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RESULTS ON MATRIX TRANSFORMATION
OF COMPLEX UNCERTAIN SEQUENCES

VIA CONVERGENCE IN ALMOST SURELY

BIROJIT DAS, BINOD CHANDRA TRIPATHY, AND PIYALI DEBNATH

Abstract. In this paper, the concept of convergence of complex uncertain series
is applied to study matrix transformation of complex uncertain sequences in terms
of almost surely. We establish a necessary and sufficient condition under which an
infinite matrix operator transforms a null complex uncertain sequence in almost surely
into another null sequence and almost surely convergent complex uncertain sequence
into a convergent sequence of same type. We further characterize this transformation
by introducing boundedness of complex uncertain sequences. Some other results of
matrix transformation in real sequence space are also established in an uncertainty
space of sequences of complex uncertain variable.

У данiй роботi концепцiя збiжностi комплексних невизначених рядiв застосову-
ється для дослiдження матричних перетворень комплексних невизначених по-
слiдовностей в термiнах майже напевно. Встановлено необхiдна i достатня умова
за якої оператор нескiнченої матрицi перетворює нульову комплексну невизначену
послiдовнiсть у iншу нульову послiдовнiсть в сенсi майже напевно, а також збiжну
комплексну невизначену послiдовнiсть у збiжну послiдовнiсть такої ж типу в сенсi
майже напевно. Надано характерiзацiю цього перетворення, вводячи поняття
обмеженостi комплексних невизначених послiдовностей. Деякi iншi результати
для матричних перетворень в просторi дiйсних послiдовностей отримано також в
просторi невизначеностi комплексних послiдовностей невизначених змiнних.

1. Introduction

The theory of uncertainty is introduced by B. Liu [7] in the year 2007 and it has
evolved in the last decade in a large scale. The basics of different field of mathematics
viz. measure theory, programming, risk analysis, reliability analysis, propositional logic,
entailment, set theory, inference, renewal process, calculus, differential equation, finance,
statistics, chance theory have been studied in uncertain environment. As part of the study
of uncertainty theory, Liu [7] introduced the concept of uncertain sequences and several
types of convergences, namely convergence in mean, in measure, in distribution and in
almost surely. You [8] extended this study by introducing a new convergence concept with
respect to uniformly almost surely. To describe the complex uncertain quantities, the
notions of complex uncertain variable and complex uncertainty distribution are presented
by Peng [15]. Chen et al. [14] explored convergence of sequence of complex uncertain
variables due to Peng and reported five convergence concepts, namely convergence in
almost surely, convergence in measure, convergence in mean, convergence in distribution
and convergence with respect to uniformly almost surely by establishing interrelationships
among them. These convergence concept of complex uncertain sequence has also been
generalised by Nath and Tripathy [12], Das et al. [1, 2, 3, 5, 6]. Authors [4] introduced the
notion of convergence of complex uncertain series very recently. As extension of the work,
in this article we characterize matrix transformation of complex uncertain sequences.
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A norm, denoted by | | \cdot | | defined as follows, which can be found in the functional
analysis books.

Definition 1.1. Let X be a linear space defined over the filed \BbbK of real or complex
numbers. The function | | \cdot | | : X \rightarrow \BbbR + \cup \{ 0\} , where \BbbR + denotes the set of positive real
numbers is called norm if it satisfies the followings for all x, y \in X and \alpha \in \BbbK :

(i) | | x| | = 0 if and only if x = \theta , the zero element of X.
(ii) | | x+ y| | \leq | | x| | + | | y| | .
(iii) | | \alpha x| | = | \alpha | | | x| | .

Before going to the main section we need some basic and preliminary ideas about the
existing definitions and results which will play a major role in this study.

2. Preliminaries

In this section, we recall some related definitions as ready references for the present
work.

Definition 2.1 ([7]). Let \scrL be \sigma -algebra on a non-empty set \Gamma . A set function \scrM on \Gamma 
is called an uncertain measure if it satisfies the following axioms:

Axiom 1: (Normality Axiom). \scrM \{ \Gamma \} =1;
Axiom 2: (Duality Axiom). \scrM \{ \Lambda \} +\scrM \{ \Lambda c\} =1, for any \Lambda \in \scrL ;
Axiom 3: (Subadditivity Axiom). For every countable sequence of elements \Lambda j in

\scrL , we have

\scrM 
\Bigl\{ \infty \bigcup 
j=1

\Lambda j

\Bigr\} 
\leq 

\infty \sum 
j=1

\scrM \{ \Lambda j\} .

