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DONOHO-STARK THEOREM FOR THE QUADRATIC-PHASE
FOURIER INTEGRAL OPERATORS

EL MEHDI BERKAK, EL MEHDI LOUALID, AND RADOUAN DAHER

Abstract. In this paper, we obtain a generalization of the Donoho-Stark uncertainty
principle associated with the Quadratic-Phase Fourier integral operators which is de-
fined as a generalization of several integral transforms whose kernel has an exponential
form.

У цiй роботi ми отримуємо узагальнення принципу невизначеностi Доного-
Старка, пов’язане з квадратично-фазовим iнтегральним оператором Фур’є, який
визначається як узагальнення кiлькох iнтегральних перетворень з ядрами
експоненцiальної форми.

1. Introduction

The uncertainty principle is a fundamental principle in mathematics and physics, and
also plays an important role in signal processing. It states that a function and its Fourier
transform cannot be simultaneously well concentrated, i.e if the supports of a function
f \in L1

\bigl( 
\BbbR d

\bigr) 
and its Fourier transform \widehat f are contained in bounded rectangles, then f

vanishes almost everywhere. Donoho and Stark [5] gave qualitative uncertainty principles
for the Fourier transforms, namely we say that f is \varepsilon -concentrated on a measurable set \Omega 
if

\| f  - \chi \Omega f\| < \varepsilon .

Donoho and Stark [5] show that if f of unit L2-norm is \varepsilon \BbbA concentrated on a measurable
set \BbbA and its Fourier transform \widehat f is \varepsilon \BbbB concentrated on a measurable set \BbbB , then

| \BbbA | | \BbbB | \geq (1 - \varepsilon \BbbA  - \varepsilon \BbbA )
2
.

Here, | \BbbA | denote the Lebesque measure of the set \BbbA .
There are various mathematical formulations for this principle as well as extensions

to other transforms, see for example [1, 2, 7, 9, 10], we refer also to the book [6] and
the surveys [3, 8] for further references. The main goal of this paper is to establish the
Donoho–Stark uncertainty principle for the Quadratic-Phase Fourier integral operators
newly introduced by Castro et al [4] which is defined as a generalization of several integral
transforms whose kernel has an exponential form such as Fourier, fractional Fourier, and
linear canonical transforms.

The remaining part of the paper is organized as follows. Section 2 is a summary of the
main results in the harmonic analysis associated with Quadratic-Phase Fourier integral.
In Section 3, we introduce some further notation as well as some auxiliary results which
are required to prove the mains results of this paper.

2. Preliminaries

In this section, we shall collect some results and definitions from the theory of the
harmonic analysis associated with the Quadratic-Phase Fourier integral operators \BbbQ . For
more details we refer to [4].
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We denote by:
Lp = Lp (\BbbR ) the class of measurable functions f on \BbbR for which \| f\| p < \infty , where

\| f\| p =

\biggl( \int 
\BbbR 
| f (x) | pdx

\biggr) 1
p

, if 1 < p < \infty ,

\| f\| \infty = \| f\| \infty = ess supx\in \BbbR | f (x) | .
\scrD (\BbbR ) is the space of even C\infty -function on \BbbR with compact support.
\scrC 0 (\BbbR ) the Banach space of all continuous functions on \BbbR that vanish at infinity,
endowed with the supremum norm \| f\| \infty .

Let f \in L1 or f \in L2, the Quadratic-Phase Fourier integral operators \BbbQ is defined by

\BbbQ (f) (x) =
1\surd 
2\pi 

\int 
\BbbR 
eiQ(a - e)(x,y)f (y) dy, (2.1)

where

Q(a,b,c,d,e) (x, y) := Q(a - e) (x, y) = ax2 + bxy + cy2 + dx+ ey, (2.2)

for parameters a, b, c, d, e \in \BbbR (with b \not = 0).

The importance of the Quadratic-Phase Fourier integral operators \BbbQ lies in the fact
that it generalizes many integral transforms. In fact,

\bullet For a = c = d = e = 0 and b = \pm 1 , \BbbQ is simply the well-known Fourier and
inverse Fourier integral transforms, respectively.

\bullet For d = e = 0, the kernel generated by Eq. (2.2) includes the kernel of the linear
canonical transform as well as of the one of the fractional Fourier transform.

