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FACTORIZATIONS OF GENERALIZED SCHUR FUNCTIONS AND
PRODUCTS OF PASSIVE SYSTEMS

LASSI LILLEBERG

Dedicated to Professor Vladimir Derkach on the occasion of his seventieth birthday.

Abstract. Factorizations of Pontryagin space operator-valued generalized Schur
functions are studied. Main tools are products of contractive operator colligations,
or cascade connections of passive discrete-time systems. The well-known notion
of regular factorizations of ordinary Schur functions is extended to the generalized
Schur class functions by using canonical reproducing kernel Pontryagin space models.
Factorizations stronger than the regular factorization are also introduced to obtain
characterizations in the case where the products of observable co-isometric (controllable
isometric) systems preserve the observability (controllability). These factorizations
are related to backwards shift invariant regular subspaces of de Branges–Rovnyak
spaces, and they can alternatively be viewed as regular factorizations of generalized
Schur functions with certain extreme properties. Moreover, their properties are linked
with how the optimality is preserved under the product of optimal passive systems.

Дослiджено факторизацiю операторнозначних узагальнених функцiй Шура
нп просторi Понтрягiна. Основними iнструментами є добутки стискаючих
операторних з’єднань, або каскадних зв’язкiв пасивних систем з дискретним
часом. Добре вiдоме поняття регулярних факторизацiй звичайних функцiй
Шура поширюється на узагальненi функцiї класу Шура за допомогою канонiчних
вiдтворюючих ядер для моделей простору Понтрягiна. Також вводяться
факторизацiї бiльш сильнi, нiж звичайна факторизацiя, для отримання
характеристик, у випадку, коли добутки спостережуваних коiзометричних
(керованих iзометричних) систем зберiгають спостережуванiсть (керованiсть).
Цi факторизацiї пов’язанi з регулярними пiдпросторами просторiв де Бранжа-
Ровняка, якi є iнварiантними вiдносно зворотнього зсуву, i їх можна також
розглядати як регулярнi факторизацiї узагальнених функцiй Шура з певними
екстремальними властивостями. Крiм того, їх властивостi пов’язанi з тим, як
зберiгається оптимальнiсть вiдносно добутку оптимальних пасивних систем.

1. Introduction

Let \scrU and \scrY be separable Pontryagin spaces with the same finite negative index. A
function \theta analytic at the origin with values in the set of bounded linear operators from
\scrU to \scrY , which is denoted by \scrL (\scrU ,\scrY ), belongs to the generalized Schur class \bfS \kappa (\scrU ,\scrY ) if
the \scrL (\scrY )-valued Schur kernel

K\theta (w, z) =
1 - \theta (z)\theta \ast (w)

1 - z \=w
, w, z \in \rho (\theta ), (1.1)

where \rho (\theta ) is the maximal domain of holomorphy of \theta , has \kappa negative squares (\kappa =
0, 1, 2, . . .). That is, no Hermitian matrix of the form\bigl( 

\langle K\theta (wj , wi)fj , fi\rangle \scrY 
\bigr) n
i,j=1

, w1, . . . , wn \in \rho (\theta ), f1, . . . , fn \in \scrY ,
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where \langle \cdot , \cdot \rangle \scrY is the indefinite inner product of the space \scrY , has more than \kappa negative
eigenvalues, and there exists at least one such matrix with exactly \kappa negative eigenvalues.
The class \bfS 0(\scrU ,\scrY ) is denoted by \bfS (\scrU ,\scrY ), and the values of \theta \in \bfS (\scrU ,\scrY ) are contractive.
If \scrU and \scrY are Hilbert spaces, then \bfS (\scrU ,\scrY ) is the ordinary Schur class, i.e., the unit ball
of H\infty (\scrL (\scrU ,\scrY )).

In this paper, the factorizations of the generalized Schur function \theta \in \bfS \kappa (\scrU ,\scrY ) of the
form

\theta = \theta 2\theta 1, \theta 1 \in \bfS \kappa 1
(\scrU ,\scrY 1), \theta 2 \in \bfS \kappa 2

(\scrY 1,\scrY ), (1.2)
where \scrY 1 is a Pontryagin space with the same negative index as \scrU and \scrY , are studied by
using products of contractive operator colligation realizations of the generalized Schur
functions. An operator colligation, or as it will be called by using the notations arising
from the system theory, linear discrete-time system \Sigma = (T\Sigma ;\scrX ,\scrU ,\scrY ;\kappa ) consists of the
state space \scrX which is a Pontryagin space with the negative index \kappa , Pontryagin spaces
\scrU and \scrY with the same negative index, which is not related to \kappa , and the bounded linear
system operator T\Sigma of the form

T\Sigma =

\biggl( 
A B
C D

\biggr) 
:

\biggl( 
\scrX 
\scrU 

\biggr) 
\rightarrow 
\biggl( 
\scrX 
\scrY 

\biggr) 
, (1.3)

where
\biggl( 
\scrX 
\scrU 

\biggr) 
is the direct orthogonal sum \scrX \oplus \scrU with respect to the indefinite inner product.

The transfer function of the system (1.3) is an \scrL (\scrU ,\scrY )-valued function defined by

\theta \Sigma (z) = D + zC(I  - zA) - 1B, z - 1 \in \rho (A),

where \rho (A) is the resolvent set of A, so at least \theta \Sigma is defined and holomorphic in a
neighbourhood of the origin. The operator A \in \scrL (\scrX ) is called the main operator of \Sigma .
The notation \Sigma = (A,B,C,D;\scrX ,\scrU ,\scrY ;\kappa ) is often used instead of \Sigma = (T\Sigma ;\scrX ,\scrU ,\scrY ;\kappa ).
For systems \Sigma 1 = (A1, B1, C1, D1;\scrX 1,\scrU ,\scrY 1;\kappa 1) and \Sigma 2 = (A2, B2, C2, D2;\scrX 2,\scrY 1,\scrY ;\kappa 2)
with transfer functions \theta \Sigma 1

and \theta \Sigma 2
, a product or cascade connection, see (3.32), produces

a system \Sigma 2 \circ \Sigma 1 = \Sigma with the system operator

T\Sigma =

\left(  A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1

\right)  =

\left(  I\scrX 1
0 0

0 A2 B2

0 C2 D2

\right)  \left(  A1 0 B1

0 I\scrX 2
0

C1 0 D1

\right)  :

\left(  \scrX 1

\scrX 2

\scrU 

\right)  \rightarrow 

\left(  \scrX 1

\scrX 2

\scrY 

\right)  
and the transfer function \theta \Sigma = \theta \Sigma 2\theta \Sigma 1 .

A system \Sigma = (T\Sigma ;\scrX ,\scrU ,\scrY ;\kappa ) is called passive (isometric, co-isometric, conservative)
if the system operator T\Sigma of \Sigma is contractive (isometric, co-isometric, unitary), with
respect to the underlying indefinite inner products. In the literature, conservative systems
are often called unitary. The system \Sigma = (T\Sigma ;\scrX ,\scrU ,\scrY ;\kappa ) is a realization of \theta \in \bfS \kappa \prime (\scrU ,\scrY ),
if the transfer function of \Sigma coincides with \theta in some neighbourhood of the origin. It is
well-known that every \theta \in \bfS \kappa (\scrU ,\scrY ) has the so-called canonical isometric, co-isometric
and unitary realizations, see [2, Chapter 2], with certain minimality properties, which
are, in the language of system theory, respectively, controllability, observability and
simplicity. By taking restrictions of canonical realizations, one obtains minimal passive
realizations of \theta . Consider now the functions \theta , \theta 1 and \theta 2 as in (1.2), and the realizations
\Sigma 1 = (T\Sigma 1

;\scrX 1,\scrU ,\scrY 1;\kappa 1) and \Sigma 2 = (T\Sigma 2
;\scrX 2,\scrY 1,\scrY ;\kappa 2) of \theta 1 and \theta 2. Then the product

\Sigma = \Sigma 2 \circ \Sigma 1 is a realization of \theta , and \Sigma is passive (isometric, co-isometric, conservative)
if \Sigma 1 and \Sigma 2 are. Other system theoretical qualitative properties are not necessarily
preserved under the cascade connection of passive systems, and the aim of this paper is
to obtain necessary and sufficient conditions when such properties are preserved.

In the case where \scrU and \scrY are Hilbert spaces and \theta , \theta 1 and \theta 2 are ordinary Schur
functions, it is known that the product \Sigma = \Sigma 2 \circ \Sigma 1 of simple conservative realizations of
\theta 1 and \theta 2 is simple conservative if and only if the corresponding factorization is regular
in a sense of Brodskĭı [17] and Sz.-Nagy and Foias [39], see Definition 4.3. Regular
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factorizations are widely studied, and accounts are given, for instance, in [13] and [14]. It
in well-known, that finding a regular factorization is equivalent to finding an invariant
subspace of a completely non-unitary Hilbert space contraction. In [9, Theorem 8.1], Arov
et al. generalized the notion of a regular factorization to the setting where \theta 1 \in \bfS \kappa 1(\scrU ,\scrY 1)
and \theta 2 \in \bfS \kappa 2(\scrY 1,\scrY ), but where \scrU , \scrY 1 and \scrY are still Hilbert spaces. Their definition, as
well as the original one for ordinary Schur functions in [17] and [39], depends strongly on
the Hilbert space specific functional model of Sz.-Nagy and Foias from [39], and therefore
cannot be instantly applied to Pontryagin space operator-valued functions. However,
another well-known model, which goes back to the work of de Branges and Rovnyak
[19, 20], can be also applied in Pontryagin space setting, see [2, Chapter 2]. By using
the de Branges–Rovnyak reproducing kernel model, the notion of regular factorization is
extended to the Pontryagin space operator-valued generalized Schur functions in Definition
3.2 and Theorem 3.3.

Instead of products of simple conservative systems, one can consider the product of
another canonical realization or other realizations with certain minimality or optimality
properties. In finite dimensional system theory, transfer functions are rational matrix
functions, and their factorizations via cascade connections of systems are widely studied,
see for instance [15]. However, for non-rational (generalized) Schur functions, these
subjects are not widely studied. An account was given by Khanh in [25], where he
introduced (+)-regular and ( - )-regular factorizations of ordinary Schur functions, based
on the functional model of Sz.-Nagy and Foias. For Khanh’s definitions, see Definition
4.3. These factorizations are, in system theoretical sense, stronger than the Brodskĭı’s
regular factorizations, and Khanh proved that the product of observable (controllable,
minimal) conservative system is observable (controllable, minimal) conservative if and
only if the corresponding factorizations \theta = \theta 2\theta 1 of the transfer functions is (+)-regular
(( - )-regular, (+)- and ( - )-regular) [25, Corollary 1 and Theorem 4]. Nevertheless, such
realizations exist only for certain (generalized) Schur functions. Namely, for those with
zero right (left, right and left) defect functions, see [8, Proposition 4] for ordinary Schur
functions and [31, Theorem 4.8] for generalized Schur functions. When this happens,
(+)-regular (( - )-regular, (+)-regular and ( - )-regular) factorizations turn out to be
equivalent to regular factorization, as it follows from Proposition 4.2. However, by
using de Branges–Rovnyal model instead of the model of Sz.-Nagy and Foias, Khanh’s
definition of (\pm )-regularity can be extended to cover the class \bfS \kappa (\scrU ,\scrY ), where \scrU and \scrY 
are Pontryagin spaces with the same negative index. Finding a (+)-regular factorization
of \theta is equivalent to finding a backward shift invariant subspace of the generalized de
Branges–Rovnyak space induced by the kernel (1.1). A typical example of (+)-regular
(( - )-regular) factorization of \theta \in \bfS \kappa (\scrU ,\scrY ), where \scrU and \scrY are Hilbert spaces, is the
right (left) Krĕın–Langer factorization \theta = \theta rB

 - 1
r (\theta = B - 1

l \theta l), where B - 1
r and B - 1

l are
inverse Blaschke products and \theta r and \theta l are ordinary Schur functions. It will be shown
in Theorem 3.3 that the product of the observable co-isometric (controllable isometric)
systems is observable co-isometric (controllable isometric) if and only if the corresponding
factorization is (+)-regular (( - )-regular). Moreover, a product \Sigma 2 \circ \Sigma 1 of \kappa -admissible
(see the definition from the page 70) observable (controllable, simple, minimal) passive
systems is \kappa -admissible observable (controllable, simple, minimal), if the corresponding
factorization is (+)-regular (( - )-regular, regular, (+)- and ( - )-regular). Such results
are new also in the standard Hilbert space settings. In the case of rational functions,
the results obtained here do not fall under the known results of minimal factorization of
rational matrix functions either, as Example 3.5 shows.

The rest of the paper is organized as follows. In Section 2, the background and known
fundamental results of passive systems and their connections to the generalized Schur
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functions needed in this paper are recalled, mostly without proofs. However, Lemma 2.7
and Proposition 2.8 are new, and their proofs are provided.

