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DIFFUSION APPROXIMATION FOR TRANSPORT EQUATIONS
WITH DISSIPATIVE DRIFTS

LUCA DI PERSIO, YURI KONDRATIEV, AND VIKTORYA VARDANYAN

Abstract. We study stochastic differential equations with a small perturbation
parameter. Under the dissipative condition on the drift coefficient and the local
Lipschitz condition on the drift and diffusion coefficients we prove the existence
and uniqueness result for the perturbed SDE, also the convergence result for the
solution of the perturbed system to the solution of the unperturbed system when
the perturbation parameter approaches zero. We consider the application of the
above-mentioned results to the Cauchy problem and the transport equations.

Вивчаються стохастичнi диференцiальнi рiвняння з невеликим параметр
збурення. За умови дисипативностi коефiцiєнту дрейфа у випадку, коли дрейф
та коефiцiєнти дифузiї задовольняють локальнiй умови Лiпшица, доведено
iснування та єдинiсть розв’язку збуреного стохастичного диференцiального
рiвняння. Також отримано результат про збiжнiсть розв’язку збуреної системи
до розв’язку незбуреної системи у разi коли параметр збурення прямує до нуля.
Розглянуто застосування вищезазначених результатiв до задачi Кошi та рiвняння
транспорту.

1. Introduction

We consider Markov processes X\epsilon 
t which arise from small random perturbations of

dynamical systems, imposing specific conditions on the coefficients of the diffusion process,
i.e., the dissipativity and dissipativity for differences for the drift and the local Lipschitz
condition for all coefficients. These kind of processes arise in different areas of natural
sciences. The concept of dissipativity comes, in particular, from physics. Dissipative
systems are systems which absorb more energy from the external world than they
supply and such systems are contrasted with energy conserving systems like Hamiltonian
systems.The dissipativity of dynamical systems as it is known in modern system and
control community was introduced by Willems in [7].

Freidlin and Wentzell in their book [1] have developed the theory for random per-
turbations assuming that the coefficients satisfy Lipschitz condition and have a linear
growth bound. They study the random perturbations by direct probabilistic methods and
then deduce consequences concerning the corresponding problems for partial differential
equations. They consider mainly schemes of random perturbations of the form

\.X\epsilon 
t = b(X\epsilon 

t , \epsilon \xi t), X
\epsilon 
0 = x (1.1)

where \xi t(\omega ), t \geq 0, is a random process on a probability space with values in \BbbR l, its
trajectories are right continuous, bounded and have at most a finite number of points of
discontinuity on every interval [0, T ], T <\infty . At the points of discontinuity of \xi t, where
as a rule, (1.1) can not be satisfied, it is imposed the requirement of continuity of X\epsilon 

t .
Additionally \epsilon is a small number and b(x, y) = (b1(x, y), ..., br(x, y)), x \in Rr, y \in Rl is
a vector field assumed to be jointly continuous in its variables. Let b(x, 0) = b(x), the
random process X\epsilon 

t is considered as a result of small perturbations of the system

\.xt = b(xt), x0 = x. (1.2)
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The equation
\.X\epsilon 
t = b(X\epsilon 

t ) + \epsilon \sigma (X\epsilon 
t ) \.wt, X\epsilon 

0 = x, (1.3)
can be considered as a special case of (1.1) with b(x, y) = b(x) + \sigma (x)y. Here y is
substituted by white noise process.

The precise meaning of (2.9) can be formulated in the language of stochastic integrals
in the following way:

X\epsilon 
t = x+

\int t

0

b(X\epsilon 
s)ds+ \epsilon 

\int t

0

\sigma (X\epsilon 
s)dws. (1.4)

Every solution of (1.4) is a Markov process (a diffusion process with drift vector b(x) and
diffusion matrix \epsilon 2\sigma (x)\sigma \ast (x)).

Freidlin and Wentzell in their book [1] show that X\epsilon 
t converges to the solution xt of

the unperturbed system as \epsilon \rightarrow 0, moreover they discuss the application of this result
to related partial differential equations. Particularly, they obtain results concerning the
behaviour of solutions of boundary value problems as \epsilon \rightarrow 0 from the behaviour of X\epsilon 

t (w)
as \epsilon \rightarrow 0. In the theory of differential equations of parabolic type, much attention is
devoted to the study of the behaviour, as \epsilon \rightarrow 0, for solutions of boundary value problems
for equations of the form

\partial v\epsilon 

\partial t
= L\epsilon v\epsilon + c(x)v\epsilon + g(x).

Here L\epsilon is a differential operator with a small parameter at the derivatives of highest
order:

L\epsilon =
\epsilon 2

2

r\sum 
i,j=1

aij(x)
\partial 2

\partial xixj
+

r\sum 
i=1

bi(x)
\partial 

\partial xi
.

Every operator L\epsilon (whose coefficients are assumed to be sufficiently regular) has an
associated diffusion process X\epsilon ,x

t . This diffusion process can be given by means of the
stochastic equation

\.X\epsilon ,x
t = b(X\epsilon ,x

t ) + \epsilon \sigma (X\epsilon ,x
t ) \.\omega t, X\epsilon ,x

0 = x, (1.5)

where \sigma (x)\sigma \ast (x) = (aij(x)), b(x) = (b1(x), ..., br(x)). In particular, they consider the
Cauchy problem:

\partial v\epsilon (t, x)

\partial t
= L\epsilon v\epsilon (t, x) + c(x)v\epsilon (t, x) + g(x), v\epsilon (0, x) = f(x), (1.6)

t > 0, x \in \BbbR r for \epsilon > 0 and together with it the problem for the first-order operator
which is obtained for \epsilon = 0:

\partial v0(t, x)

\partial t
= L0v0(t, x) + c(x)v0(t, x) + g(x), v0(0, x) = f(x). (1.7)

A special case of Cauchy equation is the so called transport equation:
\partial v\epsilon (t, x)

\partial t
= L\epsilon v\epsilon (t, x), v\epsilon (0, x) = f(x),

which equals (1.6) in the case where g \equiv 0 and c \equiv 0.

