# A CLASS OF REPRESENTATIONS OF $C^{*}$-ALGEBRA GENERATED BY $q_{i j}$-COMMUTING ISOMETRIES 

OLHA OSTROVSKA, VASYL OSTROVSKYI, DANYLO PROSKURIN, AND YURII SAMOILENKO

Abstract. For a $C^{*}$-algebra generated by a finite family of isometries $s_{j}, j=1, \ldots, d$, satisfying the $q_{i j}$-commutation relations

$$
s_{j}^{*} s_{j}=I, \quad s_{j}^{*} s_{k}=q_{i j} s_{k} s_{j}^{*}, \quad q_{i j}=\bar{q}_{j i},\left|q_{i j}\right|<1,1 \leq i \neq j \leq d,
$$

we construct an infinite family of unitarily non-equivalent irreducible representations. These representations are deformations of a corresponding class of representations of the Cuntz algebra $\mathcal{O}_{d}$.

Для $C^{*}$-алгебри, породженої скінченною сім'єю ізометрій $s_{j}, j=1, \ldots, d$, що задовольняє $q_{i j}$-комутаційним співвідношенням

$$
s_{j}^{*} s_{j}=I, \quad s_{j}^{*} s_{k}=q_{i j} s_{k} s_{j}^{*}, \quad q_{i j}=\bar{q}_{j i},\left|q_{i j}\right|<1,1 \leq i \neq j \leq d,
$$

ми будуємо нескінченну сім'ю унітарно нееквівалентних незвідних представлень. Ці представлення є деформаціями відповідного класу представлень алгебри Кунца $\mathcal{O}_{d}$.

## 1. Introduction

Algebras with Wick ordering $[1,5,4]$ and their representations have been studied by various authors. A Wick algebra $W_{d}(T)$ is an associative unital *-algebra over $\mathbb{C}$ generated by a finite number of elements $a_{j}, a_{j}^{*}, j=1 \ldots, d$, for which the following relations hold:

$$
a_{j}^{*} a_{k}=\delta_{j k} I+\sum_{l, m=1}^{d} T_{j k}^{l m} a_{m} a_{l}^{*}, \quad \bar{T}_{j k}^{l m}=T_{k j}^{m l}, \quad j, k, l, m=1, \ldots, d .
$$

In particular, if all $T_{j k}^{l m}=0$, then the relations in $W_{d}(T)$ generate the Cuntz-Toeplitz $C^{*}$-algebra $\mathcal{O}_{d}^{0}$,

$$
a_{j}^{*} a_{k}=\delta_{j k} I, \quad j, k=1, \ldots, d .
$$

It was cojectured (and proved in some cases) in [4] that for sufficiently small coefficients $T_{j k}^{l m}, j, k, l, m=1, \ldots, d$, for $W_{d}(T)$ there exists a universal enveloping $C^{*}$-algebra which is isomorphic to $\mathcal{O}_{d}^{0}$. In [3], it has been shown that the $C^{*}$-algebra generated by a pair of $q$-commuting isometries,

$$
s_{1}^{*} s_{1}=s_{2}^{*} s_{2}=I, \quad s_{1}^{*} s_{2}=q s_{2} s_{1}^{*},
$$

is isomorphic to $\mathcal{O}_{2}^{0}$ for all $|q|<1$; however, in the case where $d>2$, such a result is still a conjecture.

In this paper, we study representations of a Wick ordered $C^{*}$-algebra $W$ generated by elements $s_{j}, j=1, \ldots, d$, satisfying the relations

$$
\begin{equation*}
s_{i}^{*} s_{i}=I, \quad s_{i}^{*} s_{j}=q_{i j} s_{j} s_{i}^{*}, \quad\left|q_{i j}\right|<1, \quad q_{i j}=\bar{q}_{j i}, \quad 1 \leq i \neq j \leq d . \tag{1.1}
\end{equation*}
$$

In a general situation of Wick algebras, the most known is the Fock representation $[2,7]$ and coherent [6] representations. We construct a new family of irreducible non-Fock representations which are deformations of a certain family of irreducible representations of the Cuntz algebra $\mathcal{O}_{d}$.