The triplet (\Gamma ,\scrL ,\scrM ) is called an uncertainty space, and each element \Lambda in \scrL is called
an event.

Definition 2.2 ([15]). A complex uncertain variable is a measurable function \zeta from an
uncertainty space (\Gamma ,\scrL ,\scrM ) to the set of complex numbers, i.e., for any Borel set B of
complex numbers, the set \{ \zeta \in B\} =\{ \gamma \in \Gamma : \zeta (\gamma ) \in B\} is an event.

Definition 2.3 ([14]). The complex uncertain sequence \{ \zeta n\} is said to be convergent
almost surely (a.s.) to \zeta if there exists an event \Lambda with \scrM \{ \Lambda \} =1 such that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

| \zeta n(\gamma ) - \zeta (\gamma )| = 0

for every \gamma \in \Lambda . Throughout the article, the family of all convergent complex uncertain
sequence in almost surely is denoted by c(\Gamma a.s). Similarly, the collection of all null
sequences in almost surely is denoted by c0(\Gamma a.s).

Definition 2.4 ([4]). Let \zeta = \{ \zeta k\} be a complex uncertain sequence and (\Gamma ,\scrL ,\scrM ) be
an uncertain space. Then the infinite complex uncertain series

\sum \infty 
k=1 \zeta k(\gamma ) is said to be

convergent in almost surely if \{ Sn(\gamma )\} , where \gamma \in \Gamma is any event, is convergent to some
limit S in almost surely. Here, \{ Sn(\gamma )\} is the complex uncertain sequence of partial sums
defined by Sn(\gamma ) =

\sum n
k=1 \zeta k(\gamma ).

In this case, there exists an event \Lambda with \scrM \{ \Lambda \} = 1 such that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| Sn(\gamma ) - S(\gamma )\| = 0,

for every \gamma \in \Lambda .
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3. Matrix Transformation of Complex Uncertain Sequences

The study of sequence space through matrices are very much relevant in the current
research flow. Interest in matrix transformation theory was stimulated in Summability
theory by Cesaro, Borel and others. It was however, Toeplitz explored matrix trans-
formations while working on methods of linear space theory in sequence spaces. He

characterized such infinite real sequences A = (ank) =

\left(  a11 a12 ...
a21 a22 ...
... ... ...

\right)  , which maps

the space c into itself. The study of matrix transformation is very very important because
in many cases the most general linear operator on one sequence space into another is
actually given by a matrix and so researchers made progress enormously in this particular
direction [9, 10, 11]. The concept of uncertainty theory developed in large scale in the last
decade. Mathematicians and researchers from different field are showing great interest
in investigating results of real space in uncertainty space. As a part of reconnoitring of
uncertain sequence, in this section we introduce the notion of matrix transformation of
different types of complex uncertain sequences via convergence of complex uncertain series.
In [4], authors studied matrix transformation of complex uncertain sequence to some
extent by considering the concept of convergence of complex uncertain series with respect
to uniformly almost surely. In this article, we confine our study only to the concept of
almost surely convergence of complex uncertain sequences and series simultaneously.

To make this precise, at first let us consider the space c0(\Gamma a.s) of all null sequences

in almost surely. Consider an infinite matrix A = \{ ank\} =

\left(  a11 a12 ...
a21 a22 ...
... ... ...

\right)  and a

complex uncertain sequence \zeta = \{ \zeta k\} \in c0(\Gamma a.s). Then there exists event \Lambda with unit
uncertain measure in which \zeta is a null sequence.

Then the matrix operator is applied on the complex uncertain sequences by normal
matrix multiplication as follows:

A\zeta (\gamma ) =

\left(  a11 a12 ...
a21 a22 ...
... ... ...

\right)  \left(  \zeta 1(\gamma )
\zeta 2(\gamma 
...

\right)  =

\left(  a11\zeta 1(\gamma ) + a12\zeta 2(\gamma ) + ...
a21\zeta 1(\gamma ) + a22\zeta 2(\gamma ) + ...

... ... ...

\right)  \forall \gamma \in \Lambda ,

Thus it can be written as (A\zeta )n \equiv An(\zeta ), where An(\zeta (\gamma )) =
\sum \infty 

k=1 ank\zeta k(\gamma ), provided
that the infinite series converges with respect to almost surely, for each n.