2. The model

Let (\Omega ,\scrF , (\scrF t)t\in [0,T ],\BbbP ) be a reference filtered probability space and w be a given
l-dimensional standard Brownian motion adapted to the defined filtration (\scrF t)t\in [0,T ],
0 < T < +\infty being a finite horizon time. Here \Omega is a nonempty set, which is interpreted
as the space of elementary events. The second object, \scrF , is a \sigma -algebra of subsets of \Omega .
Finally, \BbbP is a probability measure on the \sigma -algebra \scrF .

We consider
\.xt = b(xt), x0 = x, (2.8)
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and the perturbed stochastic differential equation
\.X\epsilon 
t = b(X\epsilon 

t ) + \epsilon \sigma (X\epsilon 
t ) \.wt, X\epsilon 

0 = x (2.9)

in \BbbR r. Here \epsilon is a small number, b(x) = (b1(x), ..., br(x)) is a vector field in \BbbR r, and
\sigma (x) = (\sigma i

j(x)) is a matrix having l columns and r rows. By a solution of this equation
we understand a random process Xt = Xt(w) which satisfies the relation

X\epsilon 
t = x+

\int t

0

b(X\epsilon 
s)ds+ \epsilon 

\int t

0

\sigma (X\epsilon 
s)dws,

with probability 1 for every t \in [0, T ]. We usually assume that the coefficients of our
diffusion fulfil a Lipschitz condition and have a linear growth bound. Under those
conditions it is proved that the solution to the stochastic differential equation exists and
is unique. We modify the conditions on the coefficients and prove that the existence and
uniqueness result for the solution still holds (the proof of this result is based on the book
by Gihman and Skorohod [3]) in one-dimensional case. For many-dimensional case, it
was analysed in the classical book by Stroock and Varadhan [6]. We will assume that
\sigma increases no faster than linearly and b satisfies dissipativity, the coefficients of (2.9)
satisfy a local Lipschitz condition: for some K,

< y, b(y) > +
\sum 
i,j

[\sigma i
j(y)]

2 \leq K2(1 + | y| 2);

for each N there exists an LN for which\sum 
i

| bi(y) - bi(z)| +
\sum 
i,j

| \sigma i
j(y) - \sigma i

j(z)| \leq LN | y  - z| 

with | y| \leq N , | z| \leq N .
After proving the existence and uniqueness result, we will show that the zeroth

approximation for the process (2.9) with dissipative drift and locally Lipschitz coefficients
holds, i.e the solution of (2.9) X\epsilon 

t converges to the solution of (2.8) xt as \epsilon \rightarrow 0. The last
approximation will be used to show that the solution to the Cauchy problem for \epsilon > 0
converges to the solution for \epsilon = 0 with weaker conditions, this convergence holds also for
Transport equation.

Before stating and proving the main results, we would like to state a Gronwall-Lemma
which is often used in the proofs.

Lemma 2.1. [Gronwall] Let m(t), t \in [0, T ], be a nonnegative function satisfying the
relation

m(t) \leq C + \alpha 

\int t

0

m(s)ds, t \in [0, T ], (2.10)

with C,\alpha \geq 0. Then m(t) \leq Ce\alpha t for t \in [0, T ].

3. Main results

3.1. Existence and Uniqueness of a Solution. We aim to show that under the weaker
conditions on the coefficients that are dissipativity for the drift and the local Lipschitz
condition for all the coefficients, (2.9) has a solution and the solution is unique. This fact
can be found in [6] but we will include the proof because certain steps in this proof will
be used later. To prove the existence and uniqueness result we will need the following
theorem.

Theorem 3.1. Assume that the coefficients b1(x), b2(x), \sigma 1(x), \sigma 2(x) of the equations

\.X\epsilon 
t,i = bi(X

\epsilon 
t,i) + \epsilon \sigma i(X

\epsilon 
t,i) \.\omega t, i = 1, 2, (3.11)
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satisfy the Lipschitz condition and a linear growth condition, i.e., there exists a constant
K such that for t \in [0, T ], x, y \in \BbbR r, i = 1, 2,

| bi(x) - bi(y)| + | \sigma i(x) - \sigma i(y)| \leq K| x - y| ,
| bi(x)| 2 + | \sigma i(x)| 2 \leq K2(1 + | x| 2),

and that for some N > 0 with | xj | \leq N for all j \in \BbbN 0 : 0 \leq j \leq r, b1(x) = b2(x), and
\sigma 1(x) = \sigma 2(x).

If X\epsilon 
t,1 and X\epsilon 

t,2 are solutions of (3.11) with the same initial condition X\epsilon 
0,1 = X\epsilon 

0,2 = x,
M [x2] < \infty , and \tau i is the largest t for which \mathrm{s}\mathrm{u}\mathrm{p}0\leq s\leq t,0\leq j\leq r | X

\epsilon ,j
t,i | \leq N , then P\{ \tau 1 =

\tau 2\} = 1 and

P\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq s\leq \tau 1

| X\epsilon 
t,1  - X\epsilon 

t,2| = 0\} = 1.