Lemma 2.1. If f \in L1 then \BbbQ (f) \in \scrC 0 (\BbbR ), and \| \BbbQ (f) \| \infty \leq \| f\| 1.

Theorem 2.2. If f \in L1 and \BbbQ f \in L1, then

f (x) =
b\surd 
2\pi 

\int 
\BbbR 
\BbbQ (f) (y) e - iQ(a - e)(y,x)dy, \forall x \in \BbbR . (2.3)

Theorem 2.3. (Parseval type identity)
\bullet For any f , g \in L2, we have

\langle \BbbQ (f) ,\BbbQ (g)\rangle = \langle f, g\rangle ,
where \langle ., .\rangle denote the usual inner product in L2 (\BbbR ) given by

\langle f, g\rangle =
\int 
\BbbR 
f (x) g (x)dx.

\bullet If f = g, then we have

\| \BbbQ (f) \| 2 =
1\sqrt{} 
| b| 

\| f\| 2.

3. Donoho-Stark uncertainty principles for Quadratic-Phase Fourier
Transform

Definition 3.1. Let f \in Lp, we say that f is \varepsilon E-concentrated on a measurable set E if
there is a function g vanishing outside E such that

\| f  - g\| p \leq \varepsilon E\| f\| p.

We consider a pair of operators, namely
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\bullet The orthogonal projection operator define as follow:

(PEf) (x) =

\biggl\{ 
f (x) , if x \in E
0, otherwise (3.4)

\bullet The frequency-limiting operator define as follow

\BbbQ (QEf) = PE\BbbQ (f) . (3.5)

Using the Definition 3.1 and (3.4), we have for f \in L2 thatf is \varepsilon E-concentrated on E
if and only if

\| f  - PEf\| p \leq \varepsilon E\| f\| p.
Using again Definition 3.1 and (3.5), we get for f \in L2 that \BbbQ (f) is \varepsilon F -concentrated on
F if and only if

\| \BbbQ (f) - \BbbQ (QF f) \| 2 \leq \varepsilon F\sqrt{} 
| b| 

\| f\| 2. (3.6)

If F is a set of finite measure of \BbbR , we put | F | =
\int 
F
dx.

Lemma 3.2. If | F | < \infty and f \in L1 \cap L2, then

QF f (x) =
b\surd 
2\pi 

\int 
\BbbR 
\BbbQ (f) (y) e - iQ(a - e)(x,y)dy.

Proof. Let f \in L1 \cap L2, then by Parseval theorem and Hölder’s inequality, we have

\| \BbbQ (QF f) \| 1 =

\int 
\BbbR 
| (PF\BbbQ (f)) (x) | dx,

=

\int 
\BbbR 
| (\chi F\BbbQ f) (x) | dx,

\leq 
\biggl( \int 

\BbbR 
| \chi F (x) | 2dx

\biggr) 1

2
\biggl( \int 

\BbbR 
| \BbbQ (f) (x) | 2dx

\biggr) 1

2

,

\leq 1\sqrt{} 
| b| 

| F | 12 \| f\| 2 < \infty ,

and
\| \BbbQ (QF f) \| 2 =

1\sqrt{} 
| b| 

\| f\| 2 < \infty .

Hence, \BbbQ (QF f) \in L1 \cap L2. On the basis of (2.3), we obtain

QF f =
b\surd 
2\pi 

\int 
\BbbR 
\BbbQ (f) (y) e - iQ(a - e)(x,y)dy. \square 

Lemma 3.3. Let E and F be measurable subset of \BbbR . If f \in L1 \cap L2, then

\| \BbbQ (QFPF f) \| 2 \leq 1\surd 
2\pi 

| E| 12 | F | 12 \| f\| 2.

Proof. If at least one of | E| and | F | is infinity, then the inequality is clear. Therefore, it
is enough to consider the case where both E and F have finite measure.

Let f \in L1 \cap L2. Using (3.5), we get

\BbbQ (QFPEf) = \chi F\BbbQ (PEf) .

Thus,

\| \BbbQ (QFPEf) \| 2 =

\biggl( \int 
F

| \BbbQ (PEf) (x) | 2dx
\biggr) 1

2

. (3.7)

Since
\BbbQ (PEf) (x) =

1\surd 
2\pi 

\int 
E

eiQ(a - e)(x,y)f (x) dx,
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it follows from Hölder’s inequality that

| \BbbQ (PEf) (x) | \leq 
1\surd 
2\pi 

| E| 12 \| f\| 2.

