

AND TOPOLOGY

## TWO-DIMENSIONAL HELMHOLTZ RESONATOR WITH TWO CLOSE POINT-LIKE WINDOWS: REGULARIZATION FOR THE NEUMANN CASE

A. G. BELOLIPETSKAIA, A. A. BOITSEV, S. FASSARI, I. Y. POPOV, AND F. RINALDI

ABSTRACT. Explicitly solvable model for two-dimensional Helmholtz resonator with two close point-like windows is constructed. The model is based on the theory of self-adjoint extensions of symmetric operators. Limiting procedure is studied for the case where the distance between the windows tends to zero. A regularization is suggested.

Побудовано явно розв'язувану модель для двовимірного резонатора Гельмгольца з двома близькими точковими вікнами. Модель базується на теорії самоспряжених розширень симетричних операторів. Вивчено процедуру граничного переходу для випадку, коли відстань між вікнами прямує до нуля, та запропоновано регуляризацію.

## 1. INTRODUCTION

Devices operating on the principle of the Helmholtz resonator, according to Junger, could have been used by the ancient Greeks [10]. Today Helmholtz resonators are actively used in acoustics [9, 7, 2, 23], aircraft construction [3, 6, 27], hydraulics [11] and optics [5]. Also the Helmholtz resonator can be the basis for metamaterials [13, 15] and can even be used to measure the volume of liquids and solids [26]. But it was not until 1860 that Helmholtz formulated the first mathematical theory of Helmholtz resonators [9]. One of the directions in the study of Helmholtz resonators is the study of resonances that arise in many problems of mathematics, physics and technology [4, 12, 14, 16, 20, 24, 25]. Although the study of the resonances of the Helmholtz resonator was carried out by Rayleigh [22], it is still relevant. In this article, the mathematical description will be based on the meromorphic continuation of the Green's function. The poles of this meromorphic continuation will contain physical information: the real part of the pole is the oscillation frequency, the imaginary part of the pole is the decay rate [28]. The model of the theory of operator extension with Neumann boundary conditions will be used as a model of the Helmholtz resonator. This model has been described in [21, 17, 18, 19].

## 2. PROBLEM SETTING AND MODEL CONSTRUCTION

2.1. Construction of a symmetric operator. From here on we consider  $\mathbb{R}^2$  to be the main space, the elements of the considered space we denote by

$$x = (x_1, x_2), \quad x_i \in \mathbb{R}, \quad i \in \{1, 2\}.$$

Consider a smooth unbounded curve  $\gamma: I \to \mathbb{R}^2$  with the support  $\Gamma$  that is

$$\Gamma = \gamma(I)$$

dividing the main space into two unbounded open sets  $\Omega^{in}$  and  $\Omega^{ex}$ , i.e.,

$$\partial \Omega^{in} = \partial \Omega^{ex} = \Gamma, \quad \Omega^{in} \cup \Omega^{ex} \cup \Gamma = \mathbb{R}^2.$$

<sup>2020</sup> Mathematics Subject Classification. 47A52, 47A20, 47N50.

Keywords. Operator extensions theory, Helmholtz resonator, solvable model.

Let us introduce the notations

$$\Omega = \Omega^{in} \oplus \Omega^{ex}, \quad \partial \Omega = \Gamma.$$

Now we consider Laplace operators  $-\Delta^{ex}$  and  $-\Delta^{in}$  in  $L_2(\Omega^{ex})$  and in  $L_2(\Omega^{in})$ , respectively. We consider Laplace equation with Neumann boundary conditions on  $\partial \Omega^{ex,in}$ , namely

$$\Delta^{in,ex} f \equiv 0, \quad \left. \frac{\partial f}{\partial n} \right|_{\partial \Omega^{in,ex}} = 0,$$

where n denotes the external unit normal vector to  $\partial \Omega^{in,ex}$ . Let

$$x^i = (x_1^i, x_2^i), \quad i \in \{1, 2\},$$

be two different points on  $\Gamma = \partial \Omega^{ex} = \partial \Omega^{in}$ , i.e.,  $x^i \in \Gamma$ ,  $i \in \{0, 1\}$ . Let us restrict the considered operators onto the set of smooth functions that vanish in a neighbourhood of  $x^1$  and  $x^2$ . It is well known that the closures  $-\Delta_0^{ex}$  and  $-\Delta_0^{in}$  of the considered operators are symmetric operators with deficiency indices (2, 2).

Thus, we can consider a symmetric operator

$$\Delta_0 = \Delta_0^{in} \oplus \Delta_0^{ex}$$

acting in  $\Omega$  with the described boundary conditions on  $\partial \Omega$  having deficiency indices (4, 4).