Proof. Define \gamma 1(t) := 1, if \mathrm{s}\mathrm{u}\mathrm{p}0\leq s\leq t,0\leq j\leq r | X
\epsilon ,j
s,1| \leq N, and \gamma 1(t) := 0, if \mathrm{s}\mathrm{u}\mathrm{p}0\leq s\leq t,0\leq j\leq r | X

\epsilon ,j
s,1| >

N. Then we get

\gamma 1(t)
\sum 
j

[X\epsilon ,j
t,1  - X\epsilon ,j

t,2 ] = \gamma 1(t)

\int t

0

[
\sum 
j

bj1(X
\epsilon 
s,1) - bj2(X

\epsilon 
s,2)]ds

+ \gamma 1(t)\epsilon 

\int t

0

[
\sum 
i,j

\sigma j
i,1(X

\epsilon 
s,1) - \sigma j

i,2(X
\epsilon 
s,2)]d\omega s

= \gamma 1(t)

\int t

0

[
\sum 
j

bj1(X
\epsilon 
s,1) - bj2(X

\epsilon 
s,1)]ds

+ \gamma 1(t)\epsilon 

\int t

0

[
\sum 
i,j

\sigma j
i,1(X

\epsilon 
s,1) - \sigma j

i,2(X
\epsilon 
s,1)]d\omega s

+ \gamma 1(t)

\int t

0

[
\sum 
j

bj2(X
\epsilon 
s,1) - bj2(X

\epsilon 
s,2)]ds

+ \gamma 1(t)\epsilon 

\int t

0

[
\sum 
i,j

\sigma j
i,2(X

\epsilon 
s,1) - \sigma j

i,2(X
\epsilon 
s,2)]d\omega s.

= \gamma 1(t)

\int t

0

[
\sum 
j

bj2(X
\epsilon 
s,1) - bj2(X

\epsilon 
s,2)]ds

+ \gamma 1(t)\epsilon 

\int t

0

[
\sum 
i,j

\sigma j
i,2(X

\epsilon 
s,1) - \sigma j

i,2(X
\epsilon 
s,2)]d\omega s.

Where the last step is possible, because from \gamma 1(t) = 1 it follows that bj1(X
\epsilon 
s,1) = bj2(X

\epsilon 
s,1)

and \sigma j
i,1(X

\epsilon 
s,1) = \sigma j

i,2(X
\epsilon 
s,1) for s \leq t. Thus

\gamma 1(t)[
\sum 
j

X\epsilon ,j
t,1  - X\epsilon ,j

t,2 ]
2 \leq 2\gamma 1(t)

\Bigl[ \int t

0

\sum 
j

[bj2(X
\epsilon 
s,1) - bj2(X

\epsilon 
s,2)]ds

\Bigr] 2
+ 2\gamma 1(t)\epsilon 

2
\Bigl[ \int t

0

\sum 
j

[\sigma j
i,2(X

\epsilon 
s,1) - \sigma j

i,2(X
\epsilon 
s,2)]dws

\Bigr] 2
.

Taking into account that \gamma 1(t) = 1 implies \gamma 1(s) = 1 for s \leq t we can write the \gamma 1(s)’s
inside the brackets. Taking the expectation and then using the Lipschitz condition and
the Cauchy-Schwarz inequality, we can show that for \epsilon \leq 1 there exists a constant L such
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that

M
\Bigl[ 
\gamma 1(t)[

\sum 
j

X\epsilon ,j
t,1  - X\epsilon ,j

t,2 ]
2
\Bigr] 
\leq M

\Bigl[ 
4[

\int t

0

\gamma 1(s)K| X\epsilon 
s,1  - X\epsilon 

s,2| ds]2
\Bigr] 

\leq 4K2t

\int t

0

M [\gamma 1(s)[
\sum 
j

X\epsilon ,j
s,1  - X\epsilon ,j

s,2]
2]ds

= L

\int t

0

M [\gamma 1(s)[
\sum 
j

X\epsilon ,j
s,1  - X\epsilon ,j

s,2]
2]ds.

Now we can use Lemma 2.1 with C = 0. It follows that

M
\Bigl[ 
\gamma 1(t)[

\sum 
j

X\epsilon ,j
t,1  - X\epsilon ,j

t,2 ]
2
\Bigr] 
= 0.

Using continuity of X\epsilon 
t,1 and X\epsilon 

t,2 we can establish

P\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t\leq T

\gamma 1(t)[
\sum 
j

X\epsilon ,j
t,1  - X\epsilon ,j

t,2 ]
2 = 0\} = P\{ \mathrm{s}\mathrm{u}\mathrm{p}

0\leq t\leq T
\gamma 1(t)| X\epsilon 

t,1  - X\epsilon 
t,2| 2 = 0\} = 1

On the interval [0, \tau 1] the processes X\epsilon 
t,1 and X\epsilon 

t,2 coincide with probability 1. Hence
P\{ \tau 2 \geq \tau 1\} = 1. Interchanging the indices 1 and 2 in the proof of the theorem, we can
show analogously that P\{ \tau 1 \geq \tau 2\} = 1. \square 

Theorem 3.2. Let the coefficients of (2.9) be defined and measurable for t \in [0, 1], and
satisfy the conditions

(1) For some K,

< y, b(y) > +
\sum 
i,j

[\sigma i
j(y)]

2 \leq K2(1 + | y| 2); (3.12)

(2) for each N there exists an LN for which\sum 
i

| bi(y) - bi(z)| +
\sum 
i,j

| \sigma i
j(y) - \sigma i

j(z)| \leq LN | y  - z| (3.13)

with | y| \leq N , | z| \leq N .
Then (2.9) has a unique solution in the sense that for two solutions X\epsilon 

t,1 and X\epsilon 
t,2

P\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq s\leq T

| X\epsilon 
t,1  - X\epsilon 

t,2| = 0\} = 1.