In Section 3, the definitions of regular and (\pm )-regular factorizations are given. The
results covering the products of canonical realizations, passive realization and (\pm )-regular
factorizations are derived. In the last part of this section, products of optimal or \ast -optimal
systems are considered. In the standard Hilbert space case, such products were studied
by Hang in [24] and Hang and Khanh in [26]. Their results do not cover Theorem 3.8
even in the standard case.

Section 4 concerns the connection between regular invariant subspaces and factorization
of Pontryagin space operator-valued generalized Schur function. It is also shown in
Proposition 4.2, that for generalized Schur functions with certain extremality properties,
regular factorizations are equivalent to (+)-regular or ( - )-regular factorizations.

2. Contractive operator colligation realizations

Consider a system \Sigma = (T\Sigma ;\scrX ,\scrU ,\scrY ;\kappa ) = (A,B,C,D;\scrX ,\scrU ,\scrY ;\kappa ), where \scrU and \scrY are
Pontryagin spaces with the same negative index, with transfer function \theta . Define the
adjoint, or dual system of \Sigma to be \Sigma \ast = (T \ast 

\Sigma ;\scrX ,\scrY ,\scrU ;\kappa ) = (A\ast , C\ast , B\ast , D\ast ;\scrX ,\scrY ,\scrU ;\kappa ),
where the adjoints are, as well as all the adjoints in this paper, calculated with respect
to the indefinite inner product. For general theory of indefinite inner product spaces
and their operators, we refer to [11, 16, 23]. An easy calculation shows that the transfer
function of \Sigma \ast is \theta \#(z) = \theta \ast (\=z), where the notation \theta \ast (z) is used instead of (\theta (z))\ast . It is
known that \theta \in \bfS \kappa (\scrU ,\scrY ) if and only if \theta \#\kappa \in \bfS \kappa (\scrY ,\scrU ); see [2, Theorem 2.5.2].

The following subspaces

\scrX c := \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n} \{ \mathrm{r}\mathrm{a}\mathrm{n}AnB : n = 0, 1, . . .\} , (2.4)
\scrX o := \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n} \{ \mathrm{r}\mathrm{a}\mathrm{n}A\ast nC\ast : n = 0, 1, . . .\} , (2.5)
\scrX s := \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n} \{ \mathrm{r}\mathrm{a}\mathrm{n}AnB, \mathrm{r}\mathrm{a}\mathrm{n}A\ast mC\ast : n,m = 0, 1, . . .\} , (2.6)

of the state space \scrX of \Sigma = (A,B,C,D;\scrX ,\scrU ,\scrY ;\kappa ) are called the controllable, observable
and simple subspaces, respectively. All the notions related to the topology and continuity
are considered to be with respect to unique strong topology induced by any fundamental
symmetry of Pontryagin space in question. The system is said to be controllable (observable,
simple) if \scrX c = \scrX (\scrX o = \scrX , \scrX s = \scrX ) and minimal if it is both controllable and observable.
When \Omega is some sufficiently small symmetric neighbourhood of the origin, that is, \=z \in \Omega 
whenever z \in \Omega and (I  - zA) - 1 exists for all z \in \Omega , then also

\scrX c = \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n} \{ \mathrm{r}\mathrm{a}\mathrm{n} (I  - zA) - 1B : z \in \Omega \} , (2.7)

\scrX o = \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n} \{ \mathrm{r}\mathrm{a}\mathrm{n} (I  - zA\ast ) - 1C\ast : z \in \Omega \} , (2.8)

\scrX s = \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n} \{ \mathrm{r}\mathrm{a}\mathrm{n} (I  - zA) - 1B, \mathrm{r}\mathrm{a}\mathrm{n} (I  - wA\ast ) - 1C\ast : z, w \in \Omega \} . (2.9)

It is clear from (2.4)–(2.6) that \Sigma is controllable (observable, simple, minimal) if and
only if the adjoint \Sigma \ast is observable (controllable, simple, minimal). Moreover, since
contractions between Pontryagin spaces with the same negative index are bi-contractions
(cf. eg. [23, Corollary 2.5]), \Sigma is passive (isometric, co-isometric, conservative) whenever
\Sigma \ast is passive (co-isometric, isometric, conservative). It is known from [31, Proposition
2.4] that the transfer function of the passive system \Sigma = (T\Sigma ;\scrX ,\scrU ,\scrY ;\kappa ) belongs to the
generalized Schur class \bfS \kappa \prime (\scrU ,\scrY ) with the index \kappa \prime not larger than the negative index
\kappa of the state space \scrX . Passive systems and generalized Schur functions are deeply
interconnected. For Pontryagin space operator-valued case, isometric, co-isometric and
conservative systems were studied, for instance, in [1, 2, 18, 23], and for Hilbert space
operator-valued case, in [21, 22]. Passive systems for Pontryagin space operator-valued
case were studied in [30, 31] and for Hilbert space operator-valued case, in [9, 10, 29, 32].
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In general, if the negative index of the state space of passive system \Sigma coincides with
the index of its transfer function, \Sigma is called \kappa -admissible, and its behaviour resembles
Hilbert space passive systems in many aspects.

For \theta \in \bfS \kappa (\scrU ,\scrY ), it is usually desirable to have a realization of \theta such that the system
operator is unitary, or close to, and the state space is as small as possible in a certain
sense. The following combinations are always possible. For proofs of part (i)–(iii), see [2,
Chapter 2], and for part (iv), [31, Lemma 2.8].

Lemma 2.1. Let \theta \in \bfS \kappa (\scrU ,\scrY ), where \scrU and \scrY are Pontryagin spaces with the same
negative index. Then there exist a \kappa -admissible passive realization \Sigma = (T\Sigma ;\scrX ,\scrU ,\scrY ;\kappa ) of
\theta , and if desired, it can be chosen such that it has one of the following properties:

(i) simple conservative;
(ii) controllable isometric;
(iii) observable co-isometric;
(iv) minimal passive;

A realization with one of the properties (i)–(iii) of Lemma 2.1 is essentially unique,
since if \Sigma \prime is another \kappa -admissible realization of \Sigma such that \Sigma and \Sigma \prime both have the same
property of (i)–(iii) of Lemma 2.1, they are unitarily similar, which means that they differ
only by a unitary change of state variable; see [2, Theorem 2.1.3]. The precise definition
is that two realizations

\Sigma 1 = (A1, B1, C1, D1;\scrX 1,\scrU ,\scrY ;\kappa 1), \Sigma 2 = (A2, B2, C2, D2;\scrX 2,\scrU ,\scrY ;\kappa 2)

of the same function \theta \in \bfS \kappa (\scrU ,\scrY ) are called unitarily similar if D1 = D2 and there exists
a unitary operator U : \scrX 1 \rightarrow \scrX 2 such that

A1 = U - 1A2U, B1 = U - 1B2, C1 = C2U. (2.10)

Minimal passive realizations of \theta are not, in general, unique in the sense described above.
Instead, they are weakly similar, see [31, Proposition 2.2], [33, Theorem 2.17] and [37, p.
702]

One way to produce the realizations in Lemma 2.1 is to use reproducing kernel theory,
reproducing kernel Pontryagin spaces and apply de Branges–Rovnyak complementary
space theory. For ordinary Schur functions, this idea goes back to [20, 19]. It is well-
known; see [2, 5, 23, 28, 35, 36], that if \theta \in \bfS \kappa (\scrU ,\scrY ), then the kernel (1.1) generates the
reproducing kernel Pontryagin space \scrH (\theta ) with the negative index \kappa . The spaces \scrH (\theta )
are called generalized de Branges–Rovnyak spaces, and the elements in \scrH (\theta ) are functions
defined on \rho (\theta ) with values in \scrY . Under the assumption that the negative index of the
Pontryagin spaces \scrU and \scrY coincides, for a \scrL (\scrU ,\scrY )-valued function \theta holomorphic in a
neighbourhood \Omega of the origin, the kernel (1.1) has \kappa negative squares if and only if the
related \scrL (\scrY \oplus \scrU )-valued kernel

D\theta (w, z) =

\left(   K\theta (w, z)
\theta (z) - \theta (w)

z  - w
\theta \#(z) - \theta \#(w)

z  - w
K\theta \#(w, z)

\right)   , w, z \in \Omega , (2.11)

has \kappa negative squares; see [2, Theorem 2.5.2]. The Pontryagin space generated by the
kernel (2.11) is denoted by \scrD (\theta ). The spaces \scrH (\theta ) and \scrD (\theta ) can be chosen as state
spaces of an observable co-isometric realization and a simple conservative realization of
\theta \in \bfS \kappa (\scrU ,\scrY ), respectively. For the proof, see [2, Theorems 2.2.1 and 2.3.1].

Lemma 2.2. Let \theta \in \bfS \kappa (\scrU ,\scrY ), and let \scrH (\theta ) and \scrD (\theta ) be the Pontryagin spaces induced
by the reproducing kernels (1.1) and (2.11). Then:
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(i) The system \Sigma 1 = (A1, B1, C1, D,\scrH (\theta ),\scrU ,\scrY , \kappa ), where\left\{   A1 : h(z) \mapsto \rightarrow h(z) - h(0)

z
, B1 : u \mapsto \rightarrow \theta (z) - \theta (0)

z
u,

C1 : h(z) \mapsto \rightarrow h(0), D : u \mapsto \rightarrow \theta (0)u,
(2.12)

is an observable co-isometric realization of \theta . Moreover, for every h \in \scrH (\theta ), we
have C1(I  - zA1)

 - 1h = h(z).
(ii) The system \Sigma 2 = (A2, B2, C2, D,\scrD (\theta ),\scrU ,\scrY , \kappa ), where\left\{           
A2 :

\biggl( 
h(z)
k(z)

\biggr) 
\mapsto \rightarrow 

\Biggl( 
h(z) - h(0)

z
zk(z) - \theta \#(z)h(0)

\Biggr) 
, B2 : u \mapsto \rightarrow 

\Biggl( 
\theta (z) - \theta (0)

z
u\bigl( 

I\scrU  - \theta \#(z)\theta \#\ast (0)
\bigr) 
u

\Biggr) 
,

C2 :

\biggl( 
h
k

\biggr) 
\mapsto \rightarrow h(0), D : u \mapsto \rightarrow \theta (0)u,

(2.13)

is a simple conservative realization of \theta . Moreover, for
\biggl( 
h
k

\biggr) 
\in \scrD (\theta ),

C2(I  - zA2)
 - 1

\biggl( 
h
k

\biggr) 
= h(z) and B\ast 

2(I  - zA\ast 
2)

 - 1

\biggl( 
h
k

\biggr) 
= k(z).

The systems in Lemma 2.2 are called the canonical co-isometric realization and the
canonical unitary (or conservative) realization of \theta , respectively, and the operator A1 in
(2.12) is a backward shift. These realizations will be used in Sections 3 and 4.

A dilation of a passive system \Sigma = (A,B,C,D;\scrX ,\scrU ,\scrY ;\kappa ) is any system of the form\widehat \Sigma = ( \widehat A, \widehat B, \widehat C,D; \widehat \scrX ,\scrU ,\scrY ;\kappa ), where

\widehat \scrX = \scrD \oplus \scrX \oplus \scrD \ast , \widehat A\scrD \subset \scrD , \widehat A\ast \scrD \ast \subset \scrD \ast , \widehat C\scrD = \{ 0\} , \widehat B\ast \scrD \ast = \{ 0\} .

The spaces \scrD and \scrD \ast are required to be Hilbert spaces. The system operator T\widehat \Sigma of \widehat \Sigma is
of the form

T\widehat \Sigma =

\left(    
\left(  A11 A12 A13

0 A A23

0 0 A33

\right)  \left(  B1

B
0

\right)  \bigl( 
0 C C1

\bigr) 
D

\right)    :

\left(    
\left(  \scrD 

\scrX 
\scrD \ast 

\right)  
\scrU 

\right)    \rightarrow 

\left(    
\left(  \scrD 

\scrX 
\scrD \ast 

\right)  
\scrY 

\right)    ,

\widehat A =

\left(  A11 A12 A13

0 A A23

0 0 A33

\right)  , \widehat B =

\left(  B1

B
0

\right)  , \widehat C =
\bigl( 
0 C C1

\bigr) 
.

The system \Sigma is called a restriction of \widehat \Sigma . Since \scrX clearly is a regular subspace of \widehat \scrX ,
i.e., it is a Pontryagin space with the inherited inner product, there exists the unique
orthogonal projection P\scrX from \widehat \scrX to \scrX . Let \widehat A\upharpoonright \scrX be the restriction of \widehat A to the subspace
\scrX . Then, the system \Sigma has a representation \Sigma = (P\scrX \widehat A\upharpoonright \scrX , P\scrX \widehat B, \widehat C\upharpoonright \scrX , D;P\scrX \widehat \scrX ,\scrU ,\scrY ;\kappa ).
Dilations and restrictions are denoted by \widehat \Sigma = \mathrm{d}\mathrm{i}\mathrm{l}\scrX \rightarrow \widehat \scrX \Sigma and \Sigma = \mathrm{r}\mathrm{e}\mathrm{s} \widehat \scrX \rightarrow \scrX 

\widehat \Sigma , mostly
without subscripts when the corresponding state spaces are clear. A calculation shows
that the transfer functions of the original system and all of its dilation coincide in a
neighbourhood of the origin. By taking suitable restrictions, one can often obtain new
realizations with desired properties, as the lemma below, taken from [31, Lemma 2.8],
shows.