## 2. Preliminaries

2.1. Some notations. We start with some notations. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in\{1, \ldots, d\}^{m}$ be a finite multiindex of length $m,|\alpha|=m$, let $\Lambda_{m}=\{1, \ldots, d\}^{m}$ be the set of all finite multiindices of length $m, \Lambda_{0}=\emptyset$, and let $\Lambda^{0}=\cup_{m=0}^{\infty} \Lambda_{m}$ be the set of all finite multiindices of arbitrary length. Also, we will use the set $\Lambda=\{1, \ldots, d\}^{\infty}$ of all infinite multiindices. For each finite multiindex $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \Lambda^{0}$ we use notation $s_{\alpha}=s_{\alpha_{1}} \ldots s_{\alpha_{m}}$. For a finite multiindex we use standard mappings:

$$
\begin{aligned}
& \Lambda_{m} \ni \alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \mapsto \sigma(\alpha)=\left(\alpha_{2}, \ldots, \alpha_{m}\right) \in \Lambda_{m-1}, \\
& \Lambda_{m} \ni \alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \mapsto \sigma_{j}(\alpha)=\left(j, \alpha_{2}, \ldots, \alpha_{m}\right) \in \Lambda_{m+1}, \quad j=1, \ldots, d .
\end{aligned}
$$

If $\alpha$ does not contain $j$, then (1.1) implies

$$
s_{j}^{*} s_{\alpha}=q(j, \alpha) s_{\alpha} s_{j}^{*}, \quad q(j, \alpha)=q_{j \alpha_{1}} \ldots q_{j \alpha_{m}} .
$$

If $\alpha$ contains $j$, then $\alpha$ can be represented as $\alpha=\left(\alpha^{\prime} j \alpha^{\prime \prime}\right)$, where $\alpha^{\prime}$ does not contain $j$, and we have

$$
s_{j}^{*} s_{\alpha}=q\left(j, \alpha^{\prime}\right) s_{\alpha^{\prime}} s_{\alpha^{\prime \prime}}=q(j, \alpha) s_{\alpha \backslash j}
$$

(here and below, we denote by $\alpha \backslash j=\left(\alpha^{\prime} \alpha^{\prime \prime}\right)$ the multiindex obtained from $\alpha$ by removing the first occurrence of $j$, and set $q(j, \alpha)=q\left(j, \alpha^{\prime}\right)$ for convenience).

Similarly, for any finite multiindices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in\{1, \ldots, d\}^{m}, \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in$ $\{1, \ldots, d\}^{n}, n, m \geq 1$, one can define $\alpha \backslash \beta$ inductively as follows:

$$
\alpha \backslash \beta= \begin{cases}\left(\alpha \backslash \beta_{1}\right) \backslash \sigma(\beta), & \beta_{1} \subset \alpha, \\ \alpha \backslash \sigma(\beta), & \text { otherwise }\end{cases}
$$

Setting $s_{\emptyset}=I$, we obtain

$$
s_{\alpha}^{*} s_{\beta}=q(\alpha, \beta) s_{\beta \backslash \alpha} s_{\alpha \backslash \beta}^{*},
$$

where $q(\alpha, \beta)$ is calculated in an obvious way inductively.
If $\beta$ is a permutation of $\alpha$, then $\alpha \backslash \beta=\beta \backslash \alpha=\emptyset$, and we have $s_{\alpha}^{*} s_{\beta}=q(\alpha, \beta) I$. Also, in this case, for any multiindex $\delta$ we have

$$
s_{(\alpha \delta)}^{*} s_{(\beta \delta)}=q(\alpha, \beta) I=q((\alpha \delta),(\beta \delta)) I .
$$

