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ON THE NUMBER OF NODAL DOMAINS
ON A RECTANGLE WITH A SLIT

JOACHIM KERNER

ABSTRACT. In spectral geometry, one is interested in estimating the number of nodal
domains of eigenfunctions of the Laplacian on planar domains. Well-known classical
results due to Courant and Pleijel establish upper bounds, implying that the n-th
eigenfunction has at most n nodal domains and that indeed only a finite number of
eigenfunctions attain this maximal value. Surprisingly, however, a seemingly simpler
question remains largely open. Namely, does there always exist a subsequence of
eigenfunctions with an unbounded number of nodal domains? It is the aim of this
note to investigate this question in the context of a rectangular domain with a slit.

B cnekTpasibHill reomeTpil iKaBuM € OI[iHKa KiJIbKOCTI By3JI0BinX 00J1acTeil BJIacHUX
dyHKIii Janaciana B mI0cKux objactax. Bimomi kacuuani pesynbpratn KypanTa i
ILeitesiss BCTAHOBJIIOIOTH BEPXHI MeXi, 3 IKMX BUILJIUBAE, 110 N-Ta BJIACHA (DYHKIliA
Mae He 6iIble HiK N By3JIOBHX O0JIacTeil, 1 Jidire CKiHYeHHa KIJIBKICTH BJIACHHUX
GbYHKIIH 10CATAI0TH OTO MAKCUMAJIbHOrO 3HadeHHa. OmHax, 6ibin mpocTe MUTaHHS
e 3aJIMIIAETHCA BiIKPpUTUM. A caMe, 94U 3aBXKAU ICHYE IiIOC/IIOBHICTD BJIACHUX
byHKIIH 3 HEOOMEXKEHOI0 KIIbKICTh By3JsioBux obsiacreit? Meroro 1€l poboru €
JOCTIiPKEHHS] IbOTO IIUTAHHS B KOHTEKCTI IPSIMOKYTHOI 06J1acTi 3 mpopizoM.

1. INTRODUCTION

Currently, there is an interesting open problem in spectral geometry related to the
number of nodal domains of eigenfunctions of the Laplacian on bounded domains €2 in
R2. To introduce the problem, let —AP denote the Dirichlet Laplacian and —AY the
Neumann Laplacian which are defined through their associated quadratic forms,

4ple] = / Vo dr . Dlap) = HHQ) ,
and
anle] = / Ve dr . Digy) = H'(9) .

The operators —AP and —AY are then constructed according to the first representation
theorem for quadratic forms [3]. Since Hg () is compactly embedded in L?(2) for an
arbitrary bounded domain © C R?, the spectrum of —AP is purely discrete. Concerning
—AN the situation is more complex since H!(2) is not necessarily compactly embedded
in L2(Q). The embedding is compact, however, as long as € has a Lipschitz boundary; a
more general criterion is established in [1] (see also [2]). In this paper, we will consider
a domain Q C R? which is indeed not Lipschitz but for which H*({) is nevertheless
compactly embedded in L?(Q2) and which implies that —AY also has purely discrete
spectrum.

We will now formulate the problem for the Dirichlet Laplacian only, the generalization
to the Neumann case being obvious. Assume that —AP is defined over L?(Q) for
an arbitrary bounded domain 2 C R? and has eigenvalues (E,),en with associated
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eigenfunctions (¢, )nen € Hg (), forming an orthonormal basis of L2(€). It is well-known
that ¢, € C*°(Q2) and hence one may define the set

E(pn) ={z €Q: pu(x) #0}
whose connected components are called the nodal domains of the eigenfunction ¢,,. In
this paper we are interested in the number of such nodal domains which we denote as
N(pp). There are two classical results in spectral geometry concerning the sequence
(N(#n)),en: @ theorem due to Courant states that N (¢,) < n for all n € N and about
thirty years later Pleijel showed that actually

2
lim sup Ni((p") < <2> ,
n— o0 n Vi
where j ~ 2.4 is the smallest positive zero of the Bessel function Jy [10]. Recently, the
result of Pleijel has been slightly improved by Bourgain [5] and Steinerberger [12], showing
that the constant (2/5)? is not optimal. Indeed, a conjecture of Polterovich [11] states
the following:

Conjecture 1.1. Let (p,)nen be an orthonormal basis of eigenfunctions to either —AP
or —AYN on a bounded domain Q C R? with regular boundary. Then

n—oo n ™

. N 2

hmsupM < —. (1.1)
Conjecture 1.1 refers to the asymptotic behaviour of the number of nodal domains.

