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ROTHE TIME-DISCRETIZATION METHOD FOR NOLINEAR
PARABOLIC PROBLEMS

N. ELHARRAR, J. IGBIDA, AND H. TALIBI

ABsTRACT. In this paper we consider a class of nonlinear parabolic problems whose

model is
% div [|[Vu— O(u)[P~2(Vu—O(w)] + B(u) = f in Qp:=(0,T)xQ,
u=0 on X :=(0,T) x 0%,
u(-,0) = ug in Q.

(*)
Using time discretization technique and Rothe method we prove existence and unique-
ness results for bounded weak solutions.

BukopucroByroun TexHiky auckperusaliil 3a yacoM Ta meron Pora, J10BemeHO
icHyBaHHS Ta €UHICTD CJIAOKOTO OOMEXKEHOI0 PO3B’A3KY AJI HEJIIHIHHUX 1apabOsIiTHIX
3a/a9 BUTISALY ().

1. INTRODUCTION

This paper is devoted to existence and uniqueness results for bounded weak solutions
to the following nonlinear parabolic problem:

G — div(@(Vu —O(w) + B(u) = f in Qr:=(0,T) xQ,
(P)s u=0 on X7 :=(0,T) x 09,
u(-,0) = uo n Q.

Here Q C R%(d > 3) is an open bounded domain with Lipschitz boundary 99, T is a
fixed positive number; Vu is the gradient of v and ®(¢) := |[£[P~2¢ for all £ € RY with
1 < p < d. We make the following assumptions:

(A1): jis anon-decreasing continuous real-valued function on R, surjective, satisfies
B(0) =0, and |3(z)| < M|z|, where M is a positive constant.

(A2): fe L (Qr) and ug € L>®(Q) N WLP(Q).

(A3): © is a continuous function from R to R%, ©(0) = 0, and |0(z) — O(y)| <
Az —y| for all z,y € R, and A is a positive constant such that

(d — p) (meas(52)~1/4
2(d—1)p

The problem (P) arises in various physical contexts like chemical heterogeneous cata-
lysts, non-Newtonian fluids,and the theory of heat conduction in electrically conducting
materials (see for example [9, 24, 26]). Here we shall mention two of them which are
related to turbulent flows.

Model 1: Filtration of a fluid in a partially saturated porous medium. This
flow is governed by the equation

dc(p)
ot

A<

= Va[k(c(p))(Vp + €], (1.1)
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where p is an unknown pressure, ¢ the water content, k& the conductivity of the porous
medium, a the matrix heterogeneity and —e the direction of gravity. The Kirchhoff
transformation equation

P
u= [ ke
0
leads to a differential equation (1.1) of the form

0b(u)
ot
where the function b has the same behavior as c.

Model 2: Flow through a porous medium in a turbulent regime This model
is governed by the continuity equation

= Va[Vu + k(b(u))e],

0
%—&—divv:(),

and Darcy’s law
v = —K(0) grad 6(0),

where (z,t) is the volumetric moisture content, k(6) is the hydraulic conductivity, and
the total potential ¢ is given by

¢(0) = (0) + z,

where () is the hydrostatic potential and z is the gravitational potential. In turbulent
regimes, the flow rate is different from that which can be predicted by the Darcy law,
and so several authors proposed a nonlinear relation between v and K (0) grad ¢,

0770 = —K(0) grad ¢(0), ¢ > 2.

If e denotes the unit vector in the vertical direction, we obtain

% —div (|Ve(68) — K(0)el”*(Vip(6) — K (0)e)) =0,

where
’ q
o0) = [ K50/ (s)ds.p = Lo
0 q—1

In the last years, the problem (P) or special cases of it have been extensively treated
by many authors in elliptic or parabolic case, we invite the reader to see for example the
works [2, 3, 4, 5, 10, 13, 16, 18].

We recall that the Euler forward scheme has been used by several authors while
studying time discretization of nonlinear parabolic problems, we refer for example to the
works [6, 12, 14, 15, 17, 23, 25] for some details.