For infinite multiindices, we define

$$
\begin{equation*}
q(\alpha, \beta)=\lim _{m \rightarrow \infty} q\left(\left(\alpha_{1}, \ldots, \alpha_{m}\right),\left(\beta_{1}, \ldots, \beta_{m}\right)\right) . \tag{2.2}
\end{equation*}
$$

The limit exists, since $|q|<1$ and is nonzero only if the sequence becomes stationary, i.e., if there exists $m$ such that $\sigma^{m}(\alpha)=\sigma^{m}(\beta)$, and $\left(\beta_{1}, \ldots, \beta_{m}\right)$ is a permutation of $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$.
2.2. Fock representation. Fock representation $\pi_{F}$ is a *-representation of $W$ which is determined by the condition that there exists a (unique up to a constant) unit vector $\Omega$ for which $\pi_{F}\left(s_{j}^{*}\right) \Omega=0,1 \leq j \leq d$. The representation space $\mathcal{F}$ (the Fock space) is spanned by the vectors $e_{\alpha}=\pi_{F}\left(s_{\alpha}\right) \Omega, \alpha \in \Lambda^{0}$, and equipped with the Fock scalar product

$$
\left(e_{\alpha}, e_{\beta}\right)_{F}=\left(\pi_{F}\left(s_{\beta}^{*} s_{a} \alpha\right) \Omega, \Omega\right)_{F}= \begin{cases}q(\beta, \alpha), & |\alpha|=|\beta|, \beta \text { is a permutation of } \alpha, \\ 0, & \text { otherwise } .\end{cases}
$$

This scalar product is known to be positive [1]. In particular, the finite-dimensional subspaces $\mathcal{F}_{n}$ spanned by $e_{\alpha}, \alpha \in \Lambda_{n}, n \geq 0$, are orthogonal to each other, therefore,

$$
\mathcal{F}=\bigoplus_{n=0}^{\infty} \mathcal{F}_{n} .
$$

Operators of the Fock representation are defined as follows

$$
\begin{aligned}
& \pi_{F}\left(s_{j}\right) e_{\alpha}=e_{\sigma_{j}(\alpha)}, \\
& \pi_{F}\left(s_{j}^{*}\right) e_{\alpha}=q(j, \alpha) \pi_{F}\left(s_{\alpha \backslash j}\right) \pi_{F}\left(s_{j \backslash \alpha}^{*}\right) \Omega= \begin{cases}q(j, \alpha) e_{\alpha \backslash j}, & \alpha \text { contains } j, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

## 3. A construction of non-Fock representations

We start with introducing an appropriate Hilbert space. Consider an (uncountable) set of vectors $e_{\gamma}, \gamma \in \Lambda$. For these vectors, define

$$
\begin{equation*}
\left(e_{\beta}, e_{\gamma}\right)=q(\gamma, \beta), \tag{3.3}
\end{equation*}
$$

where $q(\beta, \gamma)$ was defined above in (2.2). In particular, for any $\beta \in \Lambda$ we have $\left(e_{\beta}, e_{\beta}\right)=1$.
We say that infinite multiindices $\alpha, \beta \in \Lambda$ are equivalent, denoted by $\beta \sim \alpha$, if they "have the same tails up to a shift", i.e., there exist numbers $m, n$, such that $\sigma^{m}(\beta)=\sigma^{n}(\gamma)$. Fix an infinite multiindex $\alpha$ and consider a countable family of vectors ( $e_{\beta} \mid \beta \sim \alpha$ ). Define $\tilde{H}_{\alpha}$ as a linear span of this family.
Proposition 3.1. Form (3.3) is well-defined and positive on $\tilde{H}_{\alpha}$.
Proof. Fix a sequence $\Lambda \ni \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$, and define operators $J_{k}: \mathcal{F}_{k} \rightarrow \mathcal{F}_{k+1}$, $k=0,1, \ldots$, as follows:

$$
\mathcal{F}_{k} \ni e_{\left(\gamma_{1}, \ldots, \gamma_{k}\right)} \mapsto J_{k} e_{\left(\gamma_{1}, \ldots, \gamma_{k}\right)}=e_{\left(\gamma_{1}, \ldots, \gamma_{k}, \alpha_{k+1}\right)} \in \mathcal{F}_{k+1}, \quad k=0,1, \ldots,
$$