On the other hand, it is generally expected and supported by numerics that A (@, ) — 0o

as n — oo at least for a subsequence of eigenfunctions. Generically, one may even suspect

that NM(¢,) ~ E, for a subsequence [6]. However, to prove that — for a given bounded
domain Q C R? — there does not exist a constant M > 0 such that

N(pn) <M (1.2)

for all n € N has turned out to be a (surprisingly) difficult problem and only little is
known, see [13, 8, 9] and references therein (we remark that T. Hoffmann-Ostenhof also
asked the question as to whether there exists a Schrodinger operator for which one has
limsup,,_, o N (¢pn) < 00).

It is the aim of this paper to investigate the (non-) existence of a bound as in (1.2)
and the Conjecture 1.1 for a perturbed rectangular domain 2 C R? which does not — a
priori — allow for a separation of variables.

2. RESULTS

2

Consider the rectangle Qg := (—an/2,+an/2) x (=br/2,+br/2) with 7> ¢ Q (this
irrationality condition shall be assumed throughout the paper). The Dirichlet Laplacian
on Q)r has purely discrete spectrum and its eigenvalues are given by

2 2
ny | nj
)\n1n2:§+b72, nl,ngeN,

The irrationality condition implies that the eigenvalues have multiplicity one and the
associated (unnormalized) eigenfunctions are given by

. (T . (T2
Onyn, (T1,x2) = sin (—xl) sin (—9:2> .
a b
Note that, for convenience, we prefer to neglect normalizing factors in the following. Each
such eigenfunction ¢, ,, has exactly nins nodal domains and hence the number of nodal
domains goes to infinity as the energy goes to infinity (meaning that A, ,, — 00). In

other words, for 2 there does not exist a bound as in (1.2). Furthermore, as shown in
[4], (1.1) holds for Qg.
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In a next step we introduce the perturbed rectangular domain QR(S) (namely, a
rectangle with a slit) which is obtained from Qg by adding a segment to 9. More
explicitly, we require that

Ogr(e) =00z U{(z,y) eR*:z=0and —c <y < 4}
with 0 < & < 4+b7/2. On Qz(e) we then introduce the Dirichlet and Neumann Laplacian

o~

as described above. Although Qg(e) is not a Lipschitz domain, one nevertheless has the
following result.

Proposition 2.1. On L2(§R(5)), both —AP and — AN have purely discrete spectrum.

Proof. As described in the introduction, for the Dirichlet Laplacian —AP there is nothing
to prove.

Regarding the Neumann Laplacian —A% one begins with a bounded sequence in
(¢n)nen C HY(Qr(e)) and restricts each function to the right rectangle € := (0, +ar/2) x
(—=bm/2,+bm/2); this yields a bounded sequence in H'(2;) and since ; is Lipschitz,
there exists a convergent subsequence in L?(;). We then pick the corresponding
subsequence (¢n, )ken C H L(Qg(c)) whose restriction to €y is exactly subsequence
contructed before and restrict this sequence to the left rectangle Qo := (—an/2,0) x
(=bmw/2,+bm/2). As before we conclude the existence of a subsequence that converges
in L?(2) and consequently we obtain a subsequence of (¢, )nen C Hl(ﬁR(g)) that
converges in L2 (&'AZ r(€)) which proves the statement. O

We know, by the irrationality condition ‘;—j ¢ Q, that the eigenvalues of the Dirichlet
Laplacian —AP have multiplicity one when defined over the rectangle Qz. The following
result of Hillairet and Judge tells us that the eigenvalues of —AP defined on Q r(e) are,
for all € € (0,e9) up to a countable set and some gy > 0, again non-degenerate.