An infinite matrix A is said to belong to (X,Y ) if A transforms the uncertain sequences
from the space X to Y .

Now, the question arises that in what condition a matrix operator transforms a null
sequences (with respect to almost surely) into another null sequence (with respect to
almost surely). We find a necessary and sufficient condition regarding this below.

Theorem 3.1. Let A = \{ ank\} be a matrix such that \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty ank \rightarrow 0 (uniformly for
all k \in \BbbN ) and M = \mathrm{s}\mathrm{u}\mathrm{p}n

\sum \infty 
k=1 | ank| to be finite. Then A is said to be a bounded linear

operator on c0(\Gamma a.s) into itself and | | A| | = M.

Proof. Let (\Gamma ,\scrL ,\scrM ) be an uncertainty space and \{ \zeta n(\gamma )\} \in c0(\Gamma a.s). Then there exists
uncertain event \Lambda with \scrM (\Lambda ) = 1, such that \{ \zeta n(\gamma )\} uniformly converges to \zeta (\gamma ) = 0 in
\Lambda . i.e., for any \varepsilon > 0, there exists k > 0 such that | | \zeta n(\gamma )| | < \varepsilon , for all \gamma \in \Lambda and n \geq k.
We now show that A\zeta (\gamma ) \in c0(\Gamma a.s), which implies that the complex uncertain series\sum \infty 

k=1 ank\zeta k(\gamma ) is absolutely convergent in almost surely for each n.
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Now, for any m \geq 1 and \gamma \in \Lambda ,

| | An(\zeta (\gamma ))| | =
\infty \sum 
k=1

| | ank\zeta k(\gamma )| | =
m\sum 

k=1

| | ank\zeta k(\gamma )| | +
\infty \sum 

k=m+1

| | ank\zeta k(\gamma )| | 

\leq | | \zeta k(\gamma )| | 
m\sum 

k=1

| ank| + \mathrm{m}\mathrm{a}\mathrm{x}
k\geq m+1

| | \zeta k(\gamma )| | M.

Take m and n so large that for any arbitrary small \varepsilon > 0, \mathrm{m}\mathrm{a}\mathrm{x}\{ | | \zeta k(\gamma )| | : k \geq m +
1, \gamma \in \Lambda \} < \varepsilon and

\sum m
k=1 | ank| < \varepsilon , since ank \rightarrow 0 as n \rightarrow \infty (k fixed). Therefore,

A(\zeta (\gamma )) \in c0(\Gamma a.s) and hence A defines an operator from c0(\Gamma a.s) into c0(\Gamma a.s).
Also, for any uncertain event \gamma \in \Lambda ,

| | A(\zeta (\gamma ))| | = \mathrm{s}\mathrm{u}\mathrm{p}
n

| | 
\sum 
k

ank\zeta k(\gamma )| | \leq | | \zeta (\gamma )| | \mathrm{s}\mathrm{u}\mathrm{p}
n

\sum 
k

| ank| = M | | \zeta (\gamma )| | ,

for every \zeta \in c0(\Gamma a.s). Hence, | | A| | \leq M, \forall \zeta \in c0(\Gamma a.s) and so A is bounded.
For the reverse inequality, there exists n = m(\varepsilon ) such that

\sum 
k | amk| > M  - \varepsilon 

2 and
since

\sum 
k | amk| is finite, there exists p = p(\varepsilon ) such that

\sum 
k>p | amk| < \varepsilon 

2 .
For all \gamma \in \Lambda , define the uncertain null sequence \zeta = \{ \zeta k\} with respect to almost surely

by

\zeta k(\gamma ) =

\biggl\{ 
sgn ank 1 \leq k \leq p;
0 k > p.

Then | | \zeta (\gamma )| | = 1 and
| | A(\zeta (\gamma ))| | 
| | \zeta (\gamma )| | 

= \mathrm{s}\mathrm{u}\mathrm{p}
n

| | An(\zeta (\gamma ))| | \geq | | An(\zeta (\gamma ))| | > M  - \varepsilon 

It implies that M = \mathrm{s}\mathrm{u}\mathrm{p}
\Bigl\{ 

| | A(\zeta (\gamma ))| | 
| | \zeta (\gamma )| | : \zeta (\gamma ) \not = 0

\Bigr\} 
= | | A| | . Hence the theorem is proved. \square 

We now prove the converse case of the above theorem.

