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ON A CLASS OF FILTERS
IN THE WATSON FOURIER WAVELET SETTING

EL MEHDI LOUALID, EL MEHDI LAADISSI, AND CHOUAIB ENNAWAOUI

Abstract. In this paper, using the theory of harmonic analysis related to the
Watson-Fourier transform, we study a linear time invariant filter. Also, we show that
this linear time invariant filter can be expressed in the form of Watson Fourier wavelet
transform. Finally, the Fredholm integral equation is defined and we give a solution
of this integral equation. Next, an application of the linear time invariant filter is
given in the theory of the aforesaid integral equation.

У данiй роботi, використовуючи пов’язаний з перетворення Уотсона-Фур’є
гармонiчний аналiз, вивчено лiнiйний iнварiантний за часом фiльтр. Показано,
що цей лiнiйний iнварiантний за часом фiльтр може бути представлений у
виглядi вейвлет-перетворення Уотсона Фур’є. Також визначено iнтегральне
рiвняння Фредгольма i наведено розв’язок цього iнтегрального рiвняння. Надано
застосування лiнiйного iнварiантного за часом фiльтра до теорiї вищезгаданого
iнтегрального рiвняння.

1. Introduction

The classical theory of filtering is developed for discrete and continuous signals. The
relation of the filtering theory with the Fourier analysis is of paramount importance and it
was exploited in many different parts in [1]. An important class of filters is given by linear,
time invariant filters. These are linear applications that transform a signal into another
signal, such that the application commutes with time shifts. In [1] the authors have
studied the notion of a linear time invariant filter associated with the Fourier transform,
they have shown that the output signal from a linear time invariant filter of a sinusoidal
input signal is also sinusoidal with the same frequency. Using the aforesaid result, they
have exploited the harmonic analysis associated with the Fourier transform to express
the linear time invariant filter in terms of convolution.

In the present paper, motivated by the above results, a linear time invariant fil-
ter associated with the Watson Fourier transform and Watson Fourier convolution is
investigated.

The remaining part of the paper is organized as follows. Section 2 is a summary of
the main results in the harmonic analysis associated with the Watson Fourier transform.
In Section 3, we will introduce and study a linear time invariant filter associated with
the Watson Fourier transform and the Watson Fourier convolution. We will prove that
the output from a linear time invariant filter of a symmetrical Fourier kernel is also a
symmetrical Fourier kernel function with the same frequency. Next, we will show that
this linear time invariant filter can be expressed in a form of a Watson Fourier wavelet
transform. In Section 4, an application of a linear time invariant filter is given in the
theory of the Fredholm integral equation.
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2. Preliminaries

In this section, we shall collect some results and definitions from the theory of harmonic
analysis associated with the Watson Fourier transform which generalizes many integral
transforms, e.g., \scrY transform, Hankel transform, G- and H-transforms. For more details
we refer to [2, 3, 5, 6].

We denote by:
Lp = Lp(0,\infty ) the class of measurable functions f on (0,\infty ) for which \| f\| p <\infty ,
where

\| f\| p =
\biggl( \int \infty 

0

| f(x)| pdx
\biggr) 1

p

, if p <\infty ,

\| f\| \infty = \| f\| \infty = ess supx\in (0,\infty )| f(x)| .
D(\BbbR ) the space of test functions with bounded support in \BbbR .

From [4], we recall the definitions of Mellin transform and its inverse.

Definition 2.1. Let f(t) be a function defined on the positive real axis 0 < t <\infty . The
Mellin transformation \scrM is the operation mapping of the function f into the function \scrF 
defined on the complex plane by the relation:

\scrM [f : s] = \scrF (s) =

\int \infty 

0

ts - 1f(t)dt. (2.1)

The function \scrF (s) is called the Mellin transform of f(t).

Definition 2.2. The inversion formula for Mellin transform is given by

f(t) =
1

2\pi i

\int a+i\infty 

a - i\infty 
t - s\scrF (s)ds. (2.2)

where the integration is along a vertical line through Re(s) = a.

Let (\scrM \scrK )(s) satisfy the following condition:

(\scrM \scrK )(s)(\scrM \scrK )(1 - s) = 1,

and from (2.2), let \scrK (x) be the inverse Mellin transform of (\scrM \scrK )(s).

Definition 2.3. The Watson Fourier transform of a function f \in L1 is formally defined
by

(\scrW f)(x) =

\int \infty 

0

\scrK (xt)f(t)dt, (2.3)

where \scrK (x) is called a symmetric Fourier kernel.