Lemma 2.3. Let \Sigma = (A,B,C,D;\scrX ,\scrU ,\scrY ;\kappa ) be a passive system such that the spaces
(\scrX o)\bot , (\scrX c)\bot and (\scrX s)\bot are Hilbert subspaces of \scrX . Then the system operator T of \Sigma 
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has the following representations;

T =

\left(  \biggl( A1 A2

0 Ao

\biggr) \biggl( 
B1

Bo

\biggr) 
\bigl( 
0 Co

\bigr) 
D

\right)  :

\left(  \biggl( (\scrX o)\bot 

\scrX o

\biggr) 
\scrU 

\right)  \rightarrow 

\left(  \biggl( (\scrX o)\bot 

\scrX o

\biggr) 
\scrY 

\right)  , (2.14)

T =

\left(  \biggl( A3 0
A4 Ac

\biggr) \biggl( 
0
Bc

\biggr) 
\bigl( 
C1 Cc

\bigr) 
D

\right)  :

\left(  \biggl( (\scrX c)\bot 

\scrX c

\biggr) 
\scrU 

\right)  \rightarrow 

\left(  \biggl( (\scrX c)\bot 

\scrX c

\biggr) 
\scrY 

\right)  , (2.15)

T =

\left(  \biggl( A5 0
0 As

\biggr) \biggl( 
0
Bs

\biggr) 
\bigl( 
0 Cs

\bigr) 
D

\right)  :

\left(  \biggl( (\scrX s)\bot 

\scrX s

\biggr) 
\scrU 

\right)  \rightarrow 

\left(  \biggl( (\scrX s)\bot 

\scrX s

\biggr) 
\scrY 

\right)  , (2.16)

T =

\left(    
\left(  A\prime 

11 A\prime 
12 A\prime 

13

0 A\prime A\prime 
23

0 0 A\prime 
33

\right)  \left(  B\prime 
1

B\prime 

0

\right)  \bigl( 
0 C \prime C \prime 

1

\bigr) 
D

\right)    :

\left(    
\left(  (\scrX o)\bot 

P\scrX o\scrX c

\scrX o \cap (\scrX c)\bot 

\right)  
\scrU 

\right)    \rightarrow 

\left(    
\left(  (\scrX o)\bot 

P\scrX o\scrX c

\scrX o \cap (\scrX c)\bot 

\right)  
\scrY 

\right)    .

(2.17)

The restrictions

\Sigma o = (Ao, Bo, Co, D;\scrX o,\scrU ,\scrY ;\kappa ), (2.18)
\Sigma c = (Ac, Bc, Cc, D;\scrX c,\scrU ,\scrY ;\kappa ), (2.19)
\Sigma s = (As, Bs, Cs, D;\scrX s,\scrU ,\scrY ;\kappa ), (2.20)

\Sigma \prime = (A\prime , B\prime , C \prime , D;P\scrX o\scrX c,\scrU ,\scrY ;\kappa ) (2.21)

of \Sigma are passive, and \Sigma o is observable, \Sigma c is controllable, \Sigma s is simple and \Sigma \prime is minimal.
If \Sigma is observable or controllable, then so are \Sigma o, \Sigma c and \Sigma s. For any n \in \BbbN 0 = \{ 0, 1, 2, . . .\} 
and any z in a sufficiently small symmetric neighbourhood of the origin, the following
holds:

AnB = An
cBc = An

sBs,

(I  - zA) - 1B = (I  - zAs)
 - 1Bs = (I  - zAc)

 - 1Bc,

A\ast nC\ast = A\ast 
o
nC\ast 

o = A\ast 
s
nC\ast 

s ,

(I  - zA\ast ) - 1C\ast = (I  - zA\ast 
s)

 - 1C\ast 
s = (I  - zA\ast 

c)
 - 1C\ast 

c .

Moreover, if \Sigma is co-isometric (isometric), then so are \Sigma o and \Sigma s (\Sigma c and \Sigma s).

Remark 2.4. The restrictions (2.18)–(2.21) are called the observable, the controllable,
the simple and the first minimal restrictions of \Sigma , respectively. It is not explicitly stated
in [31, Lemma 2.8] that \Sigma o, \Sigma c and \Sigma s are controllable or observable whenever \Sigma is.
However, in those cases it easily follows from (2.14)–(2.17) that the systems either coincide
with \Sigma or they are first minimal restrictions, which are shown to be minimal, and the
claim follows. Moreover, if the transfer function \theta of \Sigma belongs to \bfS \kappa (\scrU ,\scrY ), i.e., when \Sigma 
is a \kappa -admissible realization of \theta , the conditions of Lemma 2.3 are always satisfied.

Contrary to Lemma 2.3, dilations of a given \kappa -admissible realization \Sigma of \theta may not
have such strong properties. There always exists \kappa -admissible conservative dilation of
\Sigma [31, Proposition 2.2], and if \Sigma is observable co-isometric or controllable isometric, a
simple conservative dilation can be obtained [2, Section 2.4]. However, it may happen
that a minimal passive \kappa -admissible realization has no simple conservative dilation, see
[9, Example 6.8].

Denote E\scrX (x) = \langle x, x\rangle \scrX for the vector x in an indefinite inner product space \scrX . For
\theta \in \bfS \kappa (\scrU ,\scrY ), where \scrU and \scrY are Pontryagin spaces with the same negative index, a
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\kappa -admissible passive realization \Sigma = (A,B,C,D;\scrX ,\scrU ,\scrY ;\kappa ) of \theta \in \bfS \kappa (\scrU ,\scrY ) is called
optimal if, for any \kappa -admissible passive realization \Sigma 0 = (A0, B0, C0, D;\scrX 0,\scrU ,\scrY ;\kappa ) of \theta ,

E\scrX 

\Biggl( 
N\sum 

n=0

AnBun

\Biggr) 
\leq E\scrX 0

\Biggl( 
N\sum 

n=0

A0
nB0un

\Biggr) 
(2.22)

for any N \in \BbbN 0 and \{ un\} Nn=0 \subset \scrU . Conversely, an observable passive \kappa -admissible
realization \Sigma = (A,B,C,D;\scrX ,\scrU ,\scrY ;\kappa ) of \theta \in \bfS \kappa (\scrU ,\scrY ) is called \ast -optimal if, for any
observable \kappa -admissible passive realization \Sigma 0 = (A0, B0, C0, D;\scrX 0,\scrU ,\scrY ;\kappa ) of \theta ,

E\scrX 

\Biggl( 
N\sum 

n=0

AnBun

\Biggr) 
\geq E\scrX 0

\Biggl( 
N\sum 

n=0

A0
nB0un

\Biggr) 
for any N \in \BbbN 0 and \{ un\} Nn=0 \subset \scrU . The requirement that the considered realizations
are \kappa -admissible is essential; see [31, Example 3.1], as well as the requirement of the
observability in the definition of \ast -optimality. Indeed, otherwise any isometric \kappa -admissible
realization would be \ast -optimal, as follows from Lemma 2.5 below. Lemma 2.5 illustrates
also another point; to prove the optimality of a system, it is sufficient to check the
inequality (2.22) for all minimal \kappa -admissible realizations; see (2.23) below. For a proofof
Lemma 2.5, see [31, Lemma 3.3].

Lemma 2.5. Let

\Sigma = (A,B,C,D;\scrX ,\scrU ,\scrY ,\kappa ), \widehat \Sigma = ( \widehat A, \widehat B, \widehat C,D; \widehat \scrX ,\scrU ,\scrY , \kappa ),
\Sigma \prime = (A\prime , B\prime , C \prime , D;\scrX \prime ,\scrU ,\scrY ;\kappa ),

be realizations of \theta \in \bfS \kappa (\scrU ,\scrY ) such that \Sigma is passive, \widehat \Sigma is a passive dilation of \Sigma and \Sigma \prime 

is the first minimal restriction of \widehat \Sigma . Then

E\scrX \prime 

\Biggl( 
n\sum 

k=0

A\prime kB\prime uk

\Biggr) 
\leq E\scrX 

\Biggl( 
n\sum 

k=0

AkBuk

\Biggr) 
, n \in \BbbN 0, uk \in \scrU . (2.23)

Moreover, for any isometric realization \Sigma 1 = (A1, B1, C1, D;\scrX 1,\scrU ,\scrY , \kappa ) of \theta ,

E\scrX 

\Biggl( 
n\sum 

k=0

AkBuk

\Biggr) 
\leq E\scrX 1

\Biggl( 
n\sum 

k=0

Ak
1B1uk

\Biggr) 
, n \in \BbbN 0, uk \in \scrU , (2.24)

and for any co-isometric realization \Sigma 2 = (A2, B2, C2, D;\scrX 2,\scrU ,\scrY , \kappa ) of \theta ,

E\scrX 

\Biggl( 
n\sum 

k=0

A\ast kC\ast yk

\Biggr) 
\leq E\scrX 2

\Biggl( 
n\sum 

k=0

A\ast k
2 C\ast 

2yk

\Biggr) 
, n \in \BbbN 0, yk \in \scrY , (2.25)

In the Hilbert space case, the existence of optimal minimal realizations of an ordinary
Schur function \theta was first proved by Arov in [6]. He constructed such a realization by
using (right) defect function, or what is the same thing, the maximal analytic minorant of
I  - \theta \ast (\zeta )\theta (\zeta ). In [7], Arov et al. proved that the first minimal restriction, see Remark 2.4,
of the simple conservative realization of \theta is optimal minimal passive. The same is true for
the generalized Schur class \bfS \kappa (\scrU ,\scrY ); see [31, Theorem 3.5], or [32, Theorem 4.3] for the
case where \scrU and \scrY are Hilbert spaces. However, an optimal realization needs not to be
minimal. Indeed, any co-isometric observable realization is optimal. In Hilbert space case,
this is known, and seems to be first stated by Ando in [4, Corollary 5.6], without using the
notion of the optimality. Ando’s approach is to use the canonical observable co-isometric
realization, where the state space is de Branges–Rovnyak space, see Lemma 2.2. His result
holds also in general, and a direct proof, which does not use properties of the canonical
realization, will be given. It then directly follows, that an optimal minimal realization can
also be obtained by taking controllable restriction of the observable co-isometric system,
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as it will be proved in Proposition 2.8 below. For ordinary Hilbert space operator-valued
Schur functions, such realizations are considered in [7, Section 5].

In Hilbert spaces, it is easy to deduce that a contractive densely defined linear relation
can be extended to everywhere defined contractive linear operator. The same is true
for Pontryagin spaces with the same negative index. For a proof, see for instance [2,
Section 1.4].

Lemma 2.6. Let S be a linear relation in \scrU \times \scrY , where \scrU and \scrY are Pontryagin spaces
with the same negative index, such that the domain of S is dense in \scrU and

\langle Su, Su\rangle \scrY \leq \langle u, u\rangle \scrU , (2.26)

for every u \in \mathrm{d}\mathrm{o}\mathrm{m}(S). Then S has a unique continuous extension to a contractive operator
\=S \in \scrL (\scrU ,\scrY ). If the equality holds in (2.26), the operator \=S is an isometry which is unitary
if and only if the range of S is dense in \scrY .

By using the extension results of Lemma 2.6, another extensively used lemma can be
obtained.

Lemma 2.7. Let

\Sigma = (A,B,C,D;\scrX ,\scrU ,\scrY ;\kappa ), \Sigma \prime = (A\prime , B\prime , C \prime , D;\scrX \prime ,\scrU ,\scrY ;\kappa ), (2.27)

be passive \kappa -admissible realizations of \theta .

(i) If \Sigma \prime is isometric controllable, then there exists a contractive linear operator
Z : \scrX \prime \rightarrow \scrX such that the identites

ZA
\prime nB

\prime 
= AnB, Z(I  - zA\prime ) - 1B\prime = (I  - zA) - 1B, (2.28)

Z\ast A\ast nC\ast = A
\prime \ast kC

\prime \ast , Z\ast (I  - zA\ast ) - 1C\ast = (I  - zA
\prime \ast ) - 1C

\prime \ast (2.29)

hold for every n \in \BbbN 0 and every z in a sufficiently small symmetric neighbourhood
of the origin. In addition, if \Sigma is also controllable, then Z has a dense range.

(ii) If \Sigma \prime is simple conservative, then there exists a contractive linear operator Z :
\scrX \prime \rightarrow \scrX which has a dense range such that the identity (2.28) and

ZA\ast \prime nC\ast \prime 
= A\ast nC\ast , Z(I  - zA

\prime \ast ) - 1C\ast \prime 
= (I  - zA\ast \prime n) - 1C\ast \prime 

, (2.30)

hold. In addition, if \Sigma is also simple, then Z has a dense range.

