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A CLASS OF REPRESENTATIONS OF C*-ALGEBRA GENERATED
BY ¢;;~-COMMUTING ISOMETRIES

OLHA OSTROVSKA, VASYL OSTROVSKYI, DANYLO PROSKURIN, AND YURII SAMOILENKO

ABSTRACT. For a C*-algebra generated by a finite family of isometries s;, j = 1,...,d,
satisfying the g;j-commutation relations

*

sisj =1, sjsk=qijsks], qij = Qjir 951 <1, 1 <i# 3§ < d,

we construct an infinite family of unitarily non-equivalent irreducible representations.
These representations are deformations of a corresponding class of representations of
the Cuntz algebra Oy .

Ja C*-anrebpu, NOPOIXKEHOI CKiHUeHHOIO ciM’elo i3omerTpiit s, j = 1,...,d, mo
33/I0BOJILHSE ¢ j-KOMYTaIiltHUM CIiBBiTHOIIECHHAM

*

sisj =1, sisk=aqijsks}, Qi =dj,|qi] <1, 1<i#j<d,

MU Oy/1ye€MO HECKIHYEHHY CiM’'I0 YHITApHO HEEKBiBaJIEHTHUX HE3BIJHUX IIPEJICTaBJIEHD.
IIi npexcrasienss: € JgedopMallisiMi BiIOBITHOTO KJIacy IIPEJICTABJIEHb AJredopu
Kynna Oy.

1. INTRODUCTION

Algebras with Wick ordering [1, 5, 4] and their representations have been studied by
various authors. A Wick algebra Wy (T') is an associative unital *-algebra over C generated
by a finite number of elements a;,aj, j = 1....,d, for which the following relations hold:

d
ajap =0l + Y Titama;, Tt =17  jklm=1,...d
l,m=1
In particular, if all le};" = 0, then the relations in Wy(T) generate the Cuntz-Toeplitz
C*-algebra OY,
a;akzéjkl, Jk=1,...,d.

It was cojectured (and proved in some cases) in [4] that for sufficiently small coefficients
T}Zl, gk, l,m=1,...,d, for Wy(T) there exists a universal enveloping C*-algebra which
is isomorphic to 0Y. In [3], it has been shown that the C*-algebra generated by a pair of
g-commuting isometries,

5151 = s382 =1, 5182 = qSas7,
is isomorphic to OF for all |g| < 1; however, in the case where d > 2, such a result is still
a conjecture.

In this paper, we study representations of a Wick ordered C*-algebra W generated by
elements s;, j =1,...,d, satisfying the relations

sisi =1, sisj=aqsjs;, lai;l <1, a4 = G, 1<i#j<d. (1.1)
In a general situation of Wick algebras, the most known is the Fock representation
[2, 7] and coherent [6] representations. We construct a new family of irreducible non-Fock

representations which are deformations of a certain family of irreducible representations
of the Cuntz algebra O,.
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2. PRELIMINARIES

2.1. Some notations. We start with some notations. Let « = (a1,...,am) € {1,...,d}™
be a finite multiindex of length m, |a| = m, let A,,, = {1,...,d}™ be the set of all finite
multiindices of length m, Ag = 0, and let AY = U°_ A, be the set of all finite multiindices
of arbitrary length. Also, we will use the set A = {1,...,d}* of all infinite multiindices.
For each finite multiindex o = (@, ..., am) € A% we use notation s, = Say -+ Sa,,- For a
finite multiindex we use standard mappings:

Anda=(al,...,an) = o(@) =(ag,...,am) € Ap—1,
Apnda=(o,....,an) —oj(a)=(j,a,...,0m) € Ay, j=1,...,d.
If o does not contain j, then (1.1) implies
S;Sa = q(j,Oé)SaSj-, q(j, o) = oy - jay, -

If o contains j, then « can be represented as a = (a’ja”), where o’ does not contain j,
and we have
S;SOC = q(]? O/)SO/SO/' = Q(j? a)sa\j
(here and below, we denote by «\ j = (o’a’) the multiindex obtained from « by removing
the first occurrence of j, and set ¢(j, ) = q(j, &) for convenience).

Similarly, for any finite multiindices & = (e, ..., am) € {1,...,d}™, 8= (B1,...,0n) €

{1,...,d}", n,m > 1, one can define '\ 8 inductively as follows:
s [@\B\e®), Aica,
a\o(p), otherwise.

Setting sy = I, we obtain
8285 = q(Oé, B)Sﬁ\asz;\ﬂa
where ¢(a, ) is calculated in an obvious way inductively.

If 8 is a permutation of «, then o\ 8 = 8\ @ = 0, and we have s’ sz = q(a, 8)I. Also,
in this case, for any multiindex ¢ we have

S(as)8(88) = 4, B)I = gq((ad), (B4))1.

For infinite multiindices, we define

q(a, B) = lim q((a1,-.-,@m), (B1y.-yBm))- (2.2)

m—0o0
The limit exists, since |¢| < 1 and is nonzero only if the sequence becomes stationary,
i.e., if there exists m such that c™(«) = o™(f), and (51, .., B8m) is a permutation of

(a1 ).

