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ON THE NUMBER OF NODAL DOMAINS
ON A RECTANGLE WITH A SLIT

JOACHIM KERNER

Abstract. In spectral geometry, one is interested in estimating the number of nodal
domains of eigenfunctions of the Laplacian on planar domains. Well-known classical
results due to Courant and Pleijel establish upper bounds, implying that the n-th
eigenfunction has at most n nodal domains and that indeed only a finite number of
eigenfunctions attain this maximal value. Surprisingly, however, a seemingly simpler
question remains largely open. Namely, does there always exist a subsequence of
eigenfunctions with an unbounded number of nodal domains? It is the aim of this
note to investigate this question in the context of a rectangular domain with a slit.

В спектральнiй геометрiї цiкавим є оцiнка кiлькостi вузловiих областей власних
функцiй лапласiана в плоских областях. Вiдомi класичнi результати Куранта i
Плейеля встановлюють верхнi межi, з яких випливає, що n-та власна функцiя
має не бiльше нiж n вузлових областей, i лише скiнченна кiлькiсть власних
функцiй досягають цього максимального значення. Однак, бiльш просте питання
ще залишається вiдкритим. А саме, чи завжди iснує пiдпослiдовнiсть власних
функцiй з необмеженою кiлькiсть вузлових областей? Метою цiєї роботи є
дослiдження цього питання в контекстi прямокутної областi з прорiзом.

1. Introduction

Currently, there is an interesting open problem in spectral geometry related to the
number of nodal domains of eigenfunctions of the Laplacian on bounded domains \Omega in
\BbbR 2. To introduce the problem, let  - \Delta D denote the Dirichlet Laplacian and  - \Delta N the
Neumann Laplacian which are defined through their associated quadratic forms,

qD[\varphi ] =

\int 
\Omega 

| \nabla \varphi | 2 \mathrm{d}x , \scrD (qD) := H1
0 (\Omega ) ,

and

qN [\varphi ] =

\int 
\Omega 

| \nabla \varphi | 2 \mathrm{d}x , \scrD (qN ) := H1(\Omega ) .

The operators  - \Delta D and  - \Delta N are then constructed according to the first representation
theorem for quadratic forms [3]. Since H1

0 (\Omega ) is compactly embedded in L2(\Omega ) for an
arbitrary bounded domain \Omega \subset \BbbR 2, the spectrum of  - \Delta D is purely discrete. Concerning
 - \Delta N the situation is more complex since H1(\Omega ) is not necessarily compactly embedded
in L2(\Omega ). The embedding is compact, however, as long as \Omega has a Lipschitz boundary; a
more general criterion is established in [1] (see also [2]). In this paper, we will consider
a domain \Omega \subset \BbbR 2 which is indeed not Lipschitz but for which H1(\Omega ) is nevertheless
compactly embedded in L2(\Omega ) and which implies that  - \Delta N also has purely discrete
spectrum.

We will now formulate the problem for the Dirichlet Laplacian only, the generalization
to the Neumann case being obvious. Assume that  - \Delta D is defined over L2(\Omega ) for
an arbitrary bounded domain \Omega \subset \BbbR 2 and has eigenvalues (En)n\in \BbbN with associated
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eigenfunctions (\varphi n)n\in \BbbN \in H1
0 (\Omega ), forming an orthonormal basis of L2(\Omega ). It is well-known

that \varphi n \in C\infty (\Omega ) and hence one may define the set

\scrE (\varphi n) := \{ x \in \Omega : \varphi n(x) \not = 0\} 
whose connected components are called the nodal domains of the eigenfunction \varphi n. In
this paper we are interested in the number of such nodal domains which we denote as
\scrN (\varphi n). There are two classical results in spectral geometry concerning the sequence
(\scrN (\varphi n))n\in \BbbN : a theorem due to Courant states that \scrN (\varphi n) \leq n for all n \in \BbbN and about
thirty years later Pleijel showed that actually

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

\scrN (\varphi n)

n
\leq 

\biggl( 
2

j

\biggr) 2

,

where j \sim 2.4 is the smallest positive zero of the Bessel function J0 [10]. Recently, the
result of Pleijel has been slightly improved by Bourgain [5] and Steinerberger [12], showing
that the constant (2/j)2 is not optimal. Indeed, a conjecture of Polterovich [11] states
the following:

Conjecture 1.1. Let (\varphi n)n\in \BbbN be an orthonormal basis of eigenfunctions to either  - \Delta D

or  - \Delta N on a bounded domain \Omega \subset \BbbR 2 with regular boundary. Then

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

\scrN (\varphi n)

n
\leq 2

\pi 
. (1.1)

Conjecture 1.1 refers to the asymptotic behaviour of the number of nodal domains.
On the other hand, it is generally expected and supported by numerics that \scrN (\varphi n) \rightarrow \infty 
as n \rightarrow \infty at least for a subsequence of eigenfunctions. Generically, one may even suspect
that \scrN (\varphi n) \sim En for a subsequence [6]. However, to prove that – for a given bounded
domain \Omega \subset \BbbR 2 – there does not exist a constant M > 0 such that

\scrN (\varphi n) \leq M (1.2)

for all n \in \BbbN has turned out to be a (surprisingly) difficult problem and only little is
known, see [13, 8, 9] and references therein (we remark that T. Hoffmann-Ostenhof also
asked the question as to whether there exists a Schrödinger operator for which one has
\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}n\rightarrow \infty \scrN (\varphi n) < \infty ).