Proof. Both cases will be proved simultaneously, the expressions in brackets refer to the
case where the realizations in (2.27) are simple passive and \Sigma \prime is conservative. For vectors
of the form

x\prime =

n\sum 
k=0

A
\prime kB

\prime 
uk

\Biggl[ 
+

n\sum 
k=0

A\ast \prime kC\ast \prime 
yk

\Biggr] 
, n \in \BbbN 0, \{ uk\} nk=0 \subset \scrU , [\{ yk\} nk=0 \subset \scrY ] ,

define a linear relation,

Zx\prime =
n\sum 

k=0

AkBuk

\Biggl[ 
+

n\sum 
k=0

A\ast kC\ast yk

\Biggr] 
.

Since \Sigma \prime controllable [simple], Z is densely defined, and if \Sigma is controllable [simple], it has
a dense range. We have CAnB = C \prime A

\prime nB\prime , since the transfer functions of the systems
coincide. Moreover, since \Sigma \prime is isometric [conservative], it follows from (2.24) [and (2.25)]
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of Lemma 2.5 that

E(Zx\prime )\scrX =E

\Biggl( 
n\sum 

k=0

AkBuk

\Biggr) 
\scrX 

\left[  +2\Re 

\Biggl\langle 
n\sum 

k=0

AkBuk,

n\sum 
j=0

A
\ast jC\ast yj

\Biggr\rangle 
\scrX 

+E

\Biggl( 
n\sum 

k=0

A
\ast kC\ast yk

\Biggr) 
\scrX 

\right]  
\leq E

\Biggl( 
n\sum 

k=0

A
\prime kB

\prime 
uk

\Biggr) 
\scrX \prime 

\left[  +2\Re 

\left(  n\sum 
k=0

n\sum 
j=0

\bigl\langle 
CAjAkBuk, yj

\bigr\rangle 
\scrY 

\right)  + E

\Biggl( 
n\sum 

k=0

A\ast \prime kC\ast \prime 
yk

\Biggr) 
\scrX \prime 

\right]  
= E

\Biggl( 
n\sum 

k=0

A
\prime kB

\prime 
uk

\Biggr) 
\scrX \prime 

\left[  +2\Re 
\left(  n\sum 

k=0

n\sum 
j=0

\Bigl\langle 
C \prime A

\prime jA
\prime kB\prime uk, yj

\Bigr\rangle 
\scrY 

\right)  +E

\Biggl( 
n\sum 

k=0

A\ast \prime kC\ast \prime 
yk

\Biggr) 
\scrX \prime 

\right]  
= E(x\prime )\scrX ,

which implies that Z is contractive. By Lemma 2.6, it has an extension, still denoted
by Z, which is a contractive everywhere defined linear operator, and if \Sigma is controllable
[simple], it has a dense range. By definition, ZA

\prime nB
\prime 
= AnB [and ZA

\prime \ast nC
\prime \ast = A\ast nC\ast ].

Then by continuity and the Neumann series, (2.28) [and (2.30)] hold, and the part (ii) is
proved. By using the identity CAnB = C \prime A

\prime nB\prime and (2.28), one obtains

B
\prime \ast A

\prime \ast nA
\prime \ast kC

\prime \ast = B\ast A\ast nA\ast kC\ast = B
\prime \ast A

\prime \ast nZ\ast A\ast kC\ast for n, k \in \BbbN 0.

Since \Sigma \prime is controllable, this implies Z\ast A\ast kC\ast = A
\prime \ast kC

\prime \ast and (2.29) follows, so the proof
is complete. \square 

Here is the result on optimal systems, which was promised before Lemma 2.6.

Proposition 2.8. An observable co-isometric realization of \theta \in \bfS \kappa (\scrU ,\scrY ) is optimal, and
its controllable restriction is optimal minimal.

Proof. Let \Sigma \prime = (A\prime , B\prime , C \prime , D;\scrX \prime ;\scrU ,\scrY ;\kappa ) and \Sigma = (A,B,C,D;\scrX ,\scrU ,\scrY ;\kappa ) be an observ-
able co-isometric and a minimal passive realization of \theta , respectively. To prove that \Sigma \prime is
optimal, it follows from Lemma 2.5 that it is enough to ensure that

E\scrX \prime 

\Biggl( 
n\sum 

k=0

A\prime kB\prime uk

\Biggr) 
\leq E\scrX 

\Biggl( 
n\sum 

k=0

AkBuk

\Biggr) 
, n \in \BbbN 0, uk \in \scrU . (2.31)

The duals \Sigma 
\prime \ast and \Sigma \ast are controllable isometric and minimal passive realization of

\theta \#, respectively. By Lemma 2.7, there exists a contraction Z : \scrX \prime \rightarrow \scrX such that
Z\ast AnB = A

\prime nB\prime , and therefore inequality (2.31) holds. By Lemma 2.3, the controllable
restriction \Sigma c = (A\prime 

c, B
\prime 
c, C

\prime 
c, D;\scrX \prime c,\scrU ,\scrY ;\kappa ) of \Sigma \prime is minimal, and it holds A

\prime n
c B

\prime 
c = A

\prime nB\prime .
Therefore \Sigma \prime 

c is also optimal. \square 

3. Products, regular and (\pm )-regular factorizations

The product or cascade connection of two systems

\Sigma 1 = (A1, B1, C1, D1;\scrX 1,\scrU ,\scrY 1;\kappa 1), \Sigma 2 = (A2, B2, C2, D2;\scrX 2,\scrY 1,\scrY ;\kappa 2)

is a system \Sigma 2 \circ \Sigma 1 = (T\Sigma 2\circ \Sigma 1 ;\scrX 1 \oplus \scrX 2,\scrU ,\scrY ;\kappa 1 + \kappa 2) such that

T\Sigma 2\circ \Sigma 1 =

\left(  \biggl( A1 0
B2C1 A2

\biggr) \biggl( 
B1

B2D1

\biggr) 
\bigl( 
D2C1 C2

\bigr) 
D2D1

\right)  :

\left(  \biggl( \scrX 1

\scrX 2

\biggr) 
\scrU 

\right)  \rightarrow 

\left(  \biggl( \scrX 1

\scrX 2

\biggr) 
\scrY 

\right)  . (3.32)

Written in the form (1.3), one has \scrX =

\biggl( 
\scrX 1

\scrX 2

\biggr) 
and

A =

\biggl( 
A1 0
B2C1 A2

\biggr) 
, B =

\biggl( 
B1

B2D1

\biggr) 
, C =

\bigl( 
D2C1 C2

\bigr) 
, D = D2D1. (3.33)
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In particular, A2 = A\upharpoonright \scrX 2
, A\scrX 2 \subset \scrX 2 and\left(  A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1

\right)  =

\left(  I\scrX 1
0 0

0 A2 B2

0 C2 D2

\right)  \left(  A1 0 B1

0 I\scrX 2
0

C1 0 D1

\right)  :

\left(  \scrX 1

\scrX 2

\scrU 

\right)  \rightarrow 

\left(  \scrX 1

\scrX 2

\scrY 

\right)  .

(3.34)
The product \Sigma 2 \circ \Sigma 1 is defined when the incoming space of \Sigma 2 is the outgoing space

of \Sigma 1. It is easy to check that \theta \Sigma 2\circ \Sigma 1
= \theta \Sigma 2

\theta \Sigma 1
whenever both functions are defined.

For the dual system one has (\Sigma 2 \circ \Sigma 1)
\ast = \Sigma \ast 

1 \circ \Sigma \ast 
2. From the identity (3.34) it follows

that the product \Sigma 2 \circ \Sigma 1 is conservative (isometric, co-isometric, passive) whenever \Sigma 1

and \Sigma 2 are. Also, if the product is isometric (co-isometric, conservative) and one factor
of the product is conservative, then the other factor must be isometric (co-isometric,
conservative). If \Sigma 2 \circ \Sigma 1 is controllable (observable, simple, minimal), then so are \Sigma 1 and
\Sigma 2; see [2, Theorem 1.2.1]. The converse statement is not true. The following lemma
gives necessary and sufficient conditions when the product is observable, controllable or
simple. If the incoming and outgoing spaces are assumed to be Hilbert spaces, the simple
case is first treated in [9, Lemma 7.4], and the other cases in [29, Lemma 3.3]. The proofs
given therein can be applied word by word. In particular, the definiteness of the incoming
and outgoing spaces used in [29] do not play any role.

Lemma 3.1. Let

\Sigma 1 = (A1, B1, C1, D1;\scrX 1,\scrU ,\scrY 1;\kappa 1), \Sigma 2 = (A2, B2, C2, D2;\scrX 2,\scrY 1,\scrY ;\kappa 2)

and \Sigma = \Sigma 2 \circ \Sigma 1. Let \Omega be a neighbourhood of the origin such that the transfer function
\theta \Sigma = \theta \Sigma 2

\theta \Sigma 1
of \Sigma is analytic in \Omega . Consider the equations

\theta \Sigma 2
(z)C1(I  - zA1)

 - 1x1 =  - C2(I  - zA2)
 - 1x2 for all z \in \Omega ; (3.35)

\theta \#\Sigma 1
(z)B\ast 

2(I  - zA\ast 
2)

 - 1x2 =  - B\ast 
1(I  - zA\ast 

1)
 - 1x1 for all z \in \Omega , (3.36)

where x1 \in \scrX 1 and x2 \in \scrX 2. Then \Sigma is observable if and only if (3.35) has only a trivial
solution, and \Sigma is controllable if and only if (3.36) has only a trivial solution. Moreover,
\Sigma is simple if and only if the pair of equations consisting of (3.35) and (3.36) has only a
trivial solution.

Consider \theta 1 \in \bfS \kappa 1
(\scrU ,\scrY 1) and \theta 2 \in \bfS \kappa 2

(\scrY 1,\scrY ), where \scrU , \scrY 1 and \scrY are Pontryagin
spaces with the same negative index. Then \theta 2\theta 1 \in \bfS \kappa \prime (\scrU ,\scrY ) where \kappa \prime \leq \kappa 1 + \kappa 2 [2,
Theorem 4.1.1]. Conditions when equality holds are derived in [2, Theorem 4.1.1]. When
\scrU , \scrY 1, and \scrY are Hilbert spaces, this happens when there are no pole cancellations,
see [21, Proposition 7.11] and [2, Theorem 4.2.1]. In a setting where \theta \in \bfS \kappa (\scrU ,\scrY ) and
\theta 2 \in \bfS \kappa 1

(\scrY 1,\scrY ) are fixed, an extended version of Leech’s factorization theorem, see [3,
Theorem 8], can be used to determine if there exists \theta 1 \in \bfS \kappa 1

(\scrU ,\scrY 1) such that \theta = \theta 2\theta 1
and \kappa 1 + \kappa 2 = \kappa . In the case \kappa 1 + \kappa 2 < \kappa , the product \Sigma = \Sigma 2 \circ \Sigma 1 of passive \kappa -
admissible realizations of \theta 1 and \theta 2 is a passive realization of \theta , but it is not \kappa -admissible.
Consequently, factorizations with the index condition \kappa 1+\kappa 2 = \kappa are the most interesting.

For ordinary Schur function \theta , the factorization \theta = \theta 2\theta 1, where \theta 1 and \theta 2 are ordinary
Schur functions, is regular, if \Sigma \theta = \Sigma \theta 2 \circ \Sigma \theta 1 is a simple conservative realization of \theta 
whenever \Sigma \theta 1 and \Sigma \theta 2 are simple conservative realizations of \theta 1 and \theta 2 [17]. Instead of
the system theoretical definition above, an equivalent function theoretical definition of
regularity that goes back to [39, Chapter VII] and [17] is often used. That definition is
generalized to a Pontryagin state space case in [9, Section 8]. It is needed only in the last
results of this paper, and it is stated in Definition 4.3. In the standard case Khanh [25]
defines (+)-regular and ( - )-regular factorizations by using modified and strengthened
versions of the function theoretical definition, see again Definition 4.3. He shows that
if the factorization is (+)-regular (( - )-regular), \Sigma \theta 2 \circ \Sigma \theta 1 is observable conservative
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(controllable) whenever \Sigma \theta 1 and \Sigma \theta 2 are. Khanh’s definition, as well as the function
theoretical definition of regularity depends strongly on the functional model of Sz.-Nagy
and Foias from [39], which is Hilbert space specific. In the standard Hilbert state space case,
the characterizations of regularity that uses the canonical unitary de Branges–Rovnyak
model, are derived in [12], see also [13, Section 7]. The general definitions of regularity
and (\pm )-regularity, based on the de Branges–Rovnyak models instead of Sz.-Nagy and
Foias, which covers also the classes \bfS \kappa (\scrU ,\scrY ) where \scrU and \scrY are Pontryagin spaces with
the same negative index, can be stated. The notation follows [2, Chapter 1], especially,
\theta 2\scrH (\theta 1) means the space generated by the kernel K \prime (w, z) = \theta 2(z)K\theta 1(w, z)\theta 

\ast 
2(w), where

K\theta 1 is the Schur kernel (1.1) for \theta 1.