2.2. Fock representation. Fock representation 7p is a *-representation of W which is
determined by the condition that there exists a (unique up to a constant) unit vector 2 for
which mp(s7)2 =0, 1 < j < d. The representation space F (the Fock space) is spanned
by the vectors e, = mr(54)Q2, a € A°, and equipped with the Fock scalar product

q(B,), |a]=18], B is a permutation of a,

(€ases)r = (Tp(sh5a) )F {0, otherwise.

This scalar product is known to be positive [1]. In particular, the finite-dimensional
subspaces F,, spanned by e,, a € A,,, n > 0, are orthogonal to each other, therefore,

F= é}'n.
n=0
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Operators of the Fock representation are defined as follows
TF(Sj)ea = €q;(a);
q(j,a)eqj, « contains j,

TR(8})ea = q(J, O)Tr (Sa\j)TF(S)\0)2 = {0 otherwise.

3. A CONSTRUCTION OF NON-FOCK REPRESENTATIONS

We start with introducing an appropriate Hilbert space. Consider an (uncountable)
set of vectors e, v € A. For these vectors, define

(eg,eq) = q(7, B), (3.3)

where ¢(/3,7) was defined above in (2.2). In particular, for any 8 € A we have (eg, eg) = 1.

We say that infinite multiindices «, 8 € A are equivalent, denoted by 8 ~ a, if they
“have the same tails up to a shift”, i.e., there exist numbers m, n, such that c™(8) = 0" (7).
Fix an infinite multiindex o and consider a countable family of vectors (eg | § ~ «).
Define H, as a linear span of this family.

Proposition 3.1. Form (3.3) is well-defined and positive on H,.

Proof. Fix a sequence A 3 a = («ai1,as,...), and define operators Ji: Fr — Fri1,
k=0,1,..., as follows:

Fk D €))7 TkC(nm) = €nrmioanin) € Fit1, k=0,1,...,

and extend this action to the whole Fj by linearity. These operators are well-defined
since (ey)yea, form a linear basis in F.

Lemma 3.2. The operator Ji, k > 0, is an isometric embedding of Fy into Fri1.
Proof. Take 3,7 € Ay, then
(Jkeﬁ’ Jke’Y)}_kJrl = (e(ﬁ17~~‘15kaak+1)7 6(71,“‘,71‘-,,0%4-1))
= (ﬂ-F (Sfysﬁ)eak+1 » eOék+1) = Q(% 5) (ﬂ-F(Sﬁ\’yS:\,B)eakJA ) eak+1)
= q('yv 5)<7TF(S’Y\5>*€QIC+1 ) 7TF(Sﬁ\w)*e(’twrl) = (€ﬂ7 e’Y>.7:k'
Indeed, if v is a permutation of 3, then 3\ v =~ \ 8 =0, and since sy = I,
Q(’Y, 6)(7TF(SW\B)*€O%+1 ’ ﬂ—F(sﬂ\’y)*eak+1) = Q(’77 6)(eak+1 ) eak+1)
=q(7,B) = (e, ey) 7
If  is not a permutation of 3, then §\ v and v\ § are non-empty and disjoint. Since
Tr(8j) €ay,, 7 0 only if j = ag41, this implies that
Q(P)/a ﬂ)(ﬂ—F(s’y\B)*eak-FwWF(Sﬁ\V)*eOU«-H) =0= (657 e'Y)]:k' U

Consider an inductive limit A% = lim ;. Fk- This space can be naturally identified with
> J K
a span of the vectors eg, 8 € A, over all § for which there exists m such that 8, = «, for

k > m. Lemma 3.2 and the positivity of the Fock scalar product yields that
(ess€y) = (€(gy,..60)1 €(vrm))s I Bj =5 = oy for all j >k,

is a well-defined positive form on H?, and that

]:k > e("/l,m,’Yl«) — e(’Yl,~~,’Yk,0¢1¢,+1,04k+2,m) € Hg

is an isometric embedding.
Obviously, H 9c H,, but in general (unless « is equivalent to a stationary sequence) it
is a proper subset. Let § ~ a. The same way, consider space ﬁg with the corresponding
scalar product. If there exists m such that Sy = ai for all k& > m (or equivalently,
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o™ (@) = 6™(B)), then H = Ffﬂo Otherwise « and § differ in an infinite set of indices (so

that ¢(«, 8) = 0) and we set ﬁg and flg to be orthogonal. Similarly, for any 8 ~ v ~ «
we define

(e,...8 )> €(v1semry ))]: ,  there exists m, for which ¢™(8) = c™(y),
(6,67 e'y) — sersPm sy Ym m )
0, otherwise.

The arguments above show that this form is well-defined and positive on the whole H,,.
One can easily see that the latter expression is equal to ¢(v, 5). O

Define H, as a completion of H,, with respect to the introduced above scalar product.
Theorem 3.3. 1. Operators in H,,

0, 8 does not contain j,
q(j,B)ep\j, otherwise,

form well-defined x-representation of the C*-algebra W'.