It is the aim of this paper to investigate the (non-) existence of a bound as in (1.2)
and the Conjecture 1.1 for a perturbed rectangular domain \Omega \subset \BbbR 2 which does not – a
priori – allow for a separation of variables.

2. Results

Consider the rectangle \Omega R := ( - a\pi /2,+a\pi /2) \times ( - b\pi /2,+b\pi /2) with a2

b2 /\in \BbbQ (this
irrationality condition shall be assumed throughout the paper). The Dirichlet Laplacian
on \Omega R has purely discrete spectrum and its eigenvalues are given by

\lambda n1n2 =
n2
1

a2
+

n2
2

b2
, n1, n2 \in \BbbN .

The irrationality condition implies that the eigenvalues have multiplicity one and the
associated (unnormalized) eigenfunctions are given by

\varphi n1n2
(x1, x2) = \mathrm{s}\mathrm{i}\mathrm{n}

\Bigl( n1

a
x1

\Bigr) 
\mathrm{s}\mathrm{i}\mathrm{n}

\Bigl( n2

b
x2

\Bigr) 
.

Note that, for convenience, we prefer to neglect normalizing factors in the following. Each
such eigenfunction \varphi n1n2

has exactly n1n2 nodal domains and hence the number of nodal
domains goes to infinity as the energy goes to infinity (meaning that \lambda n1n2

\rightarrow \infty ). In
other words, for \Omega R there does not exist a bound as in (1.2). Furthermore, as shown in
[4], (1.1) holds for \Omega R.
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In a next step we introduce the perturbed rectangular domain \widehat \Omega R(\varepsilon ) (namely, a
rectangle with a slit) which is obtained from \Omega R by adding a segment to \partial \Omega R. More
explicitly, we require that

\partial \widehat \Omega R(\varepsilon ) = \partial \Omega R \cup \{ (x, y) \in \BbbR 2 : x = 0 and  - \varepsilon \leq y \leq +\varepsilon \} 

with 0 < \varepsilon < +b\pi /2. On \widehat \Omega R(\varepsilon ) we then introduce the Dirichlet and Neumann Laplacian
as described above. Although \widehat \Omega R(\varepsilon ) is not a Lipschitz domain, one nevertheless has the
following result.

Proposition 2.1. On L2(\widehat \Omega R(\varepsilon )), both  - \Delta D and  - \Delta N have purely discrete spectrum.

Proof. As described in the introduction, for the Dirichlet Laplacian  - \Delta D there is nothing
to prove.

Regarding the Neumann Laplacian  - \Delta N , one begins with a bounded sequence in
(\varphi n)n\in \BbbN \subset H1(\widehat \Omega R(\varepsilon )) and restricts each function to the right rectangle \Omega 1 := (0,+a\pi /2)\times 
( - b\pi /2,+b\pi /2); this yields a bounded sequence in H1(\Omega 1) and since \Omega 1 is Lipschitz,
there exists a convergent subsequence in L2(\Omega 1). We then pick the corresponding
subsequence (\varphi nk

)k\in \BbbN \subset H1(\widehat \Omega R(\varepsilon )) whose restriction to \Omega 1 is exactly subsequence
contructed before and restrict this sequence to the left rectangle \Omega 2 := ( - a\pi /2, 0) \times 
( - b\pi /2,+b\pi /2). As before we conclude the existence of a subsequence that converges
in L2(\Omega 2) and consequently we obtain a subsequence of (\varphi n)n\in \BbbN \subset H1(\widehat \Omega R(\varepsilon )) that
converges in L2(\widehat \Omega R(\varepsilon )) which proves the statement. \square 

We know, by the irrationality condition a2

b2 /\in \BbbQ , that the eigenvalues of the Dirichlet
Laplacian  - \Delta D have multiplicity one when defined over the rectangle \Omega R. The following
result of Hillairet and Judge tells us that the eigenvalues of  - \Delta D defined on \widehat \Omega R(\varepsilon ) are,
for all \varepsilon \in (0, \varepsilon 0) up to a countable set and some \varepsilon 0 > 0, again non-degenerate.