Definition 3.2. Let \theta = \theta 2\theta 1 \in \bfS \kappa (\scrU ,\scrY ), where \theta 1 \in \bfS \kappa 1
(\scrU ,\scrY 1) and \theta 2 \in \bfS \kappa 2

(\scrY 1,\scrY ).
Then the factorization \theta = \theta 2\theta 1 is called:

(I) (+)-regular if the following two conditions hold:
(a) \scrH (\theta ) = \theta 2\scrH (\theta 1)\oplus \scrH (\theta 2);
(b) the mapping h1 \mapsto \rightarrow \theta 2h1 is an isometry from \scrH (\theta 1) to \theta 2\scrH (\theta 1);

(II) ( - )-regular if the following two conditions hold:
(a) \scrH (\theta \#) = \theta \#1 \scrH (\theta \#2 )\oplus \scrH (\theta \#1 );

(b) the mapping h2 \mapsto \rightarrow \theta \#1 h2 is an isometry from \scrH (\theta \#2 ) to \theta \#1 \scrH (\theta \#2 );
(III) regular if the following two conditions hold:

(a) \scrD (\theta ) = R\#
1 \scrD (\theta 2)\oplus R2\scrD (\theta 1), where

R1(z) =

\biggl( 
I 0
0 \theta 1(z)

\biggr) 
, R2(z) =

\biggl( 
\theta 2(z) 0
0 I

\biggr) 
;

(b) the mappings\biggl( 
h1
k1

\biggr) 
\mapsto \rightarrow 
\biggl( 
\theta 2h1
k1

\biggr) 
and

\biggl( 
h2
k2

\biggr) 
\mapsto \rightarrow 
\biggl( 

h2
\theta \#1 k2

\biggr) 
(3.37)

are isometries from \scrD (\theta 1) to R2\scrD (\theta 1) and \scrD (\theta 2) to R\#
1 \scrD (\theta 2), respectively.

In general, the regularity, (+)-regularity and ( - )-regularity are rather strong properties,
see [39, Chapter VII, Proposition 3.5] and Example 3.5 and the discussion that follows it.

Theorem 3.3. Let

\Sigma 1 = (A1, B1, C1, D1;\scrX 1,\scrU ,\scrY 1;\kappa 1), \Sigma 2 = (A2, B2, C2, D2;\scrX 2,\scrY 1,\scrY ;\kappa 2)

be passive realizations of \theta 1 \in \theta \kappa 1(\scrU ,\scrY 1) and \theta 2 \in \bfS \kappa 2(\scrY 1,\scrU ), respectively. Denote
\theta = \theta 2\theta 1.

(i) If \Sigma 1 and \Sigma 2 are observable co-isometric, then the product \Sigma = \Sigma 2 \circ \Sigma 1 is
observable co-isometric if and only if the factorization \theta = \theta 2\theta 1 is (+)-regular;

(ii) If \Sigma 1 and \Sigma 2 are controllable isometric, then the product \Sigma = \Sigma 2\circ \Sigma 1 is controllable
isometric if and only if the factorization \theta = \theta 2\theta 1 is ( - )-regular;

(iii) If \Sigma 1 and \Sigma 2 are simple conservative, then the product \Sigma = \Sigma 2 \circ \Sigma 1 is simple
conservative if and only if the factorization \theta = \theta 2\theta 1 is regular.

Moreover, if the factorization is ((\pm )-)regular, then \theta = \theta 2\theta 1 \in \bfS \kappa 1+\kappa 2
(\scrU ,\scrY ).

Proof. The parts (i) and (ii) with the additional condition that the incoming and outgoing
spaces are Hilbert spaces, are proved in [29, Theorems 3.6 and 3.7]. The same proofs can
be applied word by word in the general case. Therefore, only the proof of part (iii) will
be given.

Since simple conservative realizations are unitarily similar, it can be assumed in part
(iii) that \Sigma 1 and \Sigma 2 are canonical unitary realizations defined similarly as in (2.13).
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Then, it follows from Lemma 2.2 that the identities (3.35) and (3.36) in Lemma 3.1 are
equivalent to

\theta 2(z)h1(z) =  - h2(z) for all z \in \Omega , (3.38)

\theta \#1 (z)k2(z) =  - k1(z) for all z \in \Omega , (3.39)

where
\biggl( 
h1
k1

\biggr) 
\in \scrD (\theta 1),

\biggl( 
h2
k2

\biggr) 
\in \scrD (\theta 2), and \Omega is some sufficiently small symmetric neigh-

bourhood of the origin. Suppose that the realization \Sigma = \Sigma 2 \circ \Sigma 1 is simple conservative.
Then, \theta = \theta 2\theta 1 \in \bfS \kappa (\scrU ,\scrY ), where \kappa is the negative index of the state space \scrX 1 \oplus \scrX 2 of \Sigma ,
and therefore \kappa = \kappa 1 + \kappa 2. Then, [2, Theorem 4.1.5] and the discussion therein show that
the spaces R2\scrD (\theta 1) and R\#

1 \scrD (\theta 2) are contained contractively in \scrD (\theta ), and the mappings
in (3.37) are partial isometries. Since \Sigma is simple, it follows from Lemma 3.1 that the
pair of equations consisting of (3.38) and (3.39) has only the trivial solution. Since

R2(z)

\biggl( 
h1(z)
k1(z)

\biggr) 
=

\biggl( 
\theta 2(z)h1(z)
k1(z)

\biggr) 
, R\#

1 (z)

\biggl( 
h2(z)
k2(z)

\biggr) 
=

\biggl( 
h2(z)

\theta \#1 (z)k2(z)

\biggr) 
, (3.40)

it can be deduced that the mappings in (3.37) have only the trivial kernel, and therefore
they are isometries. Moreover, R\#

1 \scrD (\theta 2) \cap R2\scrD (\theta 1) = \{ 0\} , and it follows from the results
of [2, Theorem 1.5.3] that \scrD (\theta ) = R\#

1 \scrD (\theta 2)\oplus R2\scrD (\theta 1), and necessity is proved.
Assume then that the factorization \theta = \theta 2\theta 1 is regular. From the condition (III) (a) in

Definition 3.2 and the identities in (3.40) it follows that the equations (3.38) and (3.39)
can hold only if h2 \equiv 0 and k1 \equiv 0. But in that case, it follows from the condition (III)
(b) in Definition 3.2 that h1 \equiv 0 and k2 \equiv 0 also. That is, the pair of equations consisting
of (3.38) and (3.39) have only the trivial solution. Then by Lemma 3.1 the system \Sigma is
simple, and the sufficiency is proved. \square 

Theorem 3.4. Suppose \theta = \theta 2\theta 1 \in \bfS \kappa (\scrU ,\scrY ), where \theta 1 \in \bfS \kappa 1
(\scrU ,\scrY 1) and \theta 2 \in \bfS \kappa 2

(\scrY 1,\scrY ),
where \scrU , \scrY 1 and \scrY are Pontryagin spaces with the same negative index. Let

\Sigma 1 = (A1, B1, C1, D1;\scrX 1,\scrU ,\scrY 1;\kappa 1), \Sigma 2 = (A2, B2, C2, D2;\scrX 2,\scrY 1,\scrU ;\kappa 2) (3.41)

be \kappa -admissible observable (controllable, simple, minimal) passive realizations of \theta 1 and
\theta 2, respectively. If the factorization \theta = \theta 2\theta 1 is (+)-regular (( - )-regular, regular, (+)-
and ( - )-regular), then the product \Sigma = \Sigma 2 \circ \Sigma 1 = (A,B,C,D;\scrX ,\scrY ,\scrU ;\kappa 1 + \kappa 2) is a
\kappa -admissible observable (controllable, simple, minimal) passive realization of \theta .

Proof. The factorization \theta = \theta 2\theta 1 is (+)-regular if and only if the factorization \theta \# = \theta \#1 \theta 
\#
2

is ( - )-regular. Therefore it suffices to prove the claims involving ( - )-regular and regular
factorizations, since the other claims then follow by duality. Both cases will be proved
simultaneously, the expressions in brackets refer to the regular case. Let the realizations
in (3.41) be controllable [simple] passive, and let

\Sigma \prime 
1 = (A\prime 

1, B
\prime 
1, C

\prime 
1, D1;\scrX \prime 

1,\scrU ,\scrY 1;\kappa 1), \Sigma \prime 
2 = (A\prime 

2, B
\prime 
2, C

\prime 
2, D2;\scrX \prime 

2,\scrY 1,\scrU ;\kappa 2)
be isometric controllable [simple conservative] realizations of \theta 1 and \theta 2, respectively.
The existence of such realizations is guaranteed by Lemma 2.1. Let Z1 : \scrX \prime \rightarrow \scrX 1 and
Z2 : \scrX \prime \rightarrow \scrX 2 be contractive mappings with dense ranges such that

Zk(I  - zA\prime 
k)

 - 1B\prime 
k = (I  - zAk)

 - 1Bk

\Bigl[ 
and Zk(I  - zA

\prime \ast 
k ) - 1C\ast \prime 

k = (I  - zA\ast \prime n
k ) - 1C\ast \prime 

k

\Bigr] 
,

for k = 1, 2, and for all z \in \Omega in a sufficiently small symmetric neighbourhood \Omega of the
origin. The existence of such mappings is guaranteed by Lemma 2.7. Suppose that (3.36)
[and (3.35)] hold for some x1 \in \scrX 1, x2 \in \scrX 2 and for all z \in \Omega . One obtains

\theta \#1 (z)B\ast 
2(I  - zA\ast 

2)
 - 1x2 =  - B\ast 

1(I  - zA\ast 
1)

 - 1x1

\Leftarrow \Rightarrow \theta \#1 (z)B
\prime \ast 
2 (I  - zA

\prime \ast 
2 ) - 1Z\ast 

2x2 =  - B
\prime \ast 
1 (I  - zA

\prime \ast 
1 ) - 1Z\ast 

1x1
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[and

\theta 2(z)C1(I  - zA1)
 - 1x1 =  - C2(I  - zA2)

 - 1x2

\Leftarrow \Rightarrow \theta 2(z)C
\prime 
1(I  - zA\prime 

1)
 - 1Z\ast 

1x1 =  - C \prime 
2(I  - zA\prime 

2)
 - 1Z\ast 

2x2 ].

Since the factorization \theta 2\theta 1 is ( - )-regular [regular], the system \Sigma \prime = \Sigma \prime 
2 \circ \Sigma \prime 

1 is controllable
isometric [simple conservative] by Theorem 3.3, and it follows from Lemma 3.1 that
Z\ast 
1x1 = 0 and Z\ast 

2x2 = 0. Since Z1 and Z2 have dense ranges, the adjoints Z\ast 
1 and Z\ast 

2

have only the trivial kernels, and therefore x1 = 0 and x2 = 0. It follows then from
Lemma 3.1 that \Sigma = \Sigma 2 \circ \Sigma 1 is controllable [simple]. \square 

The converse to Theorem 3.4 is not true. A counterexample below provides a product
of observable passive systems that is observable, but the corresponding factorization is
not (+)-regular.

Example 3.5. Define

\theta 1(z) \equiv 
\Bigl( 
0 1\surd 

2

\Bigr) 
, \theta 2(z) =

1 - \=\alpha z

z  - \alpha 
, \alpha \in \BbbD \setminus \{ 0\} , \theta (z) = \theta 2(z)\theta 1(z). (3.42)

By combining [29, Example 3.8] and Theorem 3.3, it follows that \theta 1 \in \bfS (\BbbC 2,\BbbC ), where
\BbbC and \BbbC 2 are considered with the usual inner products, \theta 2 \in \bfS 1(\BbbC ,\BbbC ), \theta \in \bfS 1(\BbbC 2,\BbbC ),
and the factorization \theta 2\theta 1 is ( - )-regular but not (+)-regular. Define \scrX 1 = \{ 0\} , A1 = 0,
B1 = 0, C1 = 0, and D1 =

\Bigl( 
0 1\surd 

2

\Bigr) 
. Then \Sigma 1 = (A1, B1, C1, D1;\scrX 1,\BbbC 2,\BbbC ; 0) clearly is

a minimal passive \kappa -admissible realization of \theta 1. Let \Sigma 2 = (A2, B2, C2, D2;\scrX 2,\BbbC ,\BbbC ; 1)
be any minimal passive \kappa -admissible realization of \theta 2, and consider the product \Sigma =
\Sigma 2 \circ \Sigma 1 = (A,B,C,D;\scrX 1 \oplus \scrX 2,\BbbC 2,\BbbC ; 1), where the operators are defined as in (3.33).
The system \Sigma is a passive \kappa -admissible realization of \theta , and since the factorization is
( - )-regular, it follows from Theorem 3.4 that it is controllable. Moreover, since \Sigma 2 is
observable, it holds

\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n} \{ An\ast C\ast : n \in \BbbN 0\} = \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}

\biggl\{ \biggl( 
0

An\ast 
2 C\ast 

2

\biggr) 
: n \in \BbbN 0

\biggr\} 
=

\biggl( 
0
\scrX 2

\biggr) 
= \scrX 1 \oplus \scrX 2,

and therefore \Sigma is observable and thus minimal.