Proof. We will first start by showing the existence and afterwards we move to the
uniqueness of the solution. Define xiN (the i-th component of the vector xN ) as xiN = xi

for | xi| \leq N and xiN = Nsign(xi) for | xi| > N , biN (y) = bi(y) for | bi(y)| \leq N and biN (y) =
Nsign(bi(y)) for | bi(y)| > N , \sigma i

j,N (y) = \sigma i
j(y) for | \sigma i

j | \leq N and \sigma i
j,N (y) = Nsign(\sigma i

j(y))

for | \sigma i
j | > N.

By X\epsilon 
t,N we denote the solution of

\.X\epsilon 
t,N = bN (X\epsilon 

t,N ) + \epsilon \sigma N (X\epsilon 
t,N ) \.wt, X\epsilon 

t,N = xN . (3.14)

For this equation all conditions for existence are given, because we have the growth
bound depending on N and for the coefficients we also have a global Lipschitz condition.

Let \tau N be the largest value of t for which \mathrm{s}\mathrm{u}\mathrm{p}0\leq s\leq t | X\epsilon 
t,N | \leq N . Let N

\prime 
> N . Since

bN (y) = bN \prime (y) and \sigma N (y) = \sigma N \prime (y) for all | biN (y)| \leq N, | \sigma i
j,N | \leq N, we can now apply

Theorem 3.1 to obtain X\epsilon 
t,N = X\epsilon 

t,N \prime , with probability 1 for t \in [0, \tau N ]. Hence for N
\prime 
> N ,

P\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t\leq T

| X\epsilon 
t,N  - X\epsilon 

t,N \prime | > 0\} \leq P\{ \tau N > T\} = P\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t\leq T

| X\epsilon 
t,N | > N\} .
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If we can show that the probability on the right hand side converges to zero for N \rightarrow \infty ,
then it will clearly follow that X\epsilon 

t,N converges uniformly with probability 1 to some limit
X\epsilon 

t as N \rightarrow \infty .
Going to the limit in

X\epsilon 
s,N = xN +

\int t

0

bN (X\epsilon 
s,N )ds+ \epsilon 

\int t

0

\sigma N (X\epsilon 
s,N )dws

we see that X\epsilon 
t is equal with probability 1 to a continuous solution of (2.9).

So to finish the proof of the existence of a solution it remains to show that

\mathrm{l}\mathrm{i}\mathrm{m}
N\rightarrow \infty 

P\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t\leq T

| X\epsilon 
t,N | > N\} = 0. (3.15)

To do this we first define the function \psi (y) = 1
1+| y| 2 and then we use the Ito formula. We

obtain

M [| X\epsilon 
t,N | 2\psi (xN )] - M [| xN | 2\psi (xN )]

=M
\Bigl[ \int t

0

2\psi (xN ) < X\epsilon 
s,N , b(X

\epsilon 
s,N ) > +\epsilon 2\psi (xN )

r\sum 
k=1

l\sum 
i=1

[\sigma k
i,N (X\epsilon 

s,N )]2dt
\Bigr] 

\leq M
\Bigl[ 
\psi (xN )

\int t

0

2K2(1 + | X\epsilon 
s,N | 2) + \epsilon 2\psi (xN )K2(1 + | X\epsilon 

s,N | 2)dt
\Bigr] 

\leq \psi (xN )(2K2t+ \epsilon 2K2t) + (2K2 + \epsilon 2K2)

\int t

0

M [\psi (xN )| X\epsilon 
s,N | 2]dt

We can use Lemma 2.1 to get

M [\psi (xN )| X\epsilon 
t,N | 2] \leq [\psi (xN )(2K2t+ \epsilon 2K2t) + | xN | 2\psi (xN )]e(2K

2+\epsilon 2K2)t.

Which means we have

M [\psi (xN ) \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t\leq T

| X\epsilon 
t,N | 2] \leq C1

where C1 is independent of N .
We can moreover write

P\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t\leq T

| X\epsilon 
t,N | > N\} = P\{ \psi (xN ) \mathrm{s}\mathrm{u}\mathrm{p}

0\leq t\leq T
| X\epsilon 

t,N | 2 > N2\psi (xN )\} 

\leq P\{ \psi (xN ) \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t\leq T

| X\epsilon 
t,N | 2 > \delta N2\} + P\{ \psi (xN ) \leq \delta \} 

\leq C1

\delta N2
+ P\{ \psi (xN ) \leq \delta \} ,

where the last inequality follows from the Chebychev inequality. Consequently,

\mathrm{l}\mathrm{i}\mathrm{m}
N\rightarrow \infty 

P\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t\leq T

| X\epsilon 
t,N | > N\} \leq P\{ \psi (xN ) \leq \delta \} .

Since \delta is an arbitrary positive number and P\{ \psi (xN ) = 0\} = 0, (3.15) results from the
preceding relation. This completes the proof of the existence of a solution to (2.9).