and extend this action to the whole $\mathcal{F}_{k}$ by linearity. These operators are well-defined since $\left(e_{\gamma}\right)_{\gamma \in \Lambda_{k}}$ form a linear basis in $\mathcal{F}_{k}$.
Lemma 3.2. The operator $J_{k}, k \geq 0$, is an isometric embedding of $\mathcal{F}_{k}$ into $\mathcal{F}_{k+1}$.
Proof. Take $\beta, \gamma \in \Lambda_{k}$, then

$$
\begin{aligned}
\left(J_{k} e_{\beta}, J_{k} e_{\gamma}\right)_{\mathcal{F}_{k+1}} & =\left(e_{\left(\beta_{1}, \ldots, \beta_{k}, \alpha_{k+1}\right)}, e_{\left(\gamma_{1}, \ldots, \gamma_{k}, \alpha_{k+1}\right)}\right) \\
& =\left(\pi_{F}\left(s_{\gamma}^{*} s_{\beta}\right) e_{\alpha_{k+1}}, e_{\alpha_{k+1}}\right)=q(\gamma, \beta)\left(\pi_{F}\left(s_{\beta \backslash \gamma} s_{\gamma \backslash \beta}^{*}\right) e_{\alpha_{k+1}}, e_{\alpha_{k+1}}\right) \\
& =q(\gamma, \beta)\left(\pi_{F}\left(s_{\gamma \backslash \beta}\right)^{*} e_{\alpha_{k+1}}, \pi_{F}\left(s_{\beta \backslash \gamma}\right)^{*} e_{\alpha_{k+1}}\right)=\left(e_{\beta}, e_{\gamma}\right)_{\mathcal{F}_{k}} .
\end{aligned}
$$

Indeed, if $\gamma$ is a permutation of $\beta$, then $\beta \backslash \gamma=\gamma \backslash \beta=\emptyset$, and since $s_{\emptyset}=I$,

$$
\begin{gathered}
q(\gamma, \beta)\left(\pi_{F}\left(s_{\gamma \backslash \beta}\right)^{*} e_{\alpha_{k+1}}, \pi_{F}\left(s_{\beta \backslash \gamma}\right)^{*} e_{\alpha_{k+1}}\right)=q(\gamma, \beta)\left(e_{\alpha_{k+1}}, e_{\alpha_{k+1}}\right) \\
=q(\gamma, \beta)=\left(e_{\beta}, e_{\gamma}\right)_{\mathcal{F}_{k}} .
\end{gathered}
$$

If $\gamma$ is not a permutation of $\beta$, then $\beta \backslash \gamma$ and $\gamma \backslash \beta$ are non-empty and disjoint. Since $\pi_{F}\left(s_{j}\right)^{*} e_{\alpha_{k+1}} \neq 0$ only if $j=\alpha_{k+1}$, this implies that

$$
q(\gamma, \beta)\left(\pi_{F}\left(s_{\gamma \backslash \beta}\right)^{*} e_{\alpha_{k+1}}, \pi_{F}\left(s_{\beta \backslash \gamma}\right)^{*} e_{\alpha_{k+1}}\right)=0=\left(e_{\beta}, e_{\gamma}\right)_{\mathcal{F}_{k}} .
$$