The functions \theta 1 and \theta 2 in Example 3.5 are rational functions. Since the product \Sigma 
of two minimal systems \Sigma 1 and \Sigma 2 with the finite dimensional state spaces is minimal,
the factorization \theta = \theta 2\theta 1 is minimal in a sense of rational matrix functions; see [15,
Theorem 8.23 and p. 163]. Thus Example 3.5 illustrates also that the minimality of the
factorization in the sense of rational matrix functions does not imply (+)-regularity nor
( - )-regularity. However, by combining Theorem 3.4 and [15, Theorem 8.23 and p. 163], it
follows that if the factorization \theta 2\theta 1 of two rational matrix functions is both (+)-regular
and ( - )-regular, then it is also minimal.

The factorization in Example 3.5 is the so-called left Krĕın-Langer factorization. Indeed,
in the case where \scrU and \scrY are Hilbert spaces, it is known from [27] that \theta \in \bfS \kappa (\scrU ,\scrY )
can be represented as

\theta (z) = \theta r(z)B
 - 1
r (z) = B - 1

l (z)\theta l(z) (3.43)
where \theta r, \theta l \in \bfS (\scrU ,\scrY ), and the functions Br \in \bfS \kappa (\scrU ,\scrU ) and Bl \in \bfS \kappa (\scrY ,\scrY ) are Blaschke
products of degree \kappa . The factorizations in (3.43) are called the right and the left Krĕın-
Langer factorizations of \theta , respectively. For details about Blaschke products and Krĕın-
Langer factorizations in the operator-valued case, see, for instance, [2, Chapter 4 and
Appendix]. By combining Theorem 3.8 and [29, Theorem 3.9], it follows that in general,
the right Krĕın-Langer factorization, which is essentially unique, is always (+)-regular
and the essentially unique left Krĕın-Langer factorization is always ( - )-regular.
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It is not immediately clear from the definition, or from Theorem 3.3 and Theorem 3.4,
that regularity is by no means a weaker property than a (+)- or ( - )-regularity. However,
it is, since the next lemma shows that if the factorization is (+)-regular or ( - )-regular, it
is also regular.

Proposition 3.6. Let \theta 1 \in \bfS \kappa 1
(\scrU ,\scrY 1), \theta 2 \in \bfS \kappa 2

(\scrY 1,\scrY ) and \theta = \theta 2\theta 1 \in \bfS \kappa (\scrU ,\scrY ), where
\kappa = \kappa 1 + \kappa 2, and let

\Sigma 1 = (A1, B1, C1, D1;\scrX 1,\scrU ,\scrY 1;\kappa 1), \Sigma 2 = (A2, B2, C2, D2;\scrX 2,\scrY 1,\scrY ;\kappa 2)

be simple conservative realizations of \theta 1 and \theta 2, respectively. Then the factorization
\theta = \theta 2\theta 1 is (+)-regular (( - )-regular) if and only if it holds \scrX o = \scrX o

1 \oplus \scrX o
2 (\scrX c = \scrX c

1 \oplus \scrX c
2 ),

where \scrX o,\scrX o
1 and \scrX o

2 (\scrX c,\scrX c
1 and \scrX c

2 ) are observable (controllable) subspaces of \Sigma 2\circ \Sigma 1,\Sigma 1

and \Sigma 2, respectively. Moreover, if the factorization is (+)-regular or ( - )-regular, then it
is also regular.

Proof. It suffices to prove the claims for (+)-regular factorizations, since the other claims
follow by duality. The realizations \Sigma 1 and \Sigma 2 are \kappa -admissible, so according to Remark
2.4, the spaces (\scrX o

1 )
\bot and (\scrX o

2 )
\bot are Hilbert subspaces. By applying Lemma 2.3, the

systems \Sigma 1 and \Sigma 2 can be represented as

T\Sigma 1
=

\left(  A11 A12 B11

0 A1,o B1,o

0 C1,o D1

\right)  :

\left(  (\scrX o
1 )

\bot 

\scrX o
1

\scrU 

\right)  \rightarrow 

\left(  (\scrX o
1 )

\bot 

\scrX o
1

\scrY 1

\right)  , (3.44)

T\Sigma 2
=

\left(  A21 A22 B21

0 A2,o B2,o

0 C2,o D2

\right)  :

\left(  (\scrX o
2 )

\bot 

\scrX o
2

\scrY 1

\right)  \rightarrow 

\left(  (\scrX o
2 )

\bot 

\scrX o
2

\scrY 

\right)  , (3.45)

where the restrictions

\Sigma 1,o = (A1,o, B1,o, C1,o, D1;\scrX o
1 ,\scrU ,\scrY 1;\kappa 1), \Sigma 2,o = (A2,o, B2,o, C2,o, D2;\scrX o

2 ,\scrY 1,\scrY ;\kappa 2)

are observable co-isometric. It follows from [2, Theorem 2.4.1] that for k = 1, 2, the
operator Ak1 is either the zero operator or an isometry in (\scrX o

k )
\bot such that the identity

\mathrm{l}\mathrm{i}\mathrm{m}A\ast 
k1

nx = 0 (3.46)

holds for every x \in (\scrX o
k )

\bot . Consider \Sigma = \Sigma 2 \circ \Sigma 1 = (A,B,C,D;\scrX ,\scrU ,\scrY ;\kappa 1 + \kappa 2). The
system \Sigma is a \kappa -admissible realization of \theta = \theta 2\theta 1. A computation using the representations
(3.44) and (3.45) gives

T\Sigma =

\left(      
\left(    
A11 0 A12 0
0 A21 B21C1,o A22

0 0 A1,o 0
0 0 B2,oC1,o A2,o

\right)    
\left(    

B11

B21D1

B1,o

B2,oD1

\right)    \bigl( 
0 0 D2C1,o C2,o

\bigr) 
D2D1

\right)      :
\left(      
\left(    
(\scrX o

1 )
\bot 

(\scrX o
2 )

\bot 

\scrX o
1

\scrX o
2

\right)    
\scrU 

\right)      \rightarrow 

\left(      
\left(    
(\scrX o

1 )
\bot 

(\scrX o
2 )

\bot 

\scrX o
1

\scrX o
2

\right)    
\scrY 

\right)      .

Since T\Sigma is unitary, the restriction \mathrm{r}\mathrm{e}\mathrm{s}\scrX \rightarrow \scrX o
1 \oplus \scrX o

2
\Sigma = \Sigma 2,o \circ \Sigma 1,o := \Sigma \prime 

o is co-isometric,
and according to Theorem 3.3, it is observable if and only if the factorization \theta 2\theta 1 is
(+)-regular. Suppose \scrX o = \scrX o

1 \oplus \scrX o
2 . Then by Lemma 2.3, \Sigma \prime 

o is an observable restriction
\Sigma o of \Sigma , so the factorization is (+)-regular.

Suppose then that the factorization is (+)-regular. Then \Sigma \prime 
o is observable co-isometric.

Let x \in (\scrX o)\bot . The identity (2.5) shows that CAnx = 0 for n = 0, 1, 2, . . . , and an easy
calculation shows that P\scrX o

1 \oplus \scrX o
2
x = 0. Therefore (\scrX o)\bot \subset (\scrX o

1 )
\bot \oplus (\scrX o

2 )
\bot , which implies

\scrX o
1 \oplus \scrX o

2 \subset \scrX o, since the orthocomplement of (\scrX o
1 )

\bot \oplus (\scrX o
2 )

\bot in \scrX is \scrX o
1 \oplus \scrX o

2 , Since
\scrX o \subset \scrX o

1 \oplus \scrX o
2 holds in general by (2.5) and (3.33), one deduces \scrX o

1 \oplus \scrX o
2 = \scrX o.

Assume still that the factorization is (+)-regular. By Theorem 3.3, to prove that the
factorization is also regular, it suffices to prove that \Sigma 2 \circ \Sigma 1 is simple. It follows from
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the identities (2.9) and (2.16) that the Hilbert space (\scrX s)\bot is a subspace of (\scrX o)\bot =
(\scrX o

1 )
\bot \oplus (\scrX o

2 )
\bot , C(\scrX s)\bot = \{ 0\} , B\ast (\scrX s)\bot = \{ 0\} and (\scrX s)\bot is both A-invariant and

A\ast -invariant. Since the system operator T\Sigma is unitary, it can be deduced that

T\Sigma \upharpoonright (\scrX s)\bot = A\upharpoonright (\scrX s)\bot = (A11 \oplus A21) \upharpoonright (\scrX s)\bot 

is a unitary operator. But it follows from (3.46) that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\biggl( 
A11 0
0 A21

\biggr) \ast n\biggl( 
x1
x2

\biggr) 
= 0

for every x1 \oplus x2 \in (\scrX s)\bot \subset (\scrX o
1 )

\bot \oplus (\scrX o
2 )

\bot , which implies (\scrX s)\bot = \{ 0\} , and thus \Sigma is
a simple conservative system. \square 

In particular, it follows from Proposition 3.6 that for ordinary Schur functions, the
definition of (\pm )-regularity is equivalent to the definition given by Khanh; see [25,
Theorems 1 and 2]. Indeed, Khanh’s definition will be stated and applied for special cases
considered in Section 4.

Proposition 3.7. Suppose that \theta = \theta 2\theta 1 \in \bfS \kappa (\scrU ,\scrY ), where \theta 1 \in S\kappa 1
(\scrU ,\scrY 1) and

\theta 2 \in S\kappa 2
(\scrY 1,\scrY ). If the factorization \theta 2\theta 1 is regular ((+)-regular, ( - )-regular), every

\kappa -admissible conservative (co-isometric, isometric) realization \Sigma of \theta can be represented
as a product of the form \Sigma = \Sigma 2 \circ \Sigma 1, where \Sigma 1 and \Sigma 2 are \kappa -admissible conservative
(co-isometric, isometric) realizations of \theta 1 and \theta 2. If desired, \Sigma 1 and \Sigma 2 can be chosen
such that one of them is simple (observable, controllable).

Proof. Suppose that the factorization is regular, and let

\Sigma = (A,B,C,D;\scrX ,\scrU ,\scrY ;\kappa 1 + \kappa 2),

\Sigma \prime 
1 = (A\prime 

1, B
\prime 
1, C

\prime 
1, D

\prime 
1;\scrX \prime 

1,\scrU ,\scrY 1;\kappa 1), \Sigma \prime 
2 = (A\prime 

2, B
\prime 
2, C

\prime 
2, D

\prime 
2;\scrX \prime 

2,\scrU ,\scrY 1;\kappa 2) (3.47)

be \kappa -admissible conservative realizations of \theta , \theta 1 and \theta 2, respectively, such that \Sigma \prime 
1 and

\Sigma \prime 
2 are simple. By Lemma 2.3, the system operator T of \Sigma can be represented as

T =

\left(  \biggl( A0 0
0 As

\biggr) \biggl( 
0
Bs

\biggr) 
\bigl( 
0 Cs

\bigr) 
D

\right)  :

\left(  \biggl( (\scrX s)\bot 

\scrX s

\biggr) 
\scrU 

\right)  \rightarrow 

\left(  \biggl( (\scrX s)\bot 

\scrX s

\biggr) 
\scrY 

\right)  , (3.48)

where (\scrX s)\bot is a Hilbert subspace, and \Sigma s = (As, Bs, Cs, D;\scrX s,\scrU ,\scrY ;\kappa 1+\kappa 2) is a simple
conservative restriction of \Sigma . Theorem 3.3 shows that

\Sigma \prime 
2 \circ \Sigma \prime 

1 = ( \^A, \^B, \^C,D;\scrX \prime 
1 \oplus \scrX \prime 

2,\scrU ,\scrY ;\kappa 1 + \kappa 2)

is simple conservative, and thus unitarily similar with \Sigma s. Therefore there exists a unitary
operator U : \scrX \prime 

1 \oplus \scrX \prime 
2 \rightarrow \scrX s such that \^A = U - 1AsU , \^B = U - 1Bs and \^C = CsU. Define

\scrX s
1 = U\scrX \prime 

1, \scrX s
2 = U\scrX \prime 

2.