The advantage of our method is that we can not only obtain existence and uniqueness
of weak solutions to the problem (P), but also compute numerical approximations. In
the particular case where © = 0, the author in [17] showed existence and uniqueness of
entropy solutions in Orlicz spaces by using our Rothe time-discretization method.

This work is divided into four sections. In Section 1, we introduce the problem (P) and
we state the assumptions. In Section 2, we show some preliminary results and notations,
also we state our main result. In Section 3, we discretize the problem (P) by the Euler
forward scheme, we show existence and uniqueness of a weak solution for the discretized
problems and we give some stabilty results. In the last section, we finish this work by
treating convergence and existence results for the problem (P), moreover we confirm the
uniqueness of solution.
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2. PRELIMINARY RESULTS AND NOTATIONS

In this section, we give some notations and definitions and state some results that will
be used in this work. For a measurable set 2 in R, meas (£2) denotes its measure, the
norm in LP(2) is denoted by || - ||p, and || - |[1,, denotes the norm in the Sobolev space
W1P(Q). For a Banach space X and a < b we have

b
LP(a,b; X) = {u :la,b] = X is measurable ; / lu(t)|/%dt < oo}7
endowed with the norm
b 1
Jullzrcas = (| Tu(olar)”.
if p = o0, we have

l[ull oo (a,6:) 7= sup [Jul[x < oo (2.2)

[a,

Lemma 2.1. For &,n € R% and 1 < p < oo, we have
1 1
—[€[P — =|n|P < |€[PT2E(€ — 7). 2.3
pll plnl E1P77E(E =) (2.3)

Proof. We consider the function f:RT — R defined by z — 2P — px + (p — 1). We have
f(z) > min f(y) = f(1) =0 for all z € RT.
yER+

Therefore, we take x = % (if |€| = 0, the result is obvious) in the inequality above to get
the result of the lemma by using Cauchy-Schwarz inequality. g

Lemma 2.2 ([9]). Let p,p’ be two real numbers such that p > 1,p' > 1 and Il) + 1% =1,

Then ||Ef"~& — nP=n|" < C{(¢ —n) (IE/P~26 = [nlP=2n) } * {I&P + Inl"}'~ % Ve, €
R, where a =2 if 1 <p <2, and o = p' if p > 2.

Remark 2.3. Hereinafter, ¢;, ¢ € N, are positive constants independent of N.

Definition 2.4. A measurable function u : Q7 — R is a weak solution to nonlinear par-
abolic problems (P) in Qr if u(.,0) = up in Q,u e C (07T; LQ(Q)) N L? (0, T; Wl’p(Q)),
%“; € L? (Qr) and we have

T ¢ u T T
/ —@dxdt + / / O (Vu — O(u)).Vedrdt + / B(u)pdxdt
0 Jo Ot o Jo o Jo

T
= / / fedzdt, Ve e C'(Qr). (2.4)
0 Jo
Given a constant k£ > 0, we define the cut function Tj : R — R as
| s it |s| <k,
Ti(s) := { k sign(s) if |s| >k,
where
1 if s>0,
sign(s):=<¢ 0 if s=0,
-1 if s<0.

The following theorem is the main result of this paper.

Theorem 2.5. Under the assumptions (A1), (A2), and (A3) there exists a unique weak
solution for the nonlinear parabolic problem (P).
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3. THE SEMI-DISCRETE PROBLEM AND STABILITY RESULTS

3.1. The semi-discrete problem. In this section, we discretize the problem (P) by
Euler forward scheme and we study the questions of existence and uniqueness under the
assumptions (A1), (A2) and (A3) to the following discretized problems:

) { U, — 7div(® (YU, — © (U,)) + 78 (Un) = 7fn + Un_1 in €,

U,=0 on 01,
where Uy = ug, NT=T,0<7<1,1<n<N,t,=nr, and
1 tn
fa) == f(s,-)ds,in Q.
T

tn—1
A weak solution to the discretized problems (P,) is a sequence (Uy),<,,<y such that
Uy = ug and U, is defined by induction as a weak solution to the problem

u—7div(®(Vu—0(u))) +78uw)=7f +U,—1 in Q,
u=20 on 01,

i.e., for U, € L>®(Q) N W1P(Q) and Vi € WP(Q),¥r > 0, we have

/ Unppdr + T/ o(VU, — 0(U,)).Vedx + T/ B(Uy,) pdx = / (7fn + Up—1) @dz.
Q Q Q Q

Theorem 3.1. Under the assumptions (A1), (A2), (A3), and 1 < p < d, the problem (P,)
has a unique weak solution (Un)y<, <y and for alln =1,...,N, U, € L>=(Q)N Wr(Q).
For n =1, we denote U = Uy, and rewrite the problem (3.5) as

{ —7div(®(VU —0(U)))+B({U)=F in Q,

(3.5)

U=0 on 99 (3.6)

By the assumption (A2), the function F' = 7f1 + up is an element of L>=(2) and the
function 3(s) = 78(s) + s is a non decreasing continuous real-valued function on R,
surjective, and is such that 3(0) = 0. Therefore, according to [7], problem (3.7) has a
unique weak solution Uy in L>°(Q)NW (). By induction, we deduce in the same manner
that the problem (P,) has a unique weak solution (U, )y<,<y such that n =1,..., N,
Up € L>®(Q) N WhP(Q).

3.2. Stability results. In this section, we prove some a priori estimates for the discrete
weak solution (Up);.,,«,, Which we use later to derive convergence results for the Euler
forward scheme.

Theorem 3.2. Under the assumptions (A1), (A2), (43), and 1 < p < d there exists a
positive constant C(ug, f, F') depending on the data but not on N such that for alln =1,
..., N, we have

||Un||oo S C(Uo,f,F),

YU = Uisall; < C(uo, f, F),
=1

Tzn:/ﬂcb(vm - 0(U;)).VUdx < C (uo, f, F).
i=1

Proof. For (3.8). Let k>0 and 1 <n < N, we have U, € L*(Q2). Then, multiplying
(P,) by |U,|" U, and integrating over 2, we obtain that

/|Un|k+2dx77/div((I)(VUn—@(Un)))|Un|kUndx+7/B(Un)|Un|kUndx
Q Q Q

:/ (Tfn+Un—1)|Un|kUndx.
Q
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Using Holder’s inequality, (A1), (A2), (43), and that ®(VU; — O(U;)).VU; is monotone,
we get

k42 k41 k41
HUn”kJrQ ST ||Un||k+1 + ||Un*1||k+2 ||Uﬂ||k+2' (3.7)
Hence,
k+1
HUn”k+2 <Ta ||Un||k+1 + ||Un71”k+2' (3.8)

By simple induction, we get that
||Un||k+2 < Neo)T' + HU0||k+2 . (3.9)

Finally, as k — oo, we obtain the result (3.8).
For (3.9). Let 1 <i < N, replacing ¢ with U;, as a test function in (3.6), we get

Q Q Q Q
With the elementary identity,
5 1 1

— =b* + =(a —b)?,

1
a(afb):ia 5 )

we get from (3.15) that
1 2 ]. 2 ]. 2
5 |\Uz'||2*§ ||Ui—1||2+§ Ui = Ui—a|lz+7 ; O(VU;—O(U;)).VUdr < Tes3 ||Uill, - (3.10)

Now, we take the sum of (3.16) from i = 1 to n to get

1 1 1o =
3 1Unll3 — 3 1Uoll5 + 3 > Ui - Ui—1||§+TZ/Q‘I’(VUi —0(U;)).VUidz < cq. (3.11)
=1 =1