Consider an inductive limit $\tilde{H}_{\alpha}^{0}=\underset{\longrightarrow}{\lim _{k}} \mathcal{F}_{k}$. This space can be naturally identified with a span of the vectors $e_{\beta}, \beta \in \Lambda$, over all $\beta$ for which there exists $m$ such that $\beta_{k}=\alpha_{k}$ for $k>m$. Lemma 3.2 and the positivity of the Fock scalar product yields that

$$
\left(e_{\beta}, e_{\gamma}\right)=\left(e_{\left(\beta_{1}, \ldots, \beta_{k}\right)}, e_{\left(\gamma_{1}, \ldots, \gamma_{k}\right)}\right), \quad \text { if } \beta_{j}=\gamma_{j}=\alpha_{j} \text { for all } j>k,
$$

is a well-defined positive form on $\tilde{H}_{\alpha}^{0}$, and that

$$
\mathcal{F}_{k} \ni e_{\left(\gamma_{1}, \ldots, \gamma_{k}\right)} \mapsto e_{\left(\gamma_{1}, \ldots, \gamma_{k}, \alpha_{k+1}, \alpha_{k+2}, \ldots\right)} \in \tilde{H}_{\alpha}^{0}
$$

is an isometric embedding.
Obviously, $\tilde{H}_{\alpha}^{0} \subset \tilde{H}_{\alpha}$, but in general (unless $\alpha$ is equivalent to a stationary sequence) it is a proper subset. Let $\beta \sim \alpha$. The same way, consider space $\tilde{H}_{\beta}^{0}$ with the corresponding scalar product. If there exists $m$ such that $\beta_{k}=\alpha_{k}$ for all $k>m$ (or equivalently,
$\left.\sigma^{m}(\alpha)=\sigma^{m}(\beta)\right)$, then $\tilde{H}_{\alpha}^{0}=\tilde{H}_{\beta}^{0}$. Otherwise $\alpha$ and $\beta$ differ in an infinite set of indices (so that $q(\alpha, \beta)=0$ ) and we set $\tilde{H}_{\alpha}^{0}$ and $\tilde{H}_{\beta}^{0}$ to be orthogonal. Similarly, for any $\beta \sim \gamma \sim \alpha$ we define

$$
\left(e_{\beta}, e_{\gamma}\right)= \begin{cases}\left(e_{\left(\beta_{1}, \ldots, \beta_{m}\right)}, e_{\left(\gamma_{1}, \ldots, \gamma_{m}\right)}\right)_{\mathcal{F}_{m}}, & \text { there exists } m, \text { for which } \sigma^{m}(\beta)=\sigma^{m}(\gamma) \\ 0, & \text { otherwise } .\end{cases}
$$

The arguments above show that this form is well-defined and positive on the whole $\tilde{H}_{\alpha}$. One can easily see that the latter expression is equal to $q(\gamma, \beta)$.

Define $H_{\alpha}$ as a completion of $\tilde{H}_{\alpha}$ with respect to the introduced above scalar product.
Theorem 3.3. 1. Operators in $H_{\alpha}$,

$$
\pi_{\alpha}\left(s_{j}\right) e_{\beta}=e_{\sigma_{j}(\beta)}, \quad \pi_{\alpha}\left(s_{j}^{*}\right) e_{\beta}= \begin{cases}0, & \beta \text { does not contain } j, \\ q(j, \beta) e_{\beta \backslash j}, & \text { otherwise }\end{cases}
$$

form well-defined $*$-representation of the $C^{*}$-algebra $W$.
2. This representation is irreducible.
3. Representations corresponding to multiindices $\alpha, \alpha^{\prime}$ are unitary equivalent iff the corresponding Hilbert spaces coincide, i.e., $\alpha \sim \alpha^{\prime}$.
4. The representation $\pi_{\alpha}$ is not unitary equivalent to the Fock representation.

Proof. 1. We need to verify that $\pi_{\alpha}\left(s_{j}^{*}\right)=\pi_{\alpha}\left(s_{j}\right)^{*}, j=1, \ldots, d$, and that relations (1.1) hold. Obviously, it is sufficient to verify this on the vectors $e_{\gamma}, \gamma \sim \alpha$.