Then U1 = U\upharpoonright \scrX \prime 
1 \rightarrow \scrX s

1 and U2 = U\upharpoonright \scrX \prime 
2 \rightarrow \scrX s

2 are unitary operators. Since \^A\scrX \prime 
2 \subset \scrX \prime 

2,
also A\scrX s

2 \subset \scrX s
2 . Define

Ask = UkA
\prime 
1U

 - 1
k , Bsk = UkB

\prime 
k, Csk = C \prime 

kU
 - 1
k , Dk = D\prime 

k, k = 1, 2.
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and then

\scrX 1 = (\scrX s)\bot \oplus \scrX s
1 , \scrX 2 = \scrX s

2 ,

A1 =

\biggl( 
A0k 0
0 Ask

\biggr) 
:

\biggl( 
(\scrX s)\bot 

\scrX s
1

\biggr) 
, A2 = As2,

B1 =

\biggl( 
0
Bs1

\biggr) 
: \scrU \rightarrow 

\biggl( 
(\scrX s)\bot 

\scrX s
1

\biggr) 
, B2 = Bs2,

C1 =
\bigl( 
0 Csk

\bigr) 
:

\biggl( 
(\scrX s)\bot 

\scrX s
1

\biggr) 
\rightarrow \scrY 1, C2 = Cs2,

\Sigma 1 = (A1, B1, C1, D1;\scrX 1,\scrU ,\scrY 1;\kappa 1), \Sigma 2 = (A2, B2, C2, D2;\scrX 2,\scrU ,\scrY 1;\kappa 2).

(3.49)

Calculations show that \Sigma 1, \Sigma 2 and \Sigma 2 \circ \Sigma 1 = \Sigma are conservative \kappa -admissible realizations
of \theta 1, \theta 2 and \theta = \theta 2\theta 1, respectively. Moreover, \Sigma 2 is simple. Thus \Sigma 2 \circ \Sigma 1 is a desired
representation. By choosing \scrX 1 = \scrX s

1 and \scrX 2 = (\scrX s)\bot \oplus \scrX s
2 in (3.49) and then the

operators in a corresponding way, one deduces that \Sigma 1 is simple instead of \Sigma 2, but all
the other results remains the same.

In the case where the factorization is (+)-regular (( - )-regular), and the systems are
co-isometric (isometric), one has to consider the observable (controllable) restriction of
the form (2.14) ((2.15)) instead of (3.48), and to include appropriate restrictions and
projections in (3.49). Otherwise the proofs are analogous, and so other details will be
omitted. \square 

An observable co-isometric realization of \theta \in \bfS \kappa (\scrU ,\scrY ) is optimal by Proposition 2.8,
and therefore the product of two observable co-isometric realizations is optimal if the
factorization is (+)-regular. In general, (\pm )-regularity of the factorization affects that
how optimality and \ast -optimality are preserved under the product of systems, see Theorem
3.8 below. In the Hilbert space setting for ordinary Schur functions, such properties are
studied by Khanh in [25], Hang in [24] and by Khanh and Hang in [26]. Their results do
not cover the following theorem.

Theorem 3.8. Suppose that \theta = \theta 2\theta 1 \in \bfS \kappa (\scrU ,\scrY ), where \theta 1 \in \bfS \kappa 1
(\scrU ,\scrY 1) and \theta 2 \in 

\bfS \kappa 2
(\scrY 1,\scrY ), and let

\Sigma 1 = (A1, B1, C1, D1;\scrX 1,\scrU ,\scrY 1;\kappa 1), \Sigma 2 = (A2, B2, C2, D2;\scrX 2,\scrY 1,\scrY ;\kappa 2)

be optimal realizations of \theta 1 and \theta 2, respectively. If the factorization \theta 2\theta 1 is (+)-regular,
then \Sigma = \Sigma 2 \circ \Sigma 1 is an optimal realization of \theta .

Proof. Let the systems in (3.47) be observable co-isometric realizations of \theta 1 and \theta 2,
respectively. By Proposition 2.8, they are optimal, and so E\scrX j

\bigl( \sum n
k=0A

k
jBjuk

\bigr) 
=

E\scrX \prime 
j

\Bigl( \sum n
k=0A

\prime k
j B

\prime 
juk

\Bigr) 
for every n \in \BbbN 0 and \{ uk\} nk=0 \subset \scrU or \{ uk\} nk=0 \subset \scrY 1. The

polarization identity then gives\Biggl\langle 
n1\sum 
k=0

Ak
jBjuk,

n2\sum 
k=0

Ak
jBjfk

\Biggr\rangle 
\scrX j

=

\Biggl\langle 
n1\sum 
k=0

A
\prime k
j B

\prime 
jfk,

n2\sum 
k=0

A
\prime k
j B

\prime 
jfk

\Biggr\rangle 
\scrX \prime 

j

, uk, fk \in \scrU or uk, fk \in \scrY 1.

(3.50)
Denote the products \Sigma 2 \circ \Sigma 1 = \Sigma and \Sigma \prime 

2 \circ \Sigma \prime 
1 = \Sigma \prime by

\Sigma = (A,B,C,D;\scrX 1 \oplus \scrX 2;\scrU ;\scrY ;\kappa 1 + \kappa 2), \Sigma = (A\prime , B\prime , C \prime , D;\scrX \prime 
1 \oplus \scrX \prime 

2;\scrU ;\scrY ;\kappa 1 + \kappa 2).
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By induction, we have

AkB =

\biggl( 
A1 0
B2C1 A2

\biggr) k \biggl( 
B1

B2D1

\biggr) 
=

\biggl( 
Ak

1 0

Ak - 1
2 B2C1 +Ak - 2

2 B2C1A1 + \cdot \cdot \cdot +B2C1A
k - 1
1 Ak

2

\biggr) \biggl( 
B1

B2D1

\biggr) 
=

\biggl( 
Ak

1B1

Ak - 1
2 B2C1B1 +Ak - 2

2 B2C1A1B1 + \cdot \cdot \cdot +B2C1A
k - 1
1 B1 +Ak

2B2D1

\biggr) (3.51)

for every k \in \BbbN 0 with the obvious interpretation for the cases n = 0 or n = 1. Denote

\alpha (k) = Ak - 1
2 B2C1B1 +Ak - 2

2 B2C1A1B1 + \cdot \cdot \cdot +B2C1A
k - 1
1 B1,

\alpha \prime (k) = A\prime 
2
k - 1

B\prime 
2C

\prime 
1B

\prime 
1 +A\prime 

2
k - 2

B\prime 
2C

\prime 
1A

\prime 
1B

\prime 
1 + \cdot \cdot \cdot +B\prime 

2C
\prime 
1A

\prime 
1
k - 1

B\prime 
1.

Since the transfer functions of \Sigma j and \Sigma \prime 
j coincide, CjA

k
jBj = C \prime 

jA
\prime k
j B

\prime 
j for every k \in \BbbN 0.

By applying the identity (3.50), one deduces \langle \alpha (k)uk, \alpha (j)uj\rangle \scrX 2
= \langle \alpha \prime (k)uk, \alpha 

\prime (j)uj\rangle \scrX \prime 
2
,

and then \Biggl\langle 
M\sum 
k=0

\alpha (k)uk,

N\sum 
j=0

\alpha (j)uj

\Biggr\rangle 
\scrX 2

=

\Biggl\langle 
M\sum 
k=0

\alpha \prime (k)uk,

N\sum 
j=0

\alpha \prime (j)uj

\Biggr\rangle 
\scrX \prime 

2

, (3.52)

\Biggl\langle 
M\sum 
k=0

\alpha (k)uk,

N\sum 
j=0

Aj
2B2uj

\Biggr\rangle 
\scrX 2

=

\Biggl\langle 
M\sum 
k=0

\alpha \prime (k)uk,

N\sum 
j=0

A
\prime j
2 B

\prime 
2uj

\Biggr\rangle 
\scrX \prime 

2

. (3.53)

The identities (3.50)–(3.53) then yield

E\scrX 1\oplus \scrX 2

\Biggl( 
n\sum 

k=0

AkBuk

\Biggr) 
=E\scrX 1\oplus \scrX 2

\biggl( \biggl( \sum n
k=0 A

k
1B1uk\sum n

k=0 \alpha (k)uk +
\sum n

k=0 A
k
2B2D1uk

\biggr) \biggr) 
=E\scrX 1

\Biggl( 
n\sum 

k=0

Ak
1B1uk

\Biggr) 

+ E\scrX 2

\Biggl( 
n\sum 

k=0

\alpha (k)uk

\Biggr) 
+ 2\Re 

\Biggl\langle 
n\sum 

k=0

\alpha (k)uk,

n\sum 
k=0

Ak
2B2D1uk

\Biggr\rangle 
\scrX 2

+ E\scrX 2

\Biggl( 
n\sum 

k=0

Ak
2B2D1uk

\Biggr) 

= E\scrX \prime 
1

\Biggl( 
n\sum 

k=0

A\prime 
1
k
B\prime 

1uk

\Biggr) 
+ E\scrX \prime 

2

\Biggl( 
n\sum 

k=0

\alpha \prime (k)uk

\Biggr) 
+ 2\Re 

\Biggl\langle 
n\sum 

k=0

\alpha \prime (k)uk,

n\sum 
k=0

A\prime 
2
k
B\prime 

2D1uk

\Biggr\rangle 
\scrX \prime 

2

+ E\scrX \prime 
2

\Biggl( 
n\sum 

k=0

A\prime 
2
k
B\prime 

2D1uk

\Biggr) 
= E\scrX \prime 

1\oplus \scrX \prime 
2

\Biggl( 
n\sum 

k=0

A\prime kB\prime uk

\Biggr) 
.

(3.54)
Since the factorization is (+)-regular, the product \Sigma \prime is observable co-isometric by Theorem
3.3, and therefore optimal by Proposition 2.8. It follows from the identity (3.54) that \Sigma 
is also optimal. \square 

A \ast -optimal realization must be observable by definition, and therefore Proposition 3.8
has no straightforward symmetric counterparts for ( - )-regular factorizations and \ast -optimal
systems. However, a realization \Sigma of \theta \in \bfS \kappa (\scrU ,\scrY ) is optimal minimal if and only if
the dual \Sigma \ast is \ast -optimal minimal realization of \theta \# [31, Theorem 3.5], and therefore for
minimal systems, symmetric results can be obtained. In the Hilbert space settings for
ordinary Schur functions, the following result, obtained by a different approach and
different, but equivalent, definitions of (+)-regularity and ( - )-regularity, is due to Khanh
[25, Proposition 6].

Corollary 3.9. If a factorization \theta = \theta 2\theta 1 \in \bfS \kappa (\scrU ,\scrY ) is both (+)-regular and ( - )-
regular, then the product \Sigma = \Sigma 2 \circ \Sigma 1, where \Sigma 1 and \Sigma 1 are optimal (\ast -optimal) minimal
realizations of \theta 1 and \theta 2, respectively, is an optimal (\ast -optimal) minimal realization of \theta .
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Proof. For optimal systems, the result follows by combining Theorems 3.4 and 3.8. Since
\Sigma = \Sigma 2 \circ \Sigma 1 is \ast -optimal minimal if and only if \Sigma \ast = \Sigma \ast 

1 \circ \Sigma \ast 
2 is optimal minimal, the

claim involving \ast -optimality follows by duality. \square 

4. Invariant subspaces and factorizations

As it can be seen from (3.33), for every product representation \Sigma 2 \circ \Sigma 1 of the system
\Sigma , there is a corresponding invariant Pontryagin subspace of the main operator of
\Sigma . The converse is also true. For isometric (co-isometric, conservative) system \Sigma , a
product representation corresponding to a given invariant Pontryagin subspace of the
main operator can be constructed by using the method of [2, Theorem 1.2.2]. For a
passive system \Sigma , one may consider an isometric embedding, see [31, Section 2], \widetilde \Sigma of
\Sigma , construct a product representation of \widetilde \Sigma , and then choose suitable blocks to get a
product representation of \Sigma . By applying the method of [2, Theorem 1.2.2] to canonical
co-isometric realization of \theta \in \bfS \kappa (\scrU ,\scrY ) and (+)-regular factorizations, one obtains a
correspondence of the backward shift invariant regular subspaces of the generalized de
Branges–Rovnyak spaces and (+)-regular factorizations. Similar results hold for regular
(( - )-regular) factorizations and invariant Pontryagin subspaces of the main operator of
the canonical unitary (isometric) realizations. For ordinary Schur functions and regular
factorization, this is stated in [13, Theorem 6.1]; see also [17].

Theorem 4.1. The space \scrH is a backward shift invariant Pontryagin subspace of \scrH (\theta ),
where \theta \in \bfS \kappa (\scrU ,\scrY ), if and only if there exists a (+)-regular factorization \theta 2\theta 1 of \theta such
that U\scrH (\theta 2) = \scrH , where U is a unitary operator. The negative indices of \scrH \bot and \scrH 
coincide with the indices of the generalized Schur functions \theta 1 and \theta 2, respectively.