2. This representation is irreducible.

3. Representations corresponding to multiindices a, o’ are unitary equivalent iff the
corresponding Hilbert spaces coincide, i.e., a ~ o'.

4. The representation T, is not unitary equivalent to the Fock representation.

Ta(sj)es = €q;(8), Ta(s))es = {

Proof. 1. We need to verify that m,(s}) = ma(s;)*, j = 1,...,d, and that relations (1.1)
hold. Obviously, it is sufficient to verify this on the vectors e, v ~ .

Conditions 7 (s})es = ma(sj)*es, j = 1,...,d, hold due to the way the scalar product
is constructed. Indeed,

(Ta(8j) es, €4) = (g, Ma(sj)e) = (eﬁ’eaj(“/))7

(Wa(sj)eﬁ’ €y) = {

If B does not contain j, then the both expressions are zero. Assume [ contains j.
According to the definition of the scalar product, (eg\;, e,) # 0 only if there exists m;, for
which 0™ (8\ j) = 0™ (7). Then there exists mq, for which 6™2(8) = 0™2(0;(v)). Take
m = max(mj,ms), this will in particular ensure that (81,..., Bm+1) contains j. Then,
since the Fock representation is a x-representation,

0, £ does not contain j,

q(j,B)(ep\;,€y), otherwise.

(es, 601(7)) = (6(51,-~~ﬁm+1)7 e(j"\/ls‘-w"fm))]:'erl
= (€(81.ccBrns)s TF(S5) €0 oocvn) ) Fonn
= (WF(S;)G(ﬂhmﬁmﬂ)’e(’Yh---me))]:m
= (4, B)(€(By....Bons1)\d+ E(r1reovin) ) Fo = 4(Js B) (€5 €7)-
To prove (1.1), we apply the same arguments as above to reduce the situation to the

case of the Fock representation.
2. We start with the following auxiliary fact.

Lemma 3.4. In the C*-algebra W there exist elements 5;, such that §jsk = 0jkl.

Proof. For each j =1,...,d, let p; = s;s7 be a projection on the range of 7, (s;). Since
the C*-algebra generated by p;, j = 1,...,d, is finite-dimensional [8], the latter C*-
algebra, and therefore, W as well, contains p; = \/k# pr which is a projection on the
sum of ranges of 7, (sg), k # J.
Write ¢; = (I —p;)s;. Then cjsp =0, k # j, and if we show that c}s; is invertible,
then
85 =T —pj)si(s5(I—pj)s;) "
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is the needed element.
So it is sufficient to prove that cjs; = s3(I — p;)s; is invertible. First notice that for
any element x = s,s;,, where ;1 and v do not contain j, we have

sjes; = s75u8,8; = q(J 11)qW, J)susjsis, = q(J; 1)q(w, j)z,

therefore, s%(I — p;)s; belongs to the finite-dimensional algebra generated by py, k # j,
and thus its spectrum is finite. Then to prove the invertibility of sj(I —Dj)$;, it is enough
to show that it has zero kernel, which is equivalent to ker(I — p;)s; = 0.

Since the Fock representation of W is exact [2], any element 2z € W can be uniquely
represented as

T =pi1T1 + -+ PaTq.

This means that the range of p; is linearly independent of the span of the ranges of pi, k # 7,
in particular, the ranges of p; and p; do not intersect. This implies ker(I —p;)s; =0. O

Now we prove the irreducibility of mo. For pu = (p1,...,pn) € A,, denote §, =
5., ...38,,. Fix an infinite sequence p = (u1, pi2, ... ) € A and consider the operators

Pn(‘u') = Tro‘(S(Ml7~~-7Hn)§>(kll1,...,pn)v n>1
For any vector of the form eg, one directly sees that

nh—>H;o Po(n)es = dpuen,
e., the sequence P,(u) strongly converges to P(u) which is a projection onto the
one-dimensional space generated by e,.

Let C be a bounded operator commuting with all 7, (z), x € W. Then C' commutes
with P(u), and therefore, for any 5 ~ o we have Ceg = ¢(8)eg, where ¢(f3) is a constant.
On the other hand, by the construction of 5; given by Lemma 3.4, for each 3,y ~ « there
exist finite multiindices y, v, such that s, = 5,5} sg, so that FQ(SM »)eg = €. Since C'
commutes with 7, (s,5}), we have

c(B)ey = c(B)ma(su5;)es = Ta(s,5,)Ces = Cma(s,5),)es = Cey = c(7)ey,

ie., ¢(B8) = c¢(y) for all 5,7 ~ «. Therefore, C is a scalar operator, and by the Schur
lemma, 7, is irreducible.
3. Using the arguments above, if o’ is not equivalent to «a, then
lim P,(a)eg =0, B~ a,
n—oo
therefore, P, (') strongly converges to zero in H,, but, in H,, it strongly converges to a
nonzero projection P(a’).
4. Assume that there exists Q € H,, for which 7,(s;)*Q =0, j =1,...,d. For each
B ~ « we have

(Qep) = (2, malsp,)es(p)) = (Talsp) 2 e08)) = 0.

Since vectors eg, 3 ~ o, form a total set in H,, we get 2 = 0. 0
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