no copy of c_0 ;
- (3) for any Banach space Y, every operator from X into Y is unconditionally converging;

- (4) every operator from X into ℓ^{∞} is unconditionally converging;
- (5) $||x_n|| \to 0$ as $n \to \infty$ for every weakly unconditionally converging series $\sum x_n$ in X:
- (6) $B_{X'}$ is a V-set in X'. If X is a Banach lattice, we may add:
- (7) [-f, f] and $\{(f_n), n \in \mathbb{N}\}$ are V-sets in X', for each $f \in B_{X'}^+$ and for each disjoint sequence $(f_n) \subset B_{X'}^+$;
- (8) $|x_n| \to 0$ weakly in X and $f_n(x_n) \to 0$ for every weakly unconditionally converging series $\sum x_n$ in X and for each disjoint sequence $(f_n) \subset B_{X'}^+$.

The following is a well-known result due to Pelczynski:

Lemma 4.6. Let X, Y be Banach spaces and let $T: X \to Y$ be a bounded linear operator. Then T is unconditionally converging if and only if it does not fix a copy of c_0 (i.e., there is no subspace $Z \subset X$ isomorphic to c_0 such that $T|_Z$ is an isomorphism onto its image).

See, e.g., ([7], p. 54, Exercise 8), a quantitative version was established in [[12], Theorem 3.6]. Now, in the following Theorem, we obtain a necessary condition such that an operator between two Banach spaces is not unconditionally converging.

Theorem 4.7. Suppose that an operator T from a Banach space X into a Banach space Y is not unconditionally converging. Then, for each $0 < \varepsilon < 1$, there exist a sequence $(f_n) \subset B_{Y'}$ and a weakly unconditionally converging series $\sum x_n$ in X such that

$$f_n(T(x_n)) = 1$$

and

$$\sum_{k \neq n} |f_n(T(x_k))| < \frac{\varepsilon}{1-\varepsilon}$$

for each $n \in \mathbb{N}$.

Proof. Assume that T is not unconditionally converging. By Lemma 4.6 it fixes a copy of c_0 . I.e., there is $Z \subset X$ isomorphic to c_0 such that $T|_Z$ is an isomorphism. Let (z_n) the c_0 -basis of Z. Then $T(z_n)$ is a c_0 -basis of T(Z).

By James' distortion theorem for c_0 (see, e.g., [[11], Lemma 2.2]) for any positive number ε , there is a sequence (v_n) in the unit ball of T(Z) such that

$$(1-\varepsilon)\sup_{n}|\alpha_{n}| < \left\|\sum_{n}\alpha_{n}v_{n}\right\| \leq \sup_{n}|\alpha_{n}|$$

for each choice of scalars (α_n) . Take $x_n \in Z \subset X$ with $T(x_n) = \frac{v_n}{\|v_n\|}$. Since (x_n) is a c_0 -basis of Z, the series $\sum x_n$ is weakly unconditionally converging. Moreover, $\|T(x_n)\| = 1$, hence there is $(f_n) \subset B_{Y'}$ with $f_n(T(x_n)) = 1$ (by Hahn-Banach).

Now, Let $0 < \varepsilon < 1$, fix n and assume that the set $I \subset \{k \in \mathbb{N}/k \neq n\}$ is finite. Then $(\epsilon_k \text{ below are } \pm 1)$:

$$\sum_{k \in I} |f_n(T(x_k))| = -|f_n(x_n)| + \sum_{k \in I \cup \{n\}} |f_n(T(x_k))|$$

$$= -1 + \sum_{k \in I \cup \{n\}} \epsilon_k f_n(T(x_k))$$

$$= -1 + f_n \Big(\sum_{k \in I \cup \{n\}} \epsilon_k T(x_k) \Big)$$

$$\leq -1 + \left\| \Big(\sum_{k \in I \cup \{n\}} \epsilon_k T(x_k) \Big) \right\|$$

$$\leq -1 + \sup_{k \in I \cup \{n\}} \frac{1}{\|v_k\|}$$

$$< -1 + \frac{1}{1 - \varepsilon} = \frac{\varepsilon}{1 - \varepsilon}.$$

And this completes the proof.

As a consequence, we get

Corollary 4.8. Let X be a Banach space which contains a copy of c_0 . Then, for each $0 < \varepsilon < 1$, there exist a sequence $(f_n) \subset B_{X'}$ and a weakly unconditionally converging series $\sum x_n$ in X such that

$$f_n(x_n) = 1$$

and

$$\sum_{k\neq n} |f_n(x_k)| < \frac{\varepsilon}{1-\varepsilon}$$

for each $n \in \mathbb{N}$.