Theorem 3.2. Let A : c0(\Gamma a.s) \rightarrow c0(\Gamma a.s) be any bounded linear operator. Then A
determines a matrix (amn) such that (A\zeta (\gamma ))n =

\sum \infty 
k=1 ank\zeta k(\gamma ), for every \gamma \in \Lambda and

| | A| | = \mathrm{s}\mathrm{u}\mathrm{p}n
\sum \infty 

k=1 | ank| < \infty . Also, \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty ank = 0, uniformly for all k.

Proof. Let \zeta \in c0(\Gamma a.s). Then \zeta (\gamma ) =
\sum 

k(\zeta k(\gamma )ek), where \{ en\} is a basis in c0(\Gamma a.s)
which is given by en = \{ ejn\} , and

ejn(\gamma ) =

\biggl\{ 
1, n = j;
0, otherwise;

Now

A\zeta (\gamma ) =

\infty \sum 
k=1

\zeta k(\gamma )Aek =

\infty \sum 
k=1

\zeta k(\gamma )a
(n)
k , n \in \BbbN ,

where Aek is a sequence
\Bigl\{ 
a
(1)
k , a

(2)
k , .....

\Bigr\} 
\in c0(\Gamma a.s); k = 1, 2, 3, ..... Then,

(A\zeta (\gamma ))n =

\infty \sum 
k=1

a
(n)
k \zeta k(\gamma ), n = 1, 2, ......

Since each ek \in c0(\Gamma a.s), therefore Aek \in c0(\Gamma a.s) also, for k = 1, 2, 3, ..... That implies,
\mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty ank = 0, keeping k fixed. Thus, \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty An\zeta (\gamma ) =

\sum \infty 
k=1 ank\zeta k(\gamma ) = 0.

We now prove that | | A| | = \mathrm{s}\mathrm{u}\mathrm{p}n
\sum \infty 

k=1 | ank| .
For each n, we have, | | An\zeta (\gamma )| | \leq | | A\zeta (\gamma )| | \leq | | A| | | | \zeta | | . Since A is a bounded linear

operator and \zeta \in c0(\Gamma a.s), then An is a bounded linear functional on c0(\Gamma a.s). Thus we
have the sequence \{ An\} \in c\ast 0(\Gamma a.s) such that \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty An(\zeta (\gamma )) = 0. Then, by Banach-
Steinhaus theorem, for all n, | | An| | \leq H, for some constant H. By the table of dual
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spaces in page 110 of [11], | | An| | =
\sum 

k | ank| . Then M = \mathrm{s}\mathrm{u}\mathrm{p}n
\sum \infty 

k=1 | ank| < \infty and by
the above theorem | | A| | = M. \square 

Definition 3.3. A complex uncertain sequence \{ \zeta n\} in an uncertainty space (\Gamma ,\scrL ,\scrM )
is said to be bounded with respect almost surely if for any \varepsilon > 0, there exists event \Lambda 
with unit uncertain measure such that

\mathrm{s}\mathrm{u}\mathrm{p}n | \zeta n(\gamma )| < \infty , for all \gamma \in \Lambda .
The set of all such types of sequences is denoted by \ell \infty (\Gamma a.s).

Theorem 3.4. An infinite bounded matrix operator A = (ank) acts from \ell \infty (\Gamma a.s) into
\ell \infty (\Gamma a.s) if and only if

\mathrm{s}\mathrm{u}\mathrm{p}n
\sum \infty 

k=1 | ank| < \infty .

Proof. Let \zeta = \{ \zeta k\} \in \ell \infty (\Gamma a.s). Then, there exists some event \Lambda with \scrM \{ \Lambda \} = 1 such
that \mathrm{s}\mathrm{u}\mathrm{p}n | | \zeta n(\gamma )| | < \infty , for all \gamma \in \Lambda . Suppose A = (ank) be an infinite bounded matrix
operator such that \mathrm{s}\mathrm{u}\mathrm{p}n

\sum \infty 
k=1 | ank| is finite. Since, A = (ank) is bounded uniformly for

each n, (A\zeta (\gamma ))n =
\sum \infty 

k=1 ank\zeta k(\gamma ) exists, for all \gamma \in \Lambda . Then,

\mathrm{s}\mathrm{u}\mathrm{p}
n

| | (A\zeta )n| | = \mathrm{s}\mathrm{u}\mathrm{p}
n

| | 
\infty \sum 
k=1

ank\zeta k(\gamma )| | \leq | | \zeta (\gamma )| | \mathrm{s}\mathrm{u}\mathrm{p}
n

\infty \sum 
k=1

| ank| < \infty ,

since \zeta \in \ell \infty (\Gamma a.s). Therefore, A\zeta \in \ell \infty (\Gamma a.s). Hence, A defines a bounded linear operator
from \ell \infty (\Gamma a.s) into \ell \infty (\Gamma a.s).