Conditions $\pi_{\alpha}\left(s_{j}^{*}\right) e_{\beta}=\pi_{\alpha}\left(s_{j}\right)^{*} e_{\beta}, j=1, \ldots, d$, hold due to the way the scalar product is constructed. Indeed,

$$
\begin{aligned}
\left(\pi_{\alpha}\left(s_{j}\right)^{*} e_{\beta}, e_{\gamma}\right) & =\left(e_{\beta}, \pi_{\alpha}\left(s_{j}\right) e_{\gamma}\right)=\left(e_{\beta}, e_{\sigma_{j}(\gamma)}\right), \\
\left(\pi_{\alpha}\left(s_{j}^{*}\right) e_{\beta}, e_{\gamma}\right) & = \begin{cases}0, & \beta \text { does not contain } j, \\
q(j, \beta)\left(e_{\beta \backslash j}, e_{\gamma}\right), & \text { otherwise } .\end{cases}
\end{aligned}
$$

If $\beta$ does not contain $j$, then the both expressions are zero. Assume $\beta$ contains $j$. According to the definition of the scalar product, $\left(e_{\beta \backslash j}, e_{\gamma}\right) \neq 0$ only if there exists $m_{1}$, for which $\sigma^{m_{1}}(\beta \backslash j)=\sigma^{m_{1}}(\gamma)$. Then there exists $m_{2}$, for which $\sigma^{m_{2}}(\beta)=\sigma^{m_{2}}\left(\sigma_{j}(\gamma)\right)$. Take $m=\max \left(m_{1}, m_{2}\right)$, this will in particular ensure that $\left(\beta_{1}, \ldots, \beta_{m+1}\right)$ contains $j$. Then, since the Fock representation is a *-representation,

$$
\begin{aligned}
\left(e_{\beta}, e_{\sigma_{j}(\gamma)}\right) & =\left(e_{\left(\beta_{1}, \ldots, \beta_{m+1}\right)}, e_{\left(j, \gamma_{1}, \ldots, \gamma_{m}\right)}\right)_{\mathcal{F}_{m+1}} \\
& =\left(e_{\left(\beta_{1}, \ldots, \beta_{m+1}\right)}, \pi_{F}\left(s_{j}\right) e_{\left(\gamma_{1}, \ldots, \gamma_{m}\right)}\right)_{\mathcal{F}_{m+1}} \\
& =\left(\pi_{F}\left(s_{j}^{*}\right) e_{\left(\beta_{1}, \ldots, \beta_{m+1}\right)}, e_{\left(\gamma_{1}, \ldots, \gamma_{m}\right)}\right)_{\mathcal{F}_{m}} \\
& \left.=q(j, \beta)\left(e_{\left(\beta_{1}, \ldots, \beta_{m+1}\right) \backslash j}, e_{\left(\gamma_{1}, \ldots, \gamma_{m}\right)}\right)\right)_{\mathcal{F}_{m}}=q(j, \beta)\left(e_{\beta \backslash j}, e_{\gamma}\right) .
\end{aligned}
$$

To prove (1.1), we apply the same arguments as above to reduce the situation to the case of the Fock representation.
2. We start with the following auxiliary fact.

Lemma 3.4. In the $C^{*}$-algebra $W$ there exist elements $\tilde{s}_{j}$, such that $\tilde{s}_{j}^{*} s_{k}=\delta_{j k} I$.
Proof. For each $j=1, \ldots, d$, let $p_{j}=s_{j} s_{j}^{*}$ be a projection on the range of $\pi_{\alpha}\left(s_{j}\right)$. Since the $C^{*}$-algebra generated by $p_{j}, j=1, \ldots, d$, is finite-dimensional [8], the latter $C^{*}$ algebra, and therefore, $W$ as well, contains $\check{p}_{j}=\bigvee_{k \neq j} p_{k}$ which is a projection on the sum of ranges of $\pi_{\alpha}\left(s_{k}\right), k \neq j$.