By (3.7), we get

\| \BbbQ (QFPEf) \| \leq 1\surd 
2\pi 

| E| 12 | F | 12 \| f\| 2. \square 

The following uncertainty principles are our main results.

Theorem 3.4. Let E and F be measurable subsets of \BbbR and f \in L1 \cap L2. If f is
\varepsilon E-concentrated on E in L2 and \BbbQ (f) is \varepsilon F -concentrated on F in L2, then

(1 - (\varepsilon E + \varepsilon F ))
2 \leq | b| 

2\pi 
| E| | F | .

Proof. Let f \in L1 \cap L2. Then

\| (\BbbQ f) - \BbbQ (QFPEf) \| 2 \leq \| \BbbQ (f) - \BbbQ (QF f) \| 2 + \| \BbbQ (QF f) - \BbbQ (QFPEf) \| 2,
\leq \varepsilon F \| \BbbQ (f) \| 2 + \| \BbbQ (QF (f  - PEf)) \| 2,
\leq \varepsilon F \| \BbbQ (f) \| 2 + \| PE\BbbQ (f  - PEf) \| 2,

\leq \varepsilon F \| (\BbbQ f) \| 2 +
\biggl( \int 

E

| \BbbQ (f  - PEf) (x)| 2dx
\biggr) 1

2

,

\leq \varepsilon F \| \BbbQ (f) \| 2 + \| \BbbQ (f) - \BbbQ (PEf) \| 2.

On the basis of (3.6), we obtain

\| (\BbbQ f) - \BbbQ (QFPEf) \| 2 \leq \varepsilon F \| \BbbQ (f) \| 2 +
\varepsilon E\sqrt{} 
| b| 

\| f\| 2,

\leq \varepsilon F \| \BbbQ (f) \| 2 + \varepsilon E\| \BbbQ (f) \| 2.

Using the triangle inequality and lemma 3.3, we get

\| \BbbQ (f) \| 2 \leq \| \BbbQ (QFPEf) \| 2 + \| \BbbQ (f) - \BbbQ (QFPEf) \| 2,

\leq 1\surd 
2\pi 

| E| 12 | F | 12 \| f\| 2 + \varepsilon F \| \BbbQ (f) \| 2 + \varepsilon E\| \BbbQ (f) \| 2,

\leq 
\sqrt{} 

| b| 
2\pi 

| E| 12 | F | 12 \| \BbbQ (f) \| 2 + \varepsilon F \| \BbbQ (f) \| 2 + \varepsilon E\| \BbbQ (f) \| 2. \square 

Theorem 3.5. Let E and F be measurable subsets of and f \in L1 \cap L2. If f is \varepsilon E-
concentrated in E in L1-norm and \BbbQ (f) is \varepsilon F concentrated on F in L2-norm, then

(1 - \varepsilon E)
2
(1 - \varepsilon E)

2 \leq 
\sqrt{} 

| b| | E| | F | .

Proof. Let f \in L1\cap L2. Since \BbbQ (f) is \varepsilon F -concentrated on F in L2-norm, then, by triangle
inequality we get

\| \BbbQ (f) \| 2 \leq \varepsilon F \| \BbbQ (f) \| 2 +
\biggl( \int 

F

| \BbbQ (f) (x) | 2dx
\biggr) 1

2

\leq \varepsilon F \| \BbbQ (f) \| 2 + | F | 12 \| \BbbQ (f) \| \infty 
\leq \varepsilon F \| \BbbQ (f) \| 2 + | F | 12 \| f\| 1.

Thus, we obtain

\| \BbbQ (f) \| 2 \leq | F | 12
1 - \varepsilon F

\| f\| 1. (3.8)
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Since f is \varepsilon E-concentrated on E in L1-norm, we have

\| f\| 1 \leq \varepsilon E\| f\| 1 +
\int 
E

| f (x) | dx,

\leq \varepsilon E\| f\| 1 + | E| 12 \| f\| 2,
\leq \varepsilon E\| f\| 1 + | E| 12 | b| \| \BbbQ (f) \| 2.

Hence, it follows that

\| f\| 1 \leq | E| 12
1 - \varepsilon E

| b| \| \BbbQ (f) \| 2. (3.9)

By combining (3.8) and (3.9), we get desired result. \square 
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