Next we want to prove the uniqueness of the solution. Let X\epsilon 
t,1 and X\epsilon 

t,2 be two
solutions of (2.9). Denoting by \phi (t) the variable equal to 1 if \mathrm{s}\mathrm{u}\mathrm{p}0\leq s\leq t | X

\epsilon ,i
s,1| \leq N and
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\mathrm{s}\mathrm{u}\mathrm{p}0\leq s\leq t | X
\epsilon ,i
s,2| \leq N and equal to 0 otherwise. Using our second condition we can write

M | X\epsilon 
t,1  - X\epsilon 

t,2| 2\phi (t) \leq 2M [\phi (t)(

\int t

0

\sum 
i

| bi(X\epsilon 
s,1) - bi(X\epsilon 

s,2)| ds)2]

+ 2M [\phi (t)(

\int t

0

\sum 
i,j

| \sigma i
j(X

\epsilon 
s,1) - \sigma i

j(X
\epsilon 
s,2)| dws)

2]

\leq 2tM [(

\int t

0

\phi (s)
\sum 
i

| bi(X\epsilon 
s,1) - bi(X\epsilon 

s,2)| 2ds)]

+ 2M [(

\int t

0

\phi (s)
\sum 
i,j

| \sigma i
j(X

\epsilon 
s,1) - \sigma i

j(X
\epsilon 
s,2)| 2ds)]

\leq (2T + 2)L2
N

\int t

0

M(\phi (s)| X\epsilon 
s,1  - X\epsilon 

s,2| 2ds)

Where we first used that a2 + b2 \geq 2ab, then the Cauchy-Schwarz inequality and
properties of the Ito integral and afterwards the local Lipschitz continuity. Then we need
to use Lemma 2.1 with C = 0 to get M | X\epsilon 

t,1  - X\epsilon 
t,2| 2\phi (t) = 0, which means

P\{ X\epsilon 
t,1 \not = X\epsilon 

t,2\} \leq P\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq s\leq T

| X\epsilon 
t,1| > N\} + P\{ \mathrm{s}\mathrm{u}\mathrm{p}

0\leq s\leq T
| X\epsilon 

t,2| > N\} .

This holds, since \phi (t) is zero for \mathrm{s}\mathrm{u}\mathrm{p}0\leq s\leq t | X
\epsilon ,i
s,1| > N or \mathrm{s}\mathrm{u}\mathrm{p}0\leq s\leq t | X

\epsilon ,i
s,2| > N . From

continuity of X\epsilon 
t,1 and X\epsilon 

t,2 it follows that they are bounded. Hence the probability on the
right-hand side of this inequality tend to zero as N \rightarrow \infty , i.e., for all t \in [0, T ]: P\{ X\epsilon 

t,1 =
X\epsilon 

t,2\} = 1 from which the uniqueness follows in the sense that P\{ \mathrm{s}\mathrm{u}\mathrm{p}0\leq t\leq T | X\epsilon 
t,1 - X\epsilon 

t,2| =
0\} = 1. \square 

3.2. Zeroth Order Approximation for Dissipative Case. Having proved existence
and uniqueness of a solution to (2.9) with our conditions on the coefficients, we want to
prove convergence of the solution X\epsilon 

t of (2.9) to a solution xt of (2.8) as \epsilon \rightarrow 0 under
dissipativity and dissipativity for differences for the drift vector and the local Lipschitz
condition for all the coefficients.

Theorem 3.3. Assume that the coefficients of (2.9) satisfy a local Lipschitz condition,
\sigma increases no faster than linearly and b satisfies dissipativity and dissipativity for the
differences:

(1) For some K,

< y, b(y) > +
\sum 
i,j

[\sigma i
j(y)]

2 \leq K2(1 + | y| 2); (3.16)

< y  - z, b(y) - b(z) > \leq K2(1 + | y  - z| 2); (3.17)

(2) for each N there exists an LN for which\sum 
i

| bi(y) - bi(z)| +
\sum 
i,j

| \sigma i
j(y) - \sigma i

j(z)| \leq LN | y  - z| (3.18)

with | y| \leq N , | z| \leq N .
Then for all t > 0 and \delta > 0 we have:
(1) M | X\epsilon 

t  - xt| \leq \epsilon 2a(t), and
(2) \mathrm{l}\mathrm{i}\mathrm{m}\epsilon \rightarrow 0 P\{ \mathrm{m}\mathrm{a}\mathrm{x}0\leq s\leq t | X\epsilon 

s  - xs| > \delta \} = 0,
where a(t) is a monotone increasing function, which is expressed in terms of | x| and K.
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Proof. We start by showing that M | X\epsilon 
t | 2 is bounded uniformly in \epsilon \in [0, 1]. To show that

we first apply Ito’s formula to get

(1 + | X\epsilon 
t | 2) - (1 + | x| 2) =

r\sum 
k=1

l\sum 
i=1

2

\int t

0

| (X\epsilon 
s)

i| \epsilon \sigma k
i (X

\epsilon 
s)dw

k
s +

\int t

0

\Bigl[ 
2 < X\epsilon 

s , b(X
\epsilon 
s) >

+ \epsilon 2
r\sum 

k=1

l\sum 
i,j=1,i=j

\sigma k
i (X

\epsilon 
s)\sigma 

k
j (X

\epsilon 
s)

+ \epsilon 2
r\sum 

k=1

l\sum 
i,j=1,i\not =j

\sigma k
i (X

\epsilon 
s)\sigma 

k
j (X

\epsilon 
s)
\Bigr] 
ds.