Conversely, let A \in (\ell \infty (\Gamma a.s), \ell \infty (\Gamma a.s)). That is A transforms a complex uncertain
sequence \zeta \in \ell \infty (\Gamma a.s) to another sequence A\zeta \in \ell \infty (\Gamma a.s). This implies

\mathrm{s}\mathrm{u}\mathrm{p}n | | (A\zeta )n| | = \mathrm{s}\mathrm{u}\mathrm{p}n | | 
\sum \infty 

k=1 ank\zeta k(\gamma )| | < \infty .

Then, by Banach-Steinhaus theorem, we have \mathrm{s}\mathrm{u}\mathrm{p}n | | An| | = \mathrm{s}\mathrm{u}\mathrm{p}n | ank| < \infty . \square 

Corollary 3.5. For each bounded linear matrix operator A = \{ ank\} between the spaces
c0(\Gamma a.s) to \ell \infty (\Gamma a.s); c(\Gamma a.s) to \ell \infty (\Gamma a.s); c0(\Gamma a.s) to c(\Gamma a.s); and c(\Gamma a.s) to c(\Gamma a.s),

(A\zeta (\gamma ))n =
\sum \infty 

k=1 ank\zeta k(\gamma ), and | | A| | = \mathrm{s}\mathrm{u}\mathrm{p}n
\sum \infty 

k=1 | ank| < \infty .

Proof. Using the techniques same as above, this can established easily. \square 

Definition 3.6. Let p = \{ pk\} be a bounded sequence of strictly positive real numbers
such that H = \mathrm{s}\mathrm{u}\mathrm{p}k pk is finite. The space [\ell \infty (p)]\Gamma a.s

is defined as follows:
[\ell \infty (p)]\Gamma a.s

= \{ \zeta = \{ \zeta k\} : \mathrm{s}\mathrm{u}\mathrm{p}k\in \BbbN | \zeta k(\gamma )| pk < \infty \} ,
where \zeta = \{ \zeta k\} is a complex uncertain sequence and \gamma \in \Lambda , \Lambda being an event with unit
uncertain measure.

Theorem 3.7. An infinite real matrix operator A \in 
\bigl( 
[\ell \infty (p)]\Gamma a.s

, \ell \infty (\Gamma a.s)
\bigr) 

if and only
if

\mathrm{s}\mathrm{u}\mathrm{p}n\in \BbbN 
\sum \infty 

k=1 | ank| N
1
pk < \infty , \forall N \in \BbbN (N > 1)

Proof. Let (\Gamma ,\scrL ,\scrM ) be an uncertainty space and \Lambda be an event with \scrM \{ \Lambda \} = 1.
To prove the necessary part, let us suppose the infinite matrix operator

A \in 
\bigl( 
[\ell \infty (p)]\Gamma a.s

, \ell \infty (\Gamma a.s)
\bigr) 
.

Suppose that there exists N \in \BbbN (N > 1) be such that

\mathrm{s}\mathrm{u}\mathrm{p}n\in \BbbN 
\sum \infty 

k=1 | ank| N
1
pk = \infty .

We consider the infinite matrix operator B = (bnk) which is defined by

bnk = ankN
1
pk , \forall k, n \in \BbbN .
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It is obvious that B /\in (\ell \infty (\Gamma a.s), \ell \infty (\Gamma a.s)) . Thus, we can find a complex uncertain
sequence \zeta = \{ \zeta k\} \in \ell \infty (\Gamma a.s) with | | \zeta | | = 1 such that\sum \infty 

k=1 bnk\zeta k(\gamma ) /\in \ell \infty (\Gamma a.s), where \gamma \in \Lambda .

Then, \sum \infty 
k=1 ankN

1
pk \zeta k(\gamma ) /\in \ell \infty (\Gamma a.s), for \gamma \in \Lambda .

Let \eta = \{ \eta k\} be a complex uncertain sequence such that \eta k(\gamma ) = N
1
pk \zeta k(\gamma ), \forall \gamma \in \Gamma .