5. Banach spaces with the property (VLD)

Note that there exists a V-set in a topological dual Banach space which is not L-Dunford-Pettis. In fact, the closed unit ball $B_{L^{\infty}[0,1]}$ of $L^{\infty}[0,1]$ is V-set because $L^{1}[0,1]$ has the 1-Schur property (see Example 2.5 of [5] and Proposition 4.5), but $B_{L^{\infty}[0,1]}$ is not L-Dunford-Pettis because $L^{1}[0,1]$ does not have the relatively compact Dunford-Pettis property (see [9], Proposition 3.3 and [15], Corollary 2.7). Inspired by this fact, we introduce the notion of property (VLD) in Banach space.

Definition 5.1. Let X be a Banach space. Then we say that X has the property (VLD) if each V-set in X' is L-Dunford-Pettis.

Now, we are in a position to give the operators characterizations of the property (VLD) in a Banach space.

Theorem 5.2. Let X be a Banach space. The following statements are equivalent;

- (1) X has the property (VLD).
- (2) Let Y be any Banach space, then an operator T from X to Y is Dunford-Pettis completely continuous whenever T is unconditionally converging.
- (3) Every unconditionally converging operator T from X to ℓ^{∞} is Dunford-Pettis completely continuous.

Proof. (1) \Rightarrow (2) Assume that Y is a Banach space and operator T from X into Y is unconditionally converging. Now, let the series $\sum x_n$ in X be weakly unconditionally converging. Then, $\sum T(x_n)$ is an unconditionally converging in Y and $||T(x_n)|| \to 0$ as $n \to \infty$.

Thus,

$$||T(x_n)|| = \sup\{|T'f(x_n)| : f \in B_{Y'}\} \to 0$$

as $n \to \infty$, and hence $T'(B_{Y'})$ is a V-set in X'. Since X has the (VLD) property, then $T'(B_{Y'})$ is L-Dunford-Pettis set in X', and from Theorem 2.6 of [15] we see that the operator T is Dunford-Pettis completely continuous.

- $(2) \Rightarrow (3)$ Obvious.
- $(3) \Rightarrow (1)$ Let A be a V-set in X' and let (f_n) be a sequence in A. Define the operator $T: \ell^1 \to X'$ by

$$T(a) = \sum_{n=0}^{\infty} a_n f_n$$

for each $a=(a_n)\in\ell^\infty$, so the restriction in X of its adjoint $T'|_X:X\to\ell^\infty$ is defined by

$$T'|_{X}(x) = T'(x) = (f_{m}(x))$$

for each $x \in X$. Now, let $\sum x_n$ be a weakly unconditionally converging series in X, we have

$$||T'(x_n)|| = \sup_{m \in \mathbb{N}} |f_m(x_n)| \le \sup_{f \in A} |f(x_n)|$$

for each $n \in \mathbb{N}$. Since A is a V-set in X' we see that $||T'(x_n)|| \to 0$ as $n \to \infty$, this proves that the operator $T'|_X$ is unconditionally converging, and by our hypothesis we obtain that $T'|_X$ is Dunford-Pettis completely continuous operator.

Assume by way of contradiction that A is not an L-Dunford-Pettis set in X'. Then, there exists a weakly null sequence (y_n) , which is a Dunford-Pettis subset of X such that $\sup_{g\in A}|g(y_n)|>\varepsilon>0$ for some $\varepsilon>0$ and each $n\in\mathbb{N}$. Hence, for every n there exists some g_n in A such that $|g_n(y_n)|>\varepsilon$. Now, we find

$$||T'(y_n)|| = \sup_{m \in \mathbb{N}} |f_m(y_n)| \ge \sup_{f \in A} |f(y_n)| \ge |g_n(y_n)| > \varepsilon$$

for each $n \in \mathbb{N}$, which is a contradiction with the fact that $T'|_X$ is Dunford-Pettis completely continuous operator. Thus, A is L-Dunford-Pettis set in X', Therefore X has the property (VLD), and we are done.

- **Example 5.3.** (1) The Banach space ℓ^1 has the property (VLD). In fact, for any Banach space Y, we have every operator T from ℓ^1 into Y is Dunford-Pettis completely continuous (because ℓ^1 has the relatively compact Dunford-Pettis property), and we apply Theorem 5.2.
 - (2) By our Definition 5.1 the Banach space $L^1[0,1]$ does not have the property (VLD).

As a consequence we obtain:

Corollary 5.4. Let X be a Banach space.

- (1) If X has the property (VLD) and contains no copy of c_0 then it has the relatively compact Dunford-Pettis property.
- (2) If X has the relatively compact Dunford-Pettis property then it has the property (VLD).
- (3) Suppose that X contains no copy of c_0 . Then, X has the property (VLD) if and only if it has the relatively compact Dunford-Pettis property.

Proof. (1) Immediately From Theorem 5.2.

- (2) Let X be a Banach space has the relatively compact Dunford-Pettis property, so by [14], Theorem 2.5, we see that every bounded subset of X' is L-Dunford-Pettis. In particular, we conclude that every V-set of X' is L-Dunford-Pettis, and X has the property (VLD).
 - (3) Immediately from (1) and (2).

Remark 5.5. (1) Every Schur space has the relatively compact Dunford-Pettis property, and hence it has the property (VLD).