Applying the mathematical expectation and adding (1 + | x| 2) on both sides we obtain:

1 +M | X\epsilon 
t | 2 = 1 + | x| 2 + 2

\int t

0

M < X\epsilon 
s , b(X

\epsilon 
s) > ds+ \epsilon 2

\int t

0

M
\sum 
i,j

[\sigma i
j(X

\epsilon 
s)]

2ds.

Using the Cauchy-Schwarz inequality, and that \sigma in (2.9) increases no faster than
linearly and the dissipativity for b, the last relation implies the estimate

1 +M | X\epsilon 
t | 2 = 1 + | x| 2 + 2

\int t

0

M < X\epsilon 
s , b(X

\epsilon 
s) > ds+ \epsilon 2

\int t

0

M
\sum 
i,j

[\sigma i
j(X

\epsilon 
s)]

2ds

\leq 1 + | x| 2 + 2

\int t

0

M [K2(1 + | X\epsilon 
s | 2)]ds+ \epsilon 2

\int t

0

M [K2(1 + | X\epsilon 
s | 2)]ds

\leq 1 + | x| 2 + (2K2 + \epsilon 2K2)

\int t

0

(1 +M | X\epsilon 
s | 2)ds.

Next we use Lemma 2.1 and choose m(t) = 1 + M | X\epsilon 
t | 2, C = 1 + | x| 2 and \alpha =

(2K2 + \epsilon 2K2). By doing this we obtain

1 +M | X\epsilon 
t | 2 \leq (1 + | x| 2) \mathrm{e}\mathrm{x}\mathrm{p}[(2K2 + \epsilon 2K2)t]. (3.19)

From the inequality we proved it follows that M | X\epsilon 
t | 2 is bounded uniformly in \epsilon \in [0, 1].

In the next step we want to use our result to prove that M | X\epsilon 
t  - xt| \leq \epsilon 2a(t). To do this

we work in a very similar way.
We apply the Ito formula to the function | X\epsilon 

t  - xt| 2, which works the same way as it
did with 1 + | X\epsilon 

t | , just that the starting term vanishes, because X\epsilon 
0 = x = x0. Next we

apply the mathematical expectation on both sides of the equality to get

M | X\epsilon 
t  - xt| 2 = 2

\int t

0

M < X\epsilon 
s  - xs, b(X

\epsilon 
s) - b(xs) > ds+ \epsilon 2

\int t

0

M
\sum 
i,j

[\sigma i
j(X

\epsilon 
s)]

2ds.

In the proof of the existence we proved (3.15). Since X\epsilon 
t,N converges to X\epsilon 

t as N \rightarrow \infty 
we also know that

\mathrm{l}\mathrm{i}\mathrm{m}
N\rightarrow \infty 

P\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq s\leq T

| X\epsilon 
s | > N\} = 0 (3.20)

and
\mathrm{l}\mathrm{i}\mathrm{m}

N\rightarrow \infty 
P\{ \mathrm{s}\mathrm{u}\mathrm{p}

0\leq s\leq T
| xs| > N\} = 0. (3.21)

From this it follows that there exists an N such that

P\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq s\leq T

| X\epsilon 
s | > N\} \leq \epsilon 2

2
(3.22)

and

P\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq s\leq T

| xs| > N\} \leq \epsilon 2

2
. (3.23)
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In the following calculations we first split up our mathematical expectation into two
different cases, then we use the Cauchy-Schwarz inequality and (3.16). Afterwards we
apply the local Lipschitz condition (3.18) and dissipativity for the differences for b (3.17).
Then we estimate the probabilities we used in the inequality

M | X\epsilon 
t  - xt| 2 = 2

\int t

0

M < X\epsilon 
s  - xs, b(X

\epsilon 
s) - b(xs) > ds+ \epsilon 2

\int t

0

M
\sum 
i,j

[\sigma i
j(X

\epsilon 
s)]

2ds

\leq P\{ \mathrm{m}\mathrm{a}\mathrm{x}\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq s\leq T

| X\epsilon 
s | , \mathrm{s}\mathrm{u}\mathrm{p}

0\leq s\leq T
| xs| \} \leq N\} 

2

\int t

0

M
\Bigl[ \sqrt{} 

| X\epsilon 
s  - xs| 2

\sum 
i

[bi(X\epsilon 
s) - bi(xs)]2ds

\bigm| \bigm| \bigm| \mathrm{m}\mathrm{a}\mathrm{x}\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq s\leq T

| X\epsilon 
s | , \mathrm{s}\mathrm{u}\mathrm{p}

0\leq s\leq T
| xs| \} \leq N

\Bigr] 
+ P\{ \mathrm{m}\mathrm{a}\mathrm{x}\{ \mathrm{s}\mathrm{u}\mathrm{p}

0\leq s\leq T
| X\epsilon 

s | , \mathrm{s}\mathrm{u}\mathrm{p}
0\leq s\leq T

| xs| \} > N\} 

2

\int t

0

M [< X\epsilon 
s  - xs, b(X

\epsilon 
s) - b(xs) > | \mathrm{m}\mathrm{a}\mathrm{x}\{ \mathrm{s}\mathrm{u}\mathrm{p}