Therefore, \eta \in [\ell \infty (p)]\Gamma a.s
, but

(A\eta )n = An\eta (\gamma ) =
\sum \infty 

k=1 ankN
1
pk \zeta k(\gamma ) /\in \ell \infty (\Gamma a.s).

This is a contradiction to our hypothesis that A \in 
\bigl( 
[\ell \infty (p)]\Gamma a.s

, \ell \infty (\Gamma a.s)
\bigr) 
.

For the sufficient part, let \mathrm{s}\mathrm{u}\mathrm{p}n\in \BbbN 
\sum \infty 

k=1 | ank| N
1
pk be finite and \zeta = \{ \zeta k\} \in [\ell \infty (p)]\Gamma a.s

.
We consider a natural number N such that

N > \mathrm{m}\mathrm{a}\mathrm{x}
\Bigl\{ 
1, \mathrm{s}\mathrm{u}\mathrm{p}k\in \BbbN | \zeta k(\gamma )| 

1
pk

\Bigr\} 
, for \gamma \in \Lambda .

Then,

\mathrm{s}\mathrm{u}\mathrm{p}k\in \BbbN | (A\zeta )n| \leq \mathrm{s}\mathrm{u}\mathrm{p}k\in \BbbN 
\sum \infty 

k=1 | ank| N
1
pk < \infty , \forall \gamma \in \Lambda .

Therefore, A\zeta \in \ell \infty (\Gamma a.s). Hence the theorem is proved. \square 

In the following section we prove the famous Silverman-Toeplitz theorem and Kojima-
Schur theorem considering complex uncertain sequences as application of matrix transfor-
mation.

4. Silverman-Toeplitz and Kojima-Schur Theorems

Theorem 4.1 (Silverman-Topelitz Theorem). A bounded linear operator A : c(\Gamma a.s) \rightarrow 
c(\Gamma a.s) preserves the limit if and only if the following conditions are satisfied:

(i) \mathrm{s}\mathrm{u}\mathrm{p}n
\sum \infty 

k=1 | ank| < \infty .
(ii) ank \rightarrow 0, as n \rightarrow \infty , while k is fixed.
(iii)

\sum \infty 
n=1 ank = 1, for fixed k.

Proof. Consider an uncertain space (\Gamma ,\scrL ,\scrM ) and A : c(\Gamma a.s) \rightarrow c(\Gamma a.s), a bounded linear
operator which preserves limit. Let k be a fixed positive integer and the complex uncertain
variables \zeta n be defined as follows:

\zeta n(\gamma ) =

\biggl\{ 
1 if n = k;
0 otherwise;

and let \zeta (\gamma ) = 0, for all \gamma \in \Gamma . Then, \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \{ | | \zeta n  - \zeta | | \} = 0, the norm operator
considered here is due to Chen et al. [14]. Hence, the complex uncertain sequence \{ \zeta n\} is
convergent with respect to almost surely and it converges to zero, for any fixed k. Thus,\sum \infty 

n=1 ank\zeta k(\gamma ) = 0, (by our hypothesis), which implies \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty ank = 0, uniformly for
all k. Thus, the condition (ii) is proved.

For the necessity of (iii), let \{ \zeta n\} be a complex uncertain sequence such that \zeta n =
1, \forall n \in \BbbN and let \zeta = 1. Then, | | \zeta n  - \zeta | | = 0, for all n \in \BbbN . Thus the sequence \{ \zeta n\} 
converges to \zeta with respect to almost surely. Consequently, the transformed sequence
(A\zeta k)n = An(\zeta k) where An(\zeta k) =

\sum \infty 
k=1 ank\zeta k(\gamma ) also converges to \zeta = 1. Therefore,\sum \infty 

n=1 ank\zeta k(\gamma )  - \rightarrow 1, as n  - \rightarrow \infty , for fixed k, which implies

\mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty 
\sum \infty 

k=1 ank = 1, as \zeta k(\gamma ) = 1.
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Now,
\sum \infty 

k=1 ank\zeta k(\gamma ) exists for each n and tends to \zeta , whenever \{ \zeta k\} converges to \zeta with
respect to almost surely. Then by corollary 3.5, we can say that \mathrm{s}\mathrm{u}\mathrm{p}n

\sum \infty 
k=1 | ank| < \infty .