Definition 2.4. The inversion formula of Watson Fourier transform is defined as

f(t) =

\int \infty 

0

\scrK (xt)(\scrW f)(x)dx, (2.4)

From [3], we define the basic function

\scrD (t, x, z) =

\int \infty 

0

\scrK (ts)\scrK (xs)\scrK (zs)ds. (2.5)

The above integral is convergent under the assumption \scrK \in L1 \cap L\infty and we assume that
\scrK (0) = 1 and \scrD (x, y, z) > 0, \forall x, y, z \in (0,\infty ).

The inversion of (2.5) is formally given by

\scrK (xt)\scrK (yt) =

\int \infty 

0

\scrD (x, y, z)\scrK (zt)dz. (2.6)
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Taking t = 0 in (2.6), we get \int \infty 

0

\scrD (x, y, z)dz = 1. (2.7)

Definition 2.5. Let f \in L1 \cap L2, the Watson Fourier translation is defined by

\tau tf(x) = f(t, x) =

\int \infty 

0

f(z)\scrD (t, x, z)dz, 0 < t, x <\infty , (2.8)

Definition 2.6. Let f, g \in L1\cap L2. The Watson Fourier convolution of f and g is defined
by

f  \star g =

\int \infty 

0

\tau tf(y)g(y)dy =

\int \infty 

0

f(t, y)g(y)dy. (2.9)

The Watson Fourier wavelet is defined, in [5, 6], for \psi \in Lp by

\psi b,a(x) = a - 1\psi 

\biggl( 
b

a
,
x

a

\biggr) 
= \psi a(b, x) = a - 1

\int \infty 

0

\psi (z)\scrD (
b

a
,
x

a
, z)dz, b \geq 0, a > O, (2.10)

Definition 2.7. The Watson Fourier wavelet transform is defined by [5, 6]

(\scrW \psi \phi )(b, a) =

\int \infty 

0

\phi (x)\psi b,a(x)dx = a - 1

\int \infty 

0

\int \infty 

0

\phi (x)\psi (z)\scrD (
b

a
,
x

a
, z)dzdx (2.11)

Lemma 2.8 ([5]). Let \phi , \psi \in L1. Then

(\scrW \psi \phi )(b, a) = (\phi  \star \psi a)(b). (2.12)

3. Linear time invariant filter

In this section, we define and study the linear time invariant filter associated with the
Watson Fourier transform.

A filter \mathrm{L} is described as “linear time invariant” if it has the following three properties:
(i) Time invariance:

If a time delay can be applied either before or after filtering, it yields the same
result. That is,

\mathrm{L} [\tau af ] (t) = \mathrm{L} [fa] (t) = \tau a\mathrm{L} [f ] (t) = \mathrm{L} [f ] (t, a),

where \tau a is given by (2.8).
(ii) Superposition invariance,

\mathrm{L} [f + g] = \mathrm{L} [f ] + \mathrm{L} [g] .

(iii) Scale invariance,
\mathrm{L} [cf ] = c\mathrm{L} [f ] .

The next lemma shows that the symmetrical Fourier kernel \scrK (.) is an eigenvector of
the filter \mathrm{L}.

Lemma 3.1. Let \mathrm{L} be a linear time invariant filter and \lambda any fixed nonnegative real
number. Then there exists a function \varphi \in L1 such that

\mathrm{L} [\scrK (t\lambda )] = \scrK (t\lambda )\scrW (\varphi )(\lambda ). (3.13)

Proof. Let \varphi \lambda (t) = \mathrm{L}(\scrK (t\lambda )). Since \mathrm{L} is time invariant, we get

\mathrm{L} [\tau \xi \scrK (t\lambda )] = \mathrm{L} [\scrK (\lambda \xi )\scrK (t\lambda )] = \varphi \lambda (t, \xi ) (3.14)

for each \xi \in \BbbR +. Since \mathrm{L} is linear, we also have

\mathrm{L} [\scrK (\lambda \xi )\scrK (t\lambda ))] = \scrK (\lambda \xi )\mathrm{L} [\scrK (t\lambda )] , (3.15)
= \scrK (\lambda \xi )\varphi \lambda (t).
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Thus, by virtue of (3.14) and (3.15), we conclude that

\varphi \lambda (t, \xi ) = \scrK (\lambda \xi )\varphi \lambda (t). (3.16)

Taking t = 0 in (3.16), we get

\varphi \lambda (0, \xi ) = \scrK (\lambda \xi )\varphi \lambda (0),

hence

\varphi \lambda (\xi ) = \scrK (\lambda \xi )\varphi \lambda (0).