0\leq s\leq T
| X\epsilon 

s | , \mathrm{s}\mathrm{u}\mathrm{p}
0\leq s\leq T

| xs| \} > N ]ds

+ \epsilon 2K2

\int t

0

(1 +M | X\epsilon 
s | 2)ds

\leq P\{ \mathrm{m}\mathrm{a}\mathrm{x}\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq s\leq T

| X\epsilon 
s | , \mathrm{s}\mathrm{u}\mathrm{p}

0\leq s\leq T
| xs| \} \leq N\} 2

\int t

0

M
\sqrt{} 
| X\epsilon 

s  - xs| 2L2
N | X\epsilon 

s  - xs| 2ds

+ P\{ \mathrm{m}\mathrm{a}\mathrm{x}\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq s\leq T

| X\epsilon 
s | , \mathrm{s}\mathrm{u}\mathrm{p}

0\leq s\leq T
| xs| \} > N\} 2

\int t

0

K2(1 +M | X\epsilon 
s  - xs| 2)ds

+ \epsilon 2K2

\int t

0

(1 +M | X\epsilon 
s | 2)ds

\leq 2LN

\int t

0

M | X\epsilon 
s  - xs| 2ds

+ (P\{ \mathrm{s}\mathrm{u}\mathrm{p}
0\leq s\leq T

| X\epsilon 
s | > N\} + P\{ \mathrm{s}\mathrm{u}\mathrm{p}

0\leq s\leq T
| xs| > N\} )[2K2t+ 2K2

\int t

0

M | X\epsilon 
s  - xs| 2ds]

+ \epsilon 2K2

\int t

0

(1 +M | X\epsilon 
s | 2)ds

\leq 2LN

\int t

0

M | X\epsilon 
s  - xs| 2ds+ \epsilon 22K2t+ \epsilon 22K2

\int t

0

M | X\epsilon 
s  - xs| 2ds

+ \epsilon 2K2

\int t

0

(1 +M | X\epsilon 
s | 2)ds

\leq (2LN + \epsilon 22K2)

\int t

0

M | X\epsilon 
s  - xs| 2ds+ \epsilon 22K2t+ \epsilon 2K2

\int t

0

(1 +M | X\epsilon 
s | 2)ds.

We use Lemma 2.1 again and this time we choose m(t) =M | X\epsilon 
t  - xt| 2, \alpha = (2LN +

\epsilon 22K2), C = \epsilon 22K2t+ \epsilon 2K2
\int t

0
(1 +M | X\epsilon 

s | 2)ds. By this we get

M | X\epsilon 
t  - xt| 2 \leq e(2LN+\epsilon 22K2)t[\epsilon 22K2t+ \epsilon 2K2

\int t

0

(1 +M | X\epsilon 
s | 2)ds]

\leq e(2LN+\epsilon 22K2)t\epsilon 22K2t+ e(2LN+\epsilon 22K2)t\epsilon 2K2

\int t

0

(1 + | x| 2) \mathrm{e}\mathrm{x}\mathrm{p}[(2K + \epsilon 2K2)s]ds

\leq \epsilon 22K2te(2LN+\epsilon 22K2)t + \epsilon 2K2e(2LN+\epsilon 22K2)t(1 + | x| 2)
\int t

0

\mathrm{e}\mathrm{x}\mathrm{p}[(2K + \epsilon 2K2)s]ds

\leq \epsilon 2a(t).
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Where we used the result (3.19) and a(t) is chosen such that it is a monotone increasing
function.

Now we want to prove the second assertion of the theorem. We will now use
the Chebyshev inequality that says that P\{ \xi (\omega ) \geq a\} \leq Mf(\xi )

f(a) . By setting \xi (\omega ) =

\mathrm{m}\mathrm{a}\mathrm{x}0\leq s\leq t | X\epsilon 
s  - xs| , a = \delta , f(x) = x2 and applying the first assertion of the theorem we

obtain

P\{ \mathrm{m}\mathrm{a}\mathrm{x}
0\leq s\leq t

| X\epsilon 
s  - xs| > \delta \} \leq M [\mathrm{m}\mathrm{a}\mathrm{x}0\leq s\leq t | X\epsilon 

s  - xs| ]2

\delta 2
\leq \epsilon 2a(t)

\delta 2
(3.24)

Taking limits on both sides in (3.24) , we get

\mathrm{l}\mathrm{i}\mathrm{m}
\epsilon \rightarrow 0

P\{ \mathrm{m}\mathrm{a}\mathrm{x}
0\leq s\leq t

| X\epsilon 
s  - xs| > \delta \} \leq \mathrm{l}\mathrm{i}\mathrm{m}

\epsilon \rightarrow 0

\epsilon 2a(t)

\delta 2
= 0. \square 

3.3. Parabolic Differential equations with a Small Parameter: Cauchy Prob-
lem, Transport Equation. We aim to obtain results concerning the behavior of so-
lutions of the Cauchy problem as \epsilon \rightarrow 0 from the behavior of X\epsilon 

t (w) as \epsilon \rightarrow 0. In the
preceding section we have obtained a result concerning the the behavior of solutions
X\epsilon 

t (w) as \epsilon \rightarrow 0, which will be used in the present section. We consider the Cauchy
problem

\partial v\epsilon (t, x)

\partial t
= L\epsilon v\epsilon (t, x) + c(x)v\epsilon (t, x) + g(x), v\epsilon (0, x) = f(x), (3.25)

t > 0, x \in \BbbR r for \epsilon > 0 and together with it the problem for the first-order operator
which is obtained for \epsilon = 0,

\partial v0(t, x)

\partial t
= L0v0(t, x) + c(x)v0(t, x) + g(x), v0(0, x) = f(x). (3.26)

Here L\epsilon is a differential operator with a small parameter at the derivatives of highest
order,

L\epsilon =
\epsilon 2

2

r\sum 
i,j=1

aij(x)
\partial 2

\partial xixj
+

r\sum 
i=1

bi(x)
\partial 

\partial xi
.