Proposition 2.2. [Propositions 4.2 and 7.1, [7]] There exists £9 > 0 such that, for all
e € (0,20) up to a countable set, the spectrum of —AP on Qgr(e) is simple.

Now, in a first step we investigate the existence of a bound on the number of nodal
domains as in (1.2). From an intuitive point of view, it seems plausible that such a bound
M > 0 does not exist — at least for £ small enough — since one does not have a bound for
Qpr. On the other hand, however, the number of nodal domains is a somewhat global
property and hence a proof of the non-existence of such a bound M > 0 seems desirable.

Theorem 2.1. Let 0 < & < +br/2 be given. Then, for —AP and —AN there exists an
orthonormal basis of eigenfunctions that contains a subsequence of eigenfunctions for
which the number of nodal domains is unbounded.

In particular, for some g9 > 0 and € € (0,e9) up to a countable set, the associated
unique (up to phase factors) orthonormal basis of eigenfunctions of —AP contains a
subsequence of eigenfunctions with an unbounded number of nodal domains.

Proof. We prove the statements for the Dirichlet Laplacian —AP and mention how
to proceed in the Neumann case. One starts on the rectangle €y := (0,+an/2) x
(=bm/2,+br/2) and picks the Dirichlet eigenfunctions given by, ny,ny € N,

. 2”1 . N9
Pnyn, (T1,T2) = sin T.Il sin (?x2>

which are extended onto r(€) by reflecting each such function across z = 0 and
multiplying the reflection by minus one. This immediately yields a set of eigenfunctions
for —AP on L? (ﬁ r(e)) since they satisfy Dirichlet boundary conditions on the segment
{(z,y) € R? : 2 =0 and —¢e <y < +e}. Furthermore, the number of nodal domains
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of the function ¢, n, on Q; is nins and hence the number of nodal domains on 2 is
given by 2nino which proves the statement. The second part of the statement is a direct
consequence of Proposition 2.2.

Finally, regarding the first part of the statement, the procedure is the same in the
Neumann case, except that one starts with the eigenfunctions of the Neumann Laplacian
on 7 and reflects them across x = 0 with a positive sign. g

In a final result we investigate Conjecture 1.1 in the context of r(€) and establish a
lower bound.

Theorem 2.2. For 0 < ¢ < +br/2 consider the Dirichlet Laplacian —AP on L*(Qg(e)).
Then, there exists an orthonormal basis of eigenfunctions such that
2
— < limsup M .
™ n— oo n
Proof. The starting point is the set of eigenfunctions {(,,n, } constructed in the proof of
Theorem 2.1. We recall that ¢, n, is constructed via a reflection (with a negative sign)
of Ynyn, € L2(Q1), Q1 == (0, 4+ar/2) x (=br/2,+b7m/2).
Setting A := A, p,, one obtains
k(’l’Ll,’I’Lg) = #{(’Fll,’ﬁg) : )\ﬁlﬁ2 < )\}
= —X+o0o(})
4n? n2
as A — oo where \p pn, = 22+ + 3%, 11,12 € N; see also [4].
Let v(ny,n2) € N denote the order of the eigenfunction @p,n,. Weyl’s law readily
implies
k(?’Ll, ?’LQ) 1
v(ny,na) 2
as A — oco. Now, taking into account that ¢,,,,, has 2n;ns nodal domains and choosing
a subsequence such that n; — oo and Z—f — %, we get

N (@uins) 2

v(ny,na) ™
along this subsequence. This proves the statement. O

Of course, in view of Conjecture 1.1 and Theorem 2.2, it would be highly interesting

to derive an upper bound on limsup,,_, %. In order to do this, one would need to

derive suitable bounds on the number of nodal domains on the rectangle £2; with mixed
Dirichlet and Neumann boundary conditions.
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