Hence,
1 « - 1
5 SONU = Uisally + TZ/ ®(VU; = O(U))-VUidz < ca+ 5 1Tl - (3.12)
i=1 =179
Thus
1 n n
3 S ONU = Uialls + TZ/ ®(VU; — O(U;)).VUidz < cs. (3.13)
i=1 i=178
So
1 n
5 Z ||UZ — U171||§ S Cs. (314)
=1

This implies the stability result (3.9).
For (3.10). In view of (3.19) and (3.9), we obtain the stability result (3.6). O

Theorem 3.3. Let the assumptions (A1), (A2), (A3), and 1 < p < d be satisfied. Then
there exists a positive constant C (ug, f, F') depending on the data but not on N such that
foralln=1,...,N, we have

TZ ”B(Ul)Hl < C(’U’O»f?F)a
=1
k—0

lim T / ®(VU; — O(U;)).VUidz < C (ug, f, F),
=k Jgui<ky

S U = Uicall, < C(uo, f, F).

i=1
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Proof. For (3.21) and (3.22). Replacing ¢ with T} (U;) as a test function in (3.6), and
dividing this equality by k, taking limits as k approaches 0, we get

Uil 7118 (U3 + Jim /{WH B(VU;—O(U)).VU;dw < 7| fill, +Ui1 - (3.15)

Summing (3.24) from ¢ = 1 to n, we conclude the stability results (3.21) and (3.22).
For (3.23). Replacing ¢ with T, (U; — U;—1) in (3.6) and dividing this equality by 7
we get

/ (Ui = Ui-1) de —i—/ (VU — OU,)).(VU; — VU;_1)dx
Q T i

<78 Uy +7lfilly, (3.16)
where BE = {|U; — U;_1| < 7}. Applying Lemma 2.1, we obtain

1
EIVUZ-—9(U)I —*IVUZ 1= 0(U)P < |VU; = 0(U) P2V U; — 0(U3)|.(VU; = VUj—1).
Hence,

/ (Ui —U;—1) de Jr/ (%)|VU¢ —0(U)|P - %|VU¢_1 —0(U;)|P)dx
Q i

T

< 7By +7llfilly -

Summing these inequalities from i = 1 to n, using the stability result (3.21), we obtain

U, — UZ 1
Z/ (U; = Ui_1) LU=V g o f/ VU, |Pda + c. (3.17)
pJa
Then, we let 7 tend to 0 in the inequality above to deduce the stability result (3.23). O

4. CONVERGENCE AND EXISTENCE RESULTS

In this section using the results obtained above, we construct a weak solution of
problem (P) and we show that this solution is unique.

4.1. Proof of Existence. Let us introduce a piecewise linear extension, called a Rothe
function, by

un(0) := ug,
un(t) == Up_1 + (Uy — Uy _y) Ete=t) e} tn,l,tn] n=1,....N inQ,

and a piecewise constant function

un(0) := ug,
{ un(t):=U, Vt€]t,_1,tn], n=1,...,N in Q, (4.18)
where ¢, := n7. As already shown, for any N € N, the solution (U,),,,« of problems
(P,) is unique. Thus, uy and @y are uniquely defined and by construction, for any
t €ltp_1,tn], n=1,..., N, we have that
) Qun(t) _ Ua=Un-1)
ot T :
ii) an(t) —un(t) = (Un = Up-1) 275
From theorem 3.2, for any N € N, the solution (U,),, <y of problems (3.5) is unique.
Thus, uy and %y are uniquely defined. Using the stability results of Theorem 3.3 ,
we deduce the following a priori estimates concerning the Rothe function uy and the
function uy.




ROTHE TIME-DISCRETIZATION METHOD 47

Lemma 4.1. Under the assumptions (Al), (A2), and (A3), there exists a positive constant
C (T, ug, f, F) not depending on N such that for all N € N, we have

lix —unlaiqn < 7€ (Tu0, 1, F), (4.19)
[an Lo 0.7,L2(0)) < C (Tyu0, f, F), (4.20)
||UN||L<><>(0,T,L2(Q)) < C(T,uo, [, F), (4.21)
1Nl Lo, mwrr ) < C(Thuo, fL F), (4.22)

18 @N)l L1 (@ry < C (T uo, f, F), (4.23)
HauN poiy SO (T, ). (4.24)

Proof. For (4.29). We have
2 g 2
o Jo

<§V/tn /|U — Up_1)? bt 2dxdt<i0(:ru 1, F)
_i=1 1 Jo n n—1 - =N s W0y /s .