Every operator L\epsilon (whose coefficients are assumed to be sufficiently regular) has an
associated diffusion process X\epsilon ,x

t . This diffusion process can be given by means of the
stochastic equation

\.X\epsilon ,x
t = b(X\epsilon ,x

t ) + \epsilon \sigma (X\epsilon ,x
t ) \.\omega t, X\epsilon ,x

0 = x, (3.27)

where \sigma (x)\sigma \ast (x) = (aij(x)), b(x) = (b1(x), . . . , br(x)).
We assume that the following conditions are satisfied:
(1) the function c(x) is uniformly continuous and bounded for x \in \BbbR r;
(2) the coefficients of L1 satisfy a local Lipschitz condition, b satisfies dissipativity

and dissipativity for the differences;
(3) k - 2

\sum 
\lambda 2t \leq 

\sum r
i,j=1 a

ij(x)\lambda i\lambda j \leq k2
\sum 
\lambda 2i for any real \lambda 1, \lambda 2, . . . , \lambda r and x \in \BbbR r,

where k2 is a positive constant.
Under these conditions, solutions to problems (3.25) and (3.26) exist and are unique.
Having these conditions we obtain the following result.

Theorem 3.4. If conditions (1)—(3) are satisfied, then the limit \mathrm{l}\mathrm{i}\mathrm{m}
\epsilon \rightarrow 0

v\epsilon (t, x) = v0(t, x)

exists for every bounded continuous initial function f(x), x \in \BbbR r. The function v0(t, x) is
a solution of problem (3.26).
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Proof. If condition (3) is satisfied, then there exists a matrix \sigma (x) with entries satisfying
a local Lipschitz condition for which \sigma (x)\sigma \ast (x) = (aij(x)). The solution of (3.25) can be
represented in the following way [1, Chap. 1, Sec. 5]:

v\epsilon (t, x) =M [f(X\epsilon ,x
t ) \mathrm{e}\mathrm{x}\mathrm{p}\{ 

\int t

0

c(X\epsilon ,x
s )ds\} ]+M [

\int t

0

g(X\epsilon ,x
s ) \mathrm{e}\mathrm{x}\mathrm{p}\{ 

\int s

0

c(X\epsilon ,x
u )du\} ds]. (3.28)

This remains true for the changed conditions, because of the uniqueness of the solution.
From Theorem 3.3 it follows that X\epsilon ,x

s converges to X0,x
s in probability on the line

segment [0, t] as \epsilon \rightarrow 0. Taking into account that there is a bounded continuous func-
tional of X\epsilon ,x

s (\omega ) under the sign of mathematical expectation in (3.29), by the Lebesgue
dominated convergence theorem, which we can use because the functional is bounded, we
obtain

\mathrm{l}\mathrm{i}\mathrm{m}
\epsilon \downarrow 0
v\epsilon (t, x) = \mathrm{l}\mathrm{i}\mathrm{m}

\epsilon \downarrow 0
M [f(X\epsilon ,x

t ) \mathrm{e}\mathrm{x}\mathrm{p}\{ 
\int t

0

c(X\epsilon ,x
s )ds\} ] + \mathrm{l}\mathrm{i}\mathrm{m}

\epsilon \downarrow 0
[

\int t

0

g(X\epsilon ,x
s ) \mathrm{e}\mathrm{x}\mathrm{p}\{ 

\int s

0

c(X\epsilon ,x
u )du\} ds]

=M [\mathrm{l}\mathrm{i}\mathrm{m}
\epsilon \downarrow 0

f(X\epsilon ,x
t ) \mathrm{e}\mathrm{x}\mathrm{p}\{ 

\int t

0

c(X\epsilon ,x
s )ds\} ] +M [\mathrm{l}\mathrm{i}\mathrm{m}

\epsilon \downarrow 0

\int t

0

g(X\epsilon ,x
s ) \mathrm{e}\mathrm{x}\mathrm{p}\{ 

\int s

0

c(X\epsilon ,x
u )du\} ds]

= f(X0,x
t ) \mathrm{e}\mathrm{x}\mathrm{p}\{ 

\int t

0

c(X0,x
s )ds\} +

\int t

0

g(X0,x
s ) \mathrm{e}\mathrm{x}\mathrm{p}\{ 

\int s

0

c(X0,x
u )du\} ds.

The function on the right side of the equality is a solution of (3.26). This finishes the
proof. \square 

The special case is where c(x) \equiv g(x) \equiv 0, which gives us a Transport equation,
\partial v\epsilon (t, x)

\partial t
= L\epsilon v\epsilon (t, x), v\epsilon (0, x) = f(x).

A solution of the transport equation can be written in the following form:

v\epsilon (t, x) =M [f(X\epsilon ,x
t )]. (3.29)

As in the case of the Cauchy problem, passing to the limit for \epsilon \rightarrow 0 we get \mathrm{l}\mathrm{i}\mathrm{m}
\epsilon \rightarrow 0

v\epsilon (t, x) =

v0(t, x) where v0(t, x) is a solution of

\partial v0(t, x)

\partial t
= L0v0(t, x), v0(0, x) = f(x).
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