(2) Every discrete KB-space has the relatively compact Dunford-Pettis property (see [2], Corollary 3.10), and hence it has the property (VLD).

Corollary 5.6. Let X be a Banach space.

- (1) If X has the property (V) then it has the property (VLD).
- (2) If X has the (VLD) and L-Dunford-Pettis properties then it has the property (V).
- (3) Suppose that X has the L-Dunford-Pettis property. Then, X has the property (VLD) if and only if it has the property (V).

Proof. (1) Let T be a unconditionally converging operator from a Banach space X to any Banach space Y, as X has the property (V) then T is weakly compact. By [4], Corollary 1.1 we conclude that T is Dunford-Pettis completely continuous, and by Theorem 5.2 we see that X has the property (VLD).

- (2) Let T be a unconditionally converging operator from a Banach space X to any Banach space Y, since X has the property (VLD) we see that T is Dunford-Pettis completely continuous. Now, as X has the L-Dunford-Pettis property then by Theorem 2.7 of [14] we see that T is weakly compact, and X has the property (V).
 - (3) Immediately from (1) and (2).
- **Example 5.7.** (1) The Banach spaces c_0 , ℓ^{∞} , C(K) (K is a compact Hausdorff space) have the property (V) (see [10], page 7), and hence they have the property (VLD).
 - (2) Every reflexive Banach space has the property (V) [13], and hence it has the property (VLD).

ACKNOWLEDGMENTS

The author is thankful to the referee for his valuable comments and suggestions.

References

- C.D. Aliprantis, O. Burkinshaw, Positive operators, Reprint of the 1985 original. Springer, Dordrecht, 2006.
- [2] B. Aqzzouz, K. Bouras, Dunford-Pettis sets in Banach lattices, Acta Math. Univ. Comenian. 81(2) (2012), 185-196.
- [3] M. E. Bahreini, E. M. Bator, I. Ghenciu, Complemented subspaces of linear bounded operators, Canad. Math. Bull. 55(3) (2012), 449-461.
- [4] Z. L. Chen, A. W. Wickstead, Relative weak compactness of solid hulls in Banach lattices, Indag. Math. (N.S.), 9(2) (1998), 187-196.
- [5] M. B. Dehghani, S. M. Moshtaghioun, On the p-Schur property of Banach spaces, Ann. Funct. Anal. 9 (2018), 123-136.
- [6] J. Diestel, A survey of results related to the Dunford-Pettis property in integration, topology, and geometry in linear spaces, (Chapel Hill, NC, 1979), Contemp. Math. 2, Amer. Math. Soc., Providence, (1980), 15-60.
- [7] J. Diestel, Sequences and series in Banach spaces, Grad Texts in Math, No. 92, Springer-Verlag, Berlin, 1984.
- [8] N. Dunford, J.T. Schwartz, *Linear operators*, Part I: General Theory. Wiley-Interscience, New York, 1958.
- [9] K. El Fahri, N. Machrafi and M. Moussa, Banach lattices with the positive Dunford-Pettis relatively compact property, extracta mathematicae. Vol. 30, Num. 2 (2015), 161-179.
- [10] J. Howard, Banach spaces on which every unconditionally converging operator is completely continuous, Commentationes Mathematicae Universitatis Carolinae. Vol. 16, No. 4 (1975), 745-753.
- [11] R.C. James, Uniformly Non-Square Banach Spaces, Annals of Mathematics, Nov., 1964, Second Series, Vol. 80, No. 3 (Nov., 1964), pp. 542–550.
- [12] H. Krulisova, Quantification of Pelczynski's property (V), Mathematische Nachrichten (290) (2017), 2909–2924.
- [13] A. Pelczynski, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Pol. Sci. 10 (1962), 641-648.
- [14] A. Retbi, B. El Wahbi, L-Dunford-Pettis property in Banach spaces, Methods Func. Anal. Topol. 22 (2016), 387-392.
- [15] A. Retbi, A note on L-Dunford-Pettis sets in a topological dual Banach space, Czechoslovak Mathematical Journal. (2020), 11 pages, DOI: 10.21136/CMJ.2020.0119-19.
- [16] H.P. Rosenthal, Characterization of Banach Spaces Containing c₀, Journal of the American Mathematical Society 7 (1994), no. 3, 707–748.
- [17] P. Saab, B. Smith, Spaces on which every unconditionally converging operators are weakly completely continuous, Rocky Mount J Math. 22(3) (1992), 1001-1009.
- [18] Y. Wen, J. Chen, Characterizations of Banach spaces with relatively compact Dunford-Pettis Sets, Advances in Mathematics (China), Adv. Math., Beijing, 45 (2014), 122-132.

 $Abderrahman\ Retbi$: abderrahmanretbi@gmail.com

Sultan Moulay Slimane University, Polydisciplinary Faculty, Department of Mathematics and Informatics, BP 592, Mghila, Beni Mellal, Morocco.