Proposition 2.2. [Propositions 4.2 and 7.1, [7]] There exists \varepsilon 0 > 0 such that, for all
\varepsilon \in (0, \varepsilon 0) up to a countable set, the spectrum of  - \Delta D on \widehat \Omega R(\varepsilon ) is simple.

Now, in a first step we investigate the existence of a bound on the number of nodal
domains as in (1.2). From an intuitive point of view, it seems plausible that such a bound
M > 0 does not exist – at least for \varepsilon small enough – since one does not have a bound for
\Omega R. On the other hand, however, the number of nodal domains is a somewhat global
property and hence a proof of the non-existence of such a bound M > 0 seems desirable.

Theorem 2.1. Let 0 < \varepsilon < +b\pi /2 be given. Then, for  - \Delta D and  - \Delta N there exists an
orthonormal basis of eigenfunctions that contains a subsequence of eigenfunctions for
which the number of nodal domains is unbounded.

In particular, for some \varepsilon 0 > 0 and \varepsilon \in (0, \varepsilon 0) up to a countable set, the associated
unique (up to phase factors) orthonormal basis of eigenfunctions of  - \Delta D contains a
subsequence of eigenfunctions with an unbounded number of nodal domains.

Proof. We prove the statements for the Dirichlet Laplacian  - \Delta D and mention how
to proceed in the Neumann case. One starts on the rectangle \Omega 1 := (0,+a\pi /2) \times 
( - b\pi /2,+b\pi /2) and picks the Dirichlet eigenfunctions given by, n1, n2 \in \BbbN ,

\varphi n1n2(x1, x2) = \mathrm{s}\mathrm{i}\mathrm{n}

\biggl( 
2n1

a
x1

\biggr) 
\mathrm{s}\mathrm{i}\mathrm{n}

\Bigl( n2

b
x2

\Bigr) 
which are extended onto \widehat \Omega R(\varepsilon ) by reflecting each such function across x = 0 and
multiplying the reflection by minus one. This immediately yields a set of eigenfunctions
for  - \Delta D on L2(\widehat \Omega R(\varepsilon )) since they satisfy Dirichlet boundary conditions on the segment
\{ (x, y) \in \BbbR 2 : x = 0 and  - \varepsilon \leq y \leq +\varepsilon \} . Furthermore, the number of nodal domains
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of the function \varphi n1n2
on \Omega 1 is n1n2 and hence the number of nodal domains on \Omega is

given by 2n1n2 which proves the statement. The second part of the statement is a direct
consequence of Proposition 2.2.

Finally, regarding the first part of the statement, the procedure is the same in the
Neumann case, except that one starts with the eigenfunctions of the Neumann Laplacian
on \Omega 1 and reflects them across x = 0 with a positive sign. \square 

In a final result we investigate Conjecture 1.1 in the context of \widehat \Omega R(\varepsilon ) and establish a
lower bound.

Theorem 2.2. For 0 < \varepsilon < +b\pi /2 consider the Dirichlet Laplacian  - \Delta D on L2(\widehat \Omega R(\varepsilon )).
Then, there exists an orthonormal basis of eigenfunctions such that

2

\pi 
\leq \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}

n\rightarrow \infty 

\scrN (\varphi n)

n
.

Proof. The starting point is the set of eigenfunctions \{ \^\varphi n1n2
\} constructed in the proof of

Theorem 2.1. We recall that \^\varphi n1n2
is constructed via a reflection (with a negative sign)

of \varphi n1n2 \in L2(\Omega 1), \Omega 1 := (0,+a\pi /2)\times ( - b\pi /2,+b\pi /2).
Setting \lambda := \lambda n1n2 , one obtains

k(n1, n2) : = \#\{ (\~n1, \~n2) : \lambda \~n1\~n2
< \lambda \} 

=
\pi ab

8
\lambda + o(\lambda )

as \lambda \rightarrow \infty where \lambda n1n2
=

4n2
1

a2 +
n2
2

b2 , n1, n2 \in \BbbN ; see also [4].
Let \nu (n1, n2) \in \BbbN denote the order of the eigenfunction \^\varphi n1n2

. Weyl’s law readily
implies

k(n1, n2)

\nu (n1, n2)
 - \rightarrow 1

2

as \lambda \rightarrow \infty . Now, taking into account that \^\varphi n1n2 has 2n1n2 nodal domains and choosing
a subsequence such that n1 \rightarrow \infty and n2

n1
\rightarrow 2b

a , we get

\scrN ( \^\varphi n1n2
)

\nu (n1, n2)
 - \rightarrow 2

\pi 

along this subsequence. This proves the statement. \square 

Of course, in view of Conjecture 1.1 and Theorem 2.2, it would be highly interesting
to derive an upper bound on \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}n\rightarrow \infty 

\scrN (\varphi n)
n . In order to do this, one would need to

derive suitable bounds on the number of nodal domains on the rectangle \Omega 1 with mixed
Dirichlet and Neumann boundary conditions.
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