Write $c_{j}=\left(I-\check{p}_{j}\right) s_{j}$. Then $c_{j}^{*} s_{k}=0, k \neq j$, and if we show that $c_{j}^{*} s_{j}$ is invertible, then

$$
\tilde{s}_{j}=\left(I-\check{p}_{j}\right) s_{j}^{*}\left(s_{j}^{*}\left(I-\check{p}_{j}\right) s_{j}\right)^{-1}
$$

is the needed element.
So it is sufficient to prove that $c_{j}^{*} s_{j}=s_{j}^{*}\left(I-\check{p}_{j}\right) s_{j}$ is invertible. First notice that for any element $x=s_{\mu} s_{\nu}^{*}$, where $\mu$ and $\nu$ do not contain $j$, we have

$$
s_{j}^{*} x s_{j}=s_{j}^{*} s_{\mu} s_{\nu}^{*} s_{j}=q(j, \mu) q(\nu, j) s_{\mu} s_{j}^{*} s_{j} s_{\nu}^{*}=q(j, \mu) q(\nu, j) x,
$$

therefore, $s_{j}^{*}\left(I-\check{p}_{j}\right) s_{j}$ belongs to the finite-dimensional algebra generated by $p_{k}, k \neq j$, and thus its spectrum is finite. Then to prove the invertibility of $s_{j}^{*}\left(I-\check{p}_{j}\right) s_{j}$, it is enough to show that it has zero kernel, which is equivalent to $\operatorname{ker}\left(I-\check{p}_{j}\right) s_{j}=0$.

Since the Fock representation of $W$ is exact [2], any element $x \in W$ can be uniquely represented as

$$
x=p_{1} x_{1}+\cdots+p_{d} x_{d}
$$

This means that the range of $p_{j}$ is linearly independent of the span of the ranges of $p_{k}, k \neq j$, in particular, the ranges of $p_{j}$ and $\check{p}_{j}$ do not intersect. This implies $\operatorname{ker}\left(I-\check{p}_{j}\right) s_{j}=0$.

Now we prove the irreducibility of $\pi_{\alpha}$. For $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \Lambda_{n}$, denote $\tilde{s}_{\mu}=$ $\tilde{s}_{\mu_{1}} \ldots \tilde{s}_{\mu_{n}}$. Fix an infinite sequence $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right) \in \Lambda$ and consider the operators

$$
P_{n}(\mu)=\pi_{\alpha}\left(s_{\left(\mu_{1}, \ldots, \mu_{n}\right)} \tilde{s}_{\left(\mu_{1}, \ldots, \mu_{n}\right)}^{*}, \quad n \geq 1 .\right.
$$

For any vector of the form $e_{\beta}$, one directly sees that

$$
\lim _{n \rightarrow \infty} P_{n}(\mu) e_{\beta}=\delta_{\beta \mu} e_{\mu},
$$

i.e., the sequence $P_{n}(\mu)$ strongly converges to $P(\mu)$ which is a projection onto the one-dimensional space generated by $e_{\mu}$.

Let $C$ be a bounded operator commuting with all $\pi_{\alpha}(x), x \in W$. Then $C$ commutes with $P(\mu)$, and therefore, for any $\beta \sim \alpha$ we have $C e_{\beta}=c(\beta) e_{\beta}$, where $c(\beta)$ is a constant. On the other hand, by the construction of $\tilde{s}_{j}$ given by Lemma 3.4, for each $\beta, \gamma \sim \alpha$ there exist finite multiindices $\mu, \nu$, such that $s_{\gamma}=s_{\mu} \tilde{s}_{\nu}^{*} s_{\beta}$, so that $\pi_{\alpha}\left(s_{\mu} \tilde{s}_{\nu}^{*}\right) e_{\beta}=e_{\gamma}$. Since $C$ commutes with $\pi_{\alpha}\left(s_{\mu} \tilde{s}_{\nu}^{*}\right)$, we have

$$
c(\beta) e_{\gamma}=c(\beta) \pi_{\alpha}\left(s_{\mu} \tilde{s}_{\nu}^{*}\right) e_{\beta}=\pi_{\alpha}\left(s_{\mu} \tilde{s}_{\nu}^{*}\right) C e_{\beta}=C \pi_{\alpha}\left(s_{\mu} \tilde{s}_{\nu}^{*}\right) e_{\beta}=C e_{\gamma}=c(\gamma) e_{\gamma},
$$