We follow the same techniques as above to show estimates (4.30), (4.31), (4.32) and (4.33).
For (4.34). We have forn=1,...,N and t € (¢,_1,t,] that

8’U/N(t) . (Un - n71>.

ot T

This implies that
ou N

'3t L1(@Qr) //

Using the result (3.23), we obtain estimate (4.34). This finishes the proof of Lemma 4.1.

Now, using the two results (4.30) and (4.31) of Lemma 4.1, the sequences (un)neN
and (i) yey are uniformly bounded in L> (0,7, L?(2)). Therefore, there exists two

elements u and v in L> (0,7, L*(£2)) such that
uy —*u in L™ (0,T,L*(Q)),
uy =*v in L™ (0,T,L*(Q)).
And from the result (4.31) of Lemma 4.1, it follows that

ou tn
S o dt = Z/ 0 = Unall = ZHU Uneall-

tnl

u="v.

Furthermore, by Lemma 4.1 and the assumption (A2), we get that
8;72\;%% in L*(Qr),

iy —u in LP (0,7, W"P(Q)).
From the assumption (A1), we know that

B(un) — B(u) ae. in Qr,

B(an)| < Mlay| € L' (Qr).
Then, thanks to the Lebesgue dominated convergence theorem, we deduce that

B(uy) = B(u) in L' (Qr). (4.25)

On the other hand, since {Vay — O (iy)} is equiintegrable by the assumption (A3)

and the boundedness of (ay) it results that

®(Viay — O(an)) — ®(Vu —0O(u)) weakly in L' (Qr).
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By reflexivity of L¥'(€2) and boundedness of {® (Vay — O (ix))}, we deduce that

O(Viiy — O(iy)) = ®(Vu—O(u)) weakly in (L (Qr)). (4.26)
According to Lemma 4.1 and Aubin-Simons compactness result, we get that
uy »u in C(0,T,L*(Q)). (4.27)

Now, we show that the limit function u is a weak solution of problem (P). Firstly, we
have un(0) = Uy = ugp for all N € N, then u(0,.) = ug. Secondly, let ¢ € C* (Qr), we
rewrite (2.4) in the form

/ /%—N dx dt+/0T/Q(I>(VuN—@(uN)).dexdt+/0T/95(uN)<pdxdt
= /0 ' /Q fnpdzdt, (4.28)

Nt z) = folx), Vt €ltn_1,tn], n=1,...,N.
Taking limits as N — oo in (4.40) and using the above results, we deduce that u is a
weak solution of the nonlinear parabolic problem (P).

where

4.2. Proof of Uniqueness. We suppose that there exist two weak solutions v and v of
the nonlinear parabolic problem (P), setting ¢ to u — v as a test function for solution u in
(2.4) and replacing ¢ with v — u as a test function for solution v in (2.4), we obtain that

/OT/Q?;:(Uv)dzdt+/0T/Qq>(vuT@(u)).V(uu)da;dt T
+/0 /Qﬁ(u)(u—v)dxdt:/o /Qf(u—v)datdt,

/OT/Q %(v — w)dzdt + AT /Q (Vo — O(v)).V(v — u)dadt
i /OT | s —wsae = [ ' [ 1= wyasar

By summing up the two above equalities, we get

T ou—w) T
/O /Q A0y~ v)dadt + /0 /Q(@(vu — 0(u) — (Vo — O())).V(u — v)dadt

/ / ) (u — v)dadt = 0.

Using assumption (A1), (A3) and the fact that ®(Vu — O(u)) is monotone, we deduce
that
U=v. g
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