Proof. Let \Sigma be a canonical observable co-isometric realization of \theta , given in (2.12).
The main operator of \Sigma is a backward shift, and if \scrH is a backward shift invariant
Pontryagin subspace with negative index \kappa \prime , then \scrH \bot is a Pontryagin subspace with
the negative index \kappa 

\prime \prime 
= \kappa  - \kappa \prime . By applying [2, Theorem 1.2.2] one obtains a product

representation \Sigma 2 \circ \Sigma 1 = \Sigma , where \Sigma 1 = (T\Sigma 1
;\scrH \bot ,\scrU ;\scrY 1;\kappa 

\prime \prime 
) and \Sigma 2 = (T\Sigma 2

;\scrH ,\scrY 1;\scrY ;\kappa \prime )
are co-isometric; the details and notations are as in [2, Theorem 1.2.2]. Since \Sigma is
observable, so are \Sigma 1 and \Sigma 2, and since T\Sigma 1 and T\Sigma 2 both are co-isometric, \scrY 1 has the
same negative index as \scrU and \scrY . Then by Lemma 2.1, the transfer functions \theta 1 and \theta 2
of \Sigma 1 and \Sigma 2, respectively, belong to \bfS \kappa \prime \prime (\scrU ,\scrY 1) and \bfS \kappa \prime (\scrY 1,\scrY ), respectively. Moreover,
the the factorization is (+)-regular by Theorem 3.3. The system \Sigma 2 is unitarily similar
with the canonical co-isometric realization of \theta 2, and therefore U\scrH (\theta 2) = \scrH , where U is
the unitary similarity from \scrH (\theta 2) \rightarrow \scrH .

Suppose then that there exists a (+)-regular factorization \theta 2\theta 1 of \theta . Let \Sigma 1 and \Sigma 2 be
canonical co-isometric realizations of \theta 1 and \theta 2. Then \Sigma 2 \circ \Sigma 1 is a co-isometric observable
realization of \theta , and therefore it is unitarily similar with the canonical co-isometric
realization of \theta . Denote the unitary similarity mapping from \scrH (\theta 1)\oplus \scrH (\theta 2) onto \scrH (\theta ) by
U . Since the state space \scrH (\theta 2) of \Sigma 2 is a regular invariant subspace of the main operator
of \Sigma 2 \circ \Sigma 1, by applying the properties (2.10) of the unitary similarity, one deduces that
\scrH := U\scrH (\theta 2) is an invariant regular subspace of the main operator of the canonical
co-isometric realization of \theta . That is, \scrH is a backward shift invariant regular subspace of
\scrH (\theta ), \mathrm{i}\mathrm{n}\mathrm{d} - \scrH \bot = \mathrm{i}\mathrm{n}\mathrm{d} - \scrH (\theta 1) and \mathrm{i}\mathrm{n}\mathrm{d} - \scrH = \mathrm{i}\mathrm{n}\mathrm{d} - \scrH (\theta 2), and those indices coincide with
the indices of \theta 1 and \theta 2, respectively. \square 

If an ordinary scalar valued \theta \in \bfS (\BbbC ) is not an extreme point of the unit ball of H\infty ,
i.e., there exists an outer function \varphi such that | \theta | 2 + | \varphi | 2 = 1 almost everywhere on
the unit circle \BbbT , Sarason proved in [34] that the space \scrH is a backward shift invariant
subspace of \scrH (\theta ) if and only if \scrH = \scrH (\theta ) \cap \scrH (u) or \scrH = \scrH (\theta ), where u is an inner
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function. If \theta is an inner function, the same result holds by Beurling’s Theorem. In a case
of a non-inner extreme point, Suárez characterized backward shift invariant subspaces of
\scrH (\theta ) in [38]. In that case, the characterization is more complicated.

For certain functions, there is no difference between (+)-regular (( - )-regular, (+)-and
( - )-regular) and regular factorizations. This happen when the right (left, right and left)
defect function \varphi \theta (\psi \theta ) of \theta \in \bfS \kappa (\scrU ,\scrY ) is the zero function. For an ordinary Schur
function, \varphi \theta (\psi \theta ) is a maximal outer (co-outer) minorant such that

\varphi \ast 
\theta (\zeta )\varphi \theta (\zeta ) \leq I  - \theta \ast (\zeta )\theta (\zeta ), ( \psi \theta (\zeta )\psi 

\ast 
\theta (\zeta ) \leq I  - \theta (\zeta )\theta \ast (\zeta ) ) for a.e. \zeta \in \BbbT .

For generalized Schur functions, see the definition and properties in [31, Section 4]. An
ordinary Schur function \theta \in \bfS (\scrU ,\scrY ) is an extreme point of the unit ball of H\infty (\scrL (\scrU ,\scrY ))
if and only if \varphi \theta \equiv 0 or \psi \theta \equiv 0 [40, Chapter 2], see also [14, Section 7].

Proposition 4.2. Let \theta \in \bfS \kappa (\scrU ,\scrY ) such that \varphi \theta \equiv 0 (\psi \theta \equiv 0, \varphi \theta \equiv 0 and \psi \theta \equiv 0).
Then a regular factorization of \theta is (+)-regular (( - )-regular, (+)- and ( - )-regular).

Proof. Since \varphi \theta \equiv 0 (\psi \theta \equiv 0, \varphi \theta \equiv 0 and \psi \theta \equiv 0), a simple conservative realization \Sigma of
\theta is observable (controllable, minimal) [31, Theorem 4.8]. If the factorization \theta = \theta 2\theta 1, is
regular, then by Proposition 3.7, the system \Sigma has a corresponding product representation
\Sigma = \Sigma 2 \circ \Sigma 1. By [2, Theorem 1.2.1], \Sigma 1 and \Sigma 2 are observable (controllable, minimal)
conservative, so it follows from Theorem 3.3 that the factorization \theta = \theta 2\theta 1 is (+)-regular
(( - )-regular, (+)- and ( - )-regular). \square 

From a point of a view of invariant Pontryagin subspaces, it is possible to consider (+)-
regular and ( - )-regular factorizations as regular factorizations of functions whose defect
functions are zeros. To this end, let \theta 2\theta 1 be a (+)-regular factorization of \theta \in \bfS \kappa (\scrU ,\scrY ),
and let \scrH be a backward shift invariant subspace of \scrH (\theta ) as described in Theorem
4.1. By applying Julia embedding techniques from [31, Section 4], one can construct a
Hilbert space \scrY \prime and a function \Theta =

\Bigl( 
\theta 
\varphi 

\Bigr) 
\in \bfS \kappa (\scrU ,\scrY \oplus \scrY \prime ) such that \Theta has an observable

conservative realization whose state space is \scrH (\theta ) and the main operator is the backward
shift. Such a realization must be unitarily similar to the canonical unitary realization of \Theta ,
and by using the corresponding unitary similarity mapping U , one obtains a Pontryagin
subspace U\scrH of \scrD (\Theta ), which is invariant under the main operator of the canonical unitary
realization. Then there exists a corresponding regular, or what is now the same thing,
(+)-regular factorization \Theta 2\Theta 1 =

\Bigl( 
\theta \prime 2
\varphi \prime 

\Bigr) 
\Theta 1 of \Theta . In fact, \theta \prime 2\Theta 1 is then another (+)-regular

factorization of \theta , possibly different from \theta 2\theta 1, corresponding to the invariant Pontryagin
subspace \scrH .

For any \theta \in \bfS \kappa (\scrU ,\scrY ), the strong radial limit values

\theta (\zeta ) := \mathrm{l}\mathrm{i}\mathrm{m}
r\rightarrow 1 - 

\theta (r\zeta ) (4.55)

exist and are contractive, with respect to the indefinite inner product of \scrU and \scrY , for
a.e. \zeta \in \BbbT [30, Theorem 2.8]. Suppose now that \scrU and \scrY are Hilbert spaces. A function
\theta \in \bfS \kappa (\scrU ,\scrY ) belongs to the class of generalized inner (co-inner, bi-inner) functions
\bfI \kappa (\scrU ,\scrY ) (\bfI \ast \kappa (\scrU ,\scrY ), \bfU \kappa (\scrU ,\scrY )), if the limit values (4.55) are isometric (co-isometric,
unitary) for a.e. \zeta \in \BbbT . If \kappa = 0, these classes consist of ordinary inner, co-inner and
bi-inner functions. If \theta 1, \theta 2 and \theta = \theta 2\theta 1 are ordinary Schur functions, it is known,
see [39, Proposition 3.3], that if \theta 2 is an inner function or \theta 1 is a co-inner function,
then the factorization \theta = \theta 2\theta 1 is regular. Corresponding results for generalized Schur,
inner and co-inner functions is true, if one assumes the index condition \kappa = \kappa 1 + \kappa 2 For
ordinary Schur functions, even more is true; if \theta 2 is inner (\theta 1 is co-inner), the factorization
is, besides regular, also (+)-regular (( - )-regular). These results are immediate, if one
uses Arov et al.’s definition of regular factorization for generalized Schur functions, and
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Khanh’s definition of (+)-regular factorizations of ordinary Schur functions. To this end,
let L2(\scrU ) denote the Hilbert space of \scrU -valued, where \scrU is a separable Hilbert space,
measurable functions with the square integrable norm on the unit circle. The space
H2(\scrU ) is a subspace of L2(\scrU ) that consists of functions with vanishing negative Fourier
coefficients, see the details from [39, Chapter V]. For \theta \in \bfS \kappa (\scrU ,\scrY ), define

\Delta \theta (\zeta ) = (I\scrU  - \theta \ast (\zeta )\theta (\zeta ))
1/2

, \zeta \in \BbbT .

Definition 4.3. Let \scrU , \scrY 1 and \scrY be Hilbert spaces, and let \theta 1 \in \bfS \kappa 1
(\scrU ,\scrY 1), \theta 2 \in 

\bfS \kappa 2
(\scrY 1,\scrY ) and \theta = \theta 2\theta 1 \in \bfS \kappa (\scrU ,\scrY ) such that \kappa = \kappa 1 + \kappa 2. Define a linear relation

V : \Delta \theta L2(\scrU ) \rightarrow 
\biggl( 
\Delta \theta 2L

2(\scrY 1)

\Delta \theta 1L
2(\scrU )

\biggr) 
,

by setting

V (\Delta \theta (\zeta )u(\zeta )) =

\biggl( 
\Delta \theta 2(\zeta )\theta 1(\zeta )u(\zeta )

\Delta \theta 1(\zeta )u(\zeta )

\biggr) 
, u \in L2(\scrU ).

The factorization \theta = \theta 2\theta 1 is called regular in a sense of Brodskĭı and Sz.-Nagy and Foias,
if V has a unitary extension. If \kappa 1 = \kappa 2 = \kappa = 0, define a linear relation

V + : \Delta \theta H2(\scrU ) \rightarrow 
\biggl( 
\Delta \theta 2H

2(\scrY 1)

\Delta \theta 1H
2(\scrU )

\biggr) 
,

by setting

V + (\Delta \theta (\zeta )u(\zeta )) =

\biggl( 
\Delta \theta 2(\zeta )\theta 1(\zeta )u(\zeta )

\Delta \theta 1(\zeta )u(\zeta )

\biggr) 
, u \in H2(\scrU ).

The factorization \theta = \theta 2\theta 1 is called (+)-regular in a sense of Khanh, if V + has a unitary
extension.

By combining Theorem 3.3, Proposition 3.6, [25, Theorems 1] and [9, Theorem 8.1], it
follows that the definitions above, in the settings where they both can be applied, are
equivalent to those given in Definition 3.2.

Proposition 4.4. Let \scrU , \scrY 1 and \scrY be Hilbert spaces, and let \theta 1 \in \bfS \kappa 1
(\scrU ,\scrY 1), \theta 2 \in 

\bfS \kappa 2
(\scrY 1,\scrY ) and \theta = \theta 2\theta 1 \in \bfS \kappa (\scrU ,\scrY ) such that \kappa = \kappa 1 + \kappa 2. If \theta 2 (\theta 1) is a generalized

inner function (co-inner function), then the factorization \theta 2\theta 1 = \theta is regular, and if
\kappa 1 = \kappa 2 = \kappa = 0, then it is also (+)-regular (( - )-regular).

Proof. The factorization \theta = \theta 2\theta 1 is regular ((+)-regular) if and only if the factorization
\theta \# = \theta \#1 \theta 

\#
2 is regular (( - )-regular), and \theta 2 is a generalized inner function if and only if \theta \#2

is a generalized co-inner function. Therefore, it suffices to prove the claims concerning the
case where \theta 2 is a generalized inner function. When it is, \Delta \theta 2(\zeta ) = 0 and \Delta \theta (\zeta ) = \Delta \theta 1(\zeta )

for a.e. \zeta \in \BbbT . Then \Delta \theta 2L
2(\scrY 1) and \Delta \theta 2H

2(\scrY 1) are zero spaces, and V and V + are
identity relations, so they do have unitary extensions, and the claims follow. \square 

Note that the last statement of Proposition 4.4 does not hold for generalized Schur
functions, as it already breaks down in a case where \kappa 1 = 0 and \kappa = \kappa 2 = 1. Indeed, in
Example 3.42, the left factor \theta 2 of the factorization \theta 2\theta 1 is a generalized bi-inner function,
while the factorization is not (+)-regular. Consequently, Khanh’s definition of (+)-regular
factorization of ordinary Schur functions cannot be applied verbatim for generalized Schur
functions in a consistent way with respect to the results of this paper, while Sz.-Nagy
and Foiaş’s definition of regular factorization can, if the index condition is included.

Acknowledgments. I wish to thank Mikael Kurula and Seppo Hassi for helpful discus-
sions while preparing this paper.
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