i.e., $c(\beta)=c(\gamma)$ for all $\beta, \gamma \sim \alpha$. Therefore, $C$ is a scalar operator, and by the Schur lemma, $\pi_{\alpha}$ is irreducible.
3. Using the arguments above, if $\alpha^{\prime}$ is not equivalent to $\alpha$, then

$$
\lim _{n \rightarrow \infty} P_{n}\left(\alpha^{\prime}\right) e_{\beta}=0, \quad \beta \sim \alpha,
$$

therefore, $P_{n}\left(\alpha^{\prime}\right)$ strongly converges to zero in $H_{\alpha}$, but, in $H_{\alpha^{\prime}}$, it strongly converges to a nonzero projection $P\left(\alpha^{\prime}\right)$.
4. Assume that there exists $\Omega \in H_{\alpha}$, for which $\pi_{\alpha}\left(s_{j}\right)^{*} \Omega=0, j=1, \ldots, d$. For each $\beta \sim \alpha$ we have

$$
\left(\Omega, e_{\beta}\right)=\left(\Omega, \pi_{\alpha}\left(s_{\beta_{1}}\right) e_{\sigma(\beta)}\right)=\left(\pi_{\alpha}\left(s_{\beta_{1}}\right)^{*} \Omega, e_{\sigma(\beta)}\right)=0 .
$$

Since vectors $e_{\beta}, \beta \sim \alpha$, form a total set in $H_{\alpha}$, we get $\Omega=0$.

Acknowledgments. The authors express their gratitude to Kostyantyn Krutoi for helpful discussions of the subject of this paper.

## References

[1] M. Bożejko and R. Speicher, Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces, Math. Ann. 300 (1994), no. 1, 97-120, doi:10.1007/BF01450478.
[2] K. Dykema and A. Nica, On the Fock representation of the $q$-commutation relations, J. Reine Angew. Math. 440 (1993), 201-212.
[3] P. E. T. Jø rgensen, D. P. Proskurin, and Y. S. Samoilenko, On $C^{*}$-algebras generated by pairs of $q$ commuting isometries, J. Phys. A 38 (2005), no. 12, 2669-2680, doi:10.1088/0305-4470/38/12/009.
[4] P. E. T. Jorgensen, L. M. Schmitt, and R. F. Werner, $q$-canonical commutation relations and stability of the Cuntz algebra, Pacific J. Math. 165 (1994), no. 1, 131-151, http://projecteuclid.org/euclid. pjm/1102621916.
[5] P. E. T. Jorgensen, L. M. Schmitt, and R. F. Werner, Positive representations of general commutation relations allowing Wick ordering, J. Funct. Anal. 134 (1995), no. 1, 33-99, doi:10.1006/jfan. 1995. 1139.
[6] P. E. T. Jorgensen and R. F. Werner, Coherent states of the $q$-canonical commutation relations, Comm. Math. Phys. 164 (1994), no. 3, 455-471, http://projecteuclid.org/euclid.cmp/1104270944.
[7] M. Kennedy and A. Nica, Exactness of the Fock space representation of the $q$-commutation relations, Comm. Math. Phys. 308 (2011), no. 1, 115-132, doi:10.1007/s00220-011-1323-9.
[8] A. Kuzmin and N. Pochekai, Faithfulness of the Fock representation of the $C^{*}$-algebra generated by $q_{i j}$ commuting isometries, J. Operator Theory 80 (2018), no. 1, 77-93, doi:10.7900/jot.2017jun01.2172.
O. Ostrovska: olyushka.ostrovska@gmail.com

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute")
V. Ostrovskyi: vo@imath.kiev.ua

Institute of Mathematics, NAS of Ukraine
D. Proskurin: prohor75@gmail.com

Kyiv National Taras Shevchenko University
Yu. Samoilenko: yurii_sam@imath.kiev.ua
Institute of Mathematics, NAS of Ukraine