Since \xi is arbitrary, we may set \xi = t, then

\varphi \lambda (t) = \scrK (t\lambda )\varphi \lambda (0).

Letting \varphi \lambda (0) = \scrW (\varphi )(\lambda ) \in L1 and \varphi \in L1, we have

\mathrm{L} [\scrK (t\lambda )] = \varphi \lambda (t) = \scrK (t\lambda )\scrW (\varphi )(\lambda )

which completes the proof. \square 

Thus, we can conclude that the symmetric Fourier kernel \scrK (.) is an eigenvector of the
filter \mathrm{L} with the corresponding eigenvalue (\scrW \varphi )(\lambda ).

Application of a linear, time invariant filter \mathrm{L} to a signal f is equivalent to taking the
convolution of f with a signal \varphi , called the impulse response of the filter or the kernel of
the filter. It is the objective of the following theorem.

Theorem 3.2. Let \mathrm{L} be a linear, time invariant transformation on the space of signals
that are piecewise continuous functions. Then there exists an integrable function, \varphi , such
that

\mathrm{L}(f) = f  \star \varphi . (3.17)

Proof. From the inversion formula of the Watson Fourier transform (2.4), we have

f(t) =

\int \infty 

0

\scrK (t\lambda )(\scrW f)(\lambda )d\lambda ,

Then, we apply L to both sides,

(\mathrm{L}f)(t) = \mathrm{L}

\biggl[ \int \infty 

0

\scrK (t\lambda )(\scrW f)(\lambda )d\lambda 

\biggr] 
.

The integral on the right-hand can be approximated by a Riemann sum with a uniform
sampling partition with interval length \Delta (\lambda ),

\mathrm{L}

\biggl[ \int \infty 

0

\scrK (t\lambda )(\scrW f)(\lambda )d\lambda 

\biggr] 
\approx \mathrm{L}

\left[  \sum 
j

\scrK (t\lambda j)(\scrW f)(\lambda j)\Delta (\lambda )

\right]  ,
Since L is linear, we can distribute L across the sum:

\mathrm{L}

\left[  \sum 
j

\scrK (t\lambda j)(\scrW f)(\lambda j)\Delta (\lambda )

\right]  =
\sum 
j

(\scrW f)(\lambda j)\mathrm{L}(\scrK (t\lambda j))\Delta (\lambda ).
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The Riemann sum on the right-hand side of the above expression becomes an integral
and so, from Lemma 3.1, we obtain

(\mathrm{L}f)(t) =

\int \infty 

0

(\scrW f)(\lambda )\mathrm{L} [\scrK (t\lambda )] d\lambda ,

=

\int \infty 

0

(\scrW f)(\lambda )\scrW (\varphi )(\lambda )\scrK (t\lambda )d\lambda ,

= \scrW  - 1 [(\scrW f)(\lambda )\scrW (\varphi )(\lambda )] (t),

= \scrW  - 1 [\scrW (f  \star \varphi )(\lambda )] (t),

= (f  \star \varphi ) (t).

which completes the proof. \square 

Example 3.3. Let h be a function that has finite support. For a signal f , let

(\mathrm{L}f)(t) = (h  \star f)(t) =

\int \infty 

0

f(x)\tau th(x)dx. (3.18)

Then \mathrm{L} is a linear time invariant operator.

Indeed

\tau a(\mathrm{L}f)(t) = (\mathrm{L}f)(t, a)

=

\int \infty 

0

\biggl( \int \infty 

0

h(z, x)f(x)dx

\biggr) 
\scrD (t, a, z)dz,

=

\int \infty 

0

\biggl[ \int \infty 

0

\biggl( \int \infty 

0

h(y)\scrD (z, x, y)d\mu (y)

\biggr) 
f(x)dx

\biggr] 
\scrD (t, a, z)dz,

=

\int \infty 

0

\biggl[ \int \infty 

0

\biggl( \int \infty 

0

f(x)\scrD (z, x, y)d\mu (x)

\biggr) 
h(y)dy

\biggr] 
\scrD (t, a, z)dz,

=

\int \infty 

0

\biggl[ \int \infty 

0

f(z, y)h(y)dy

\biggr] 
\scrD (t, a, z)dz,

=

\int \infty 

0

\biggl[ \int \infty 

0

f(z, y)\scrD (t, a, z)dz

\biggr] 
h(y)dy,

=

\int \infty 

0

f(t, a, y)h(y)dy,

=

\int \infty 

0

fa(t, y)h(y)dy,

= (\mathrm{L}fa)(t),

= (\mathrm{L}\tau af)(t).