For sufficiency, let the three conditions holds true and the complex uncertain sequence
\{ \zeta n\} converges with respect to almost surely to \zeta .

Now,
\infty \sum 

n=1

ank\zeta k(\gamma ) =

\infty \sum 
n=1

ank(\zeta k(\gamma ) - \zeta (\gamma )) + \zeta (\gamma )

\infty \sum 
n=1

ank.

Using condition (i) and the fact that \zeta n \rightarrow \zeta with respect to almost surely, we have the
first term of the right hand side of the above equation is zero. Again by condition (iii), the
second term of the right hand side tends to \zeta . Therefore, \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty 

\sum \infty 
k=1 ank\zeta k(\gamma ) = \zeta .

Hence A \in (c(\Gamma a.s), c(\Gamma a.s)) and it keeps the limit preserved. \square 

Theorem 4.2 (Kojima-Schur Theorem). The linear operator A : c(\Gamma a.s) \rightarrow c(\Gamma a.s) is
bounded operator if and only if the following conditions are satisfied.

(i) \mathrm{s}\mathrm{u}\mathrm{p}n
\sum \infty 

k=1 | ank| is finite;
(ii) for each p \in \BbbN , there exists ap = \mathrm{l}\mathrm{i}\mathrm{m}n

\sum \infty 
k=p ank.

Proof. Let (\Gamma ,\scrL ,\scrM ) be an uncertain space and A : c(\Gamma a.s) \rightarrow c(\Gamma a.s) be a bounded linear
operator. Suppose the complex uncertain sequence \{ \zeta n\} \in c(\Gamma a.s) converges to \zeta .
Then, by the theorem 4.1, \mathrm{s}\mathrm{u}\mathrm{p}n

\sum \infty 
k=1 | ank| < \infty and thus (i) is proved.

Consider the complex uncertain sequence \{ \zeta n\} in such a way that

\zeta n(\gamma ) =

\biggl\{ 
0 n < p;
1 otherwise;

for some finite p and \zeta (\gamma ) = 1, \forall \gamma \in \Gamma . Then, \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty | | \zeta n  - \zeta | | = 0 and so \{ \zeta n\} \in 
c(\Gamma a.s), which converges to \zeta = 1 with respect to almost surely. Thus \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty A\zeta n =
\mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty 

\sum \infty 
k=1 ank\zeta n = \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty 

\sum \infty 
k=1 ank = ap.

Conversely, let conditions (i) and (ii) hold true and \{ \zeta n\} \in c(\Gamma a.s) converges to \zeta .
Then,

\infty \sum 
k=1

ank\zeta k(\gamma ) =

\infty \sum 
k=1

(\zeta k(\gamma ) - \zeta (\gamma )) + \zeta (\gamma )

\infty \sum 
k=1

ank = S\Gamma n + \zeta 

\infty \sum 
k=1

ank,

where S\Gamma n
=

\sum \infty 
k=1(\zeta k(\gamma ) - \zeta (\gamma )). Now, by condition (i), \zeta (\gamma )

\sum \infty 
k=1 ank tends to \zeta (\gamma )a1.

Suppose,

bk = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

ank = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\Bigl( \infty \sum 
j=k

anj  - 
\infty \sum 

j=k+1

anj

\Bigr) 
= ak  - ak+1,

for each k. So,

\sum 
k\rightarrow \infty 

| bk| =
\sum 
k\rightarrow \infty 

| \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

ank| \leq \mathrm{s}\mathrm{u}\mathrm{p}
n

\infty \sum 
k=1

| ank| < \infty (by condition (i)).

Again,
\infty \sum 
k=1

(ank  - bk)| | \zeta k(\gamma ) - \zeta (\gamma )| | =
\infty \sum 
k=1

(ank  - bk)| | \zeta k(\gamma ) - \zeta (\gamma )| | .

Since \{ \zeta n(\gamma )\} converges to \zeta almost surely, so S\Gamma n
tends to

\sum \infty 
k=1 bk(\zeta k(\gamma ) - \zeta (\gamma )). Hence

A \in (c(\Gamma a.s), c(\Gamma a.s.)). \square 
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5. Conclusion

In this article, we made an initial study of matrix transformation of complex uncertain
sequences by applying the notion of convergent uncertain series. Application of matrix
transformation is shown by establishing Silverman-Toeplitz theorem and Kojima-Schur
theorem considering convergent complex uncertain sequences. This study can be extended
for further generalization in this direction.
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