The following theorem shows that a linear, time invariant filter can be expressed as a
Watson Fourier wavelet transform.

Theorem 3.4. Let f \in L1 and \psi a \in L1. Then the Watson Fourier wavelet transform
can be expressed as

(\scrW \psi f)(t, a) = \mathrm{L}(f)(t), (3.19)

where \mathrm{L} is a linear time invariant filter
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Proof. Using (2.12), we have

\scrW \psi (f)(t, a) = (f  \star \psi a)(t),

= \scrW  - 1
\bigl[ 
(\scrW f)(\lambda )\scrW (\psi a)(\lambda )

\bigr] 
(t),

=

\int \infty 

0

(\scrW f)(\lambda )\times \scrW (\psi a)(\lambda )\scrK (t\lambda )d\lambda ,

=

\int \infty 

0

\bigl[ 
\scrK (t\lambda )\scrW (\psi a)(\lambda )

\bigr] 
(\scrW f)(\lambda )d\lambda .

By virtue of Lemma 3.1 and the inversion formula, we have

\scrW \psi (f)(t, a) =

\int \infty 

0

\mathrm{L} [\scrK (t\lambda )] (\scrW f)(\lambda )d\lambda ,

\simeq 
\sum 
j

\mathrm{L} [\scrK (t\lambda j)] (\scrW f)(\lambda j)\Delta (\lambda ),

\simeq \mathrm{L}

\left[  \sum 
j

\scrK (t\lambda j)(\scrW f)(\lambda j)\Delta (\lambda )

\right]  ,
= \mathrm{L}

\biggl[ \int \infty 

0

\scrK (t\lambda )(\scrW f)(\lambda )d\lambda )

\biggr] 
,

= \mathrm{L}(f)(t).

\square 

4. Fredholm integral equation

In this section, we apply a linear time invariant filter associated with the Watson
Fourier transform to the theory of Fredholm integral equation type.

The Fredholm type integral equation is defined by\int \infty 

0

f(t)\varphi (x, t)dt+ \lambda f(x) = u(x), (4.20)

where \varphi (x) and u(x) are given functions and \lambda is a known parameter.
Using (2.9), equation (4.20) can be written as

(f  \star \varphi )(x) + \lambda f(x) = u(x). (4.21)

Theorem 4.1. Let f \in L1 and \varphi \in L1. Then a solution of equation (4.20) is

f(x) =

\int \infty 

0

\scrK (x\xi )
(\scrW u)(\xi )

(\scrW \varphi )(\xi ) + \lambda 
d\xi . (4.22)

Proof. Application of the Watson Fourier transform defined by (2.3) to (4.21) gives

(\scrW f)(\xi )\times (\scrW \varphi )(\xi ) + \lambda (\scrW f)(\xi ) = (\scrW u)(\xi ),

Hence,

(\scrW f)(\xi ) =
(\scrW u)(\xi )

(\scrW \varphi )(\xi ) + \lambda 
.

The inverse of the Watson Fourier transform leads to a formal solution

f(x) =

\int \infty 

0

\scrK (x\xi )
(\scrW u)(\xi )

(\scrW \varphi )(\xi ) + \lambda 
d\xi .

\square 
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Theorem 4.2. Fredholm type equation (4.20) can be written as a linear time invariant
filter,

(\mathrm{L}f)(t) + \lambda f(t) = u(t). (4.23)

Proof. From (4.20), we have the Fredholm type integral equation\int \infty 

0

f(x)\varphi (x, t)dx+ \lambda f(t) = u(t).

Let \varphi (x, t) = a - 1\psi (xa ,
t
a ). Then we have\int \infty 

0

f(x)a - 1\psi (
x

a
,
t

a
)dx+ \lambda f(t) = u(t).

In virtue of (2.10) we conclude that\int \infty 

0

f(x)\psi t,a(x)dx+ \lambda f(t) = u(t).

From the definition of Watson Fourier wavelet transform (2.3), we get

\scrW \psi (f)(t, a) + \lambda f(t) = u(t).

Hence, from (3.19), we get
(\mathrm{L}f)(t) + \lambda f(t) = u(t).

\square 
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