Let us describe the domain of the adjoint operator  $-\Delta^*$ . Using the Neumann formula, we conclude that the domain  $\mathfrak{D}(-\Delta^*)$  consists of the functions u having the form

$$\begin{split} u &= \begin{pmatrix} u^{ex}_{0} \\ u^{in} \end{pmatrix} = \begin{pmatrix} u^{ex}_{0} \\ u^{in}_{0} \end{pmatrix} + a^{ex}_{0} \begin{pmatrix} G^{ex}(x, x^{0}, k_{0}) \\ 0 \end{pmatrix} + a^{in}_{0} \begin{pmatrix} 0 \\ G^{in}(x, x^{0}, k_{0}) \end{pmatrix} + \\ &+ a^{ex}_{1} \begin{pmatrix} G^{ex}(x, x^{1}, k_{0}) \\ 0 \end{pmatrix} + a^{in}_{1} \begin{pmatrix} 0 \\ G^{in}(x, x^{1}, k_{0}) \end{pmatrix}, \end{split}$$

where  $u_0^{in,ex} \in \mathfrak{D}(\Delta_0^{in,ex})$  and  $G^{in,ex}$  are corresponding free Green functions,  $k_0^2$  is a regular point for the operators  $\Delta_0^{in,ex}$ . Let us find the conditions for which the considered operator is self-adjoint.

2.2. Boundary form construction. Now we start with examining the boundary form for the introduced operator. It is clear that the boundary form for the operator  $-\Delta^*$  reduces to the expression

$$(-\Delta^* u, v) - (u, -\Delta^* v) = \lim_{\varepsilon \to 0+0} \int_{\substack{\Omega^{ex} \setminus (B_\varepsilon(x^0) \cup B_\varepsilon(x^1))}} (-\Delta^* u^{ex} \overline{v^{ex}} + u^{ex} \Delta^* \overline{v^{ex}}) \, dx + \lim_{\varepsilon \to 0+0} \int_{\substack{\Omega^{in} \setminus (B_\varepsilon(x^0) \cup B_\varepsilon(x^1))}} \left(-\Delta^* u^{in} \overline{v^{in}} + u^{in} \Delta^* \overline{v^{in}}\right) \, dx,$$

where  $B_{\varepsilon}(x^i)$  is a ball of radius  $\varepsilon$  centered at  $x^i$ ,  $i \in \{0, 1\}$ . Using the asymptotics for the Green's function, we can obtain the following relation:

$$(-\Delta^* u, v) - (u, -\Delta^* v) = \sum_{i=0,1} (a_i^{ex} \widetilde{b}_i^{ex} - b_i^{ex} \widetilde{a}_i^{ex} + a_i^{in} \widetilde{b}_i^{in} - b_i^{in} \widetilde{a}_i^{in}),$$

where  $a_i^{ex}, a_i^{in}, b_i^{ex} = u_0^{ex}(x^i), b_i^{in} = u_0^{in}(x^i)$  are the coefficients corresponding to the function u and  $\tilde{a}_i^{ex}, \tilde{a}_i^{in}, \tilde{b}_i^{ex} = v_0^{ex}(x^i), \tilde{b}_i^{in} = v_0^{in}(x^i)$  are the coefficients corresponding to the function  $v, i \in \{0, 1\}$ .

It is clear that any self-adjoint extension can be given by equating the latter expression to zero, that is,

$$\sum_{i=0,1} (a_i^{ex} \widetilde{b}_i^{ex} - b_i^{ex} \widetilde{a}_i^{ex} + a_i^{in} \widetilde{b}_i^{in} - b_i^{in} \widetilde{a}_i^{in}) = 0.$$

We choose the following condition:

$$a_i^{ex} = -a_i^{in}, \quad b_i^{ex} = b_i^{in}, \quad i \in \{0, 1\}.$$

2.3. Construction of an extension. To construct an extension, we find the form of the coefficients of  $\alpha_{+/-}^{ex/in}$ ,  $\beta_{+/-}^{ex/in}$  of the Green function, which is written in the following form:

$$\begin{split} G(x,y,k) &= \begin{pmatrix} G^{ex}(x,y,k) \\ 0 \end{pmatrix} + \alpha_{+}^{ex} \begin{pmatrix} G^{ex}(x,x^{0},k) + G^{ex}(x,x^{1},k) \\ 0 \end{pmatrix} \\ &+ \alpha_{-}^{ex} \begin{pmatrix} G^{ex}(x,x^{0},k) - G^{ex}(x,x^{1},k) \\ 0 \end{pmatrix} + \alpha_{+}^{in} \begin{pmatrix} 0 \\ G^{in}(x,x^{0},k) + G^{in}(x,x^{1},k) \end{pmatrix} \\ &+ \alpha_{-}^{in} \begin{pmatrix} 0 \\ G^{in}(x,x^{0},k) - G^{in}(x,x^{1},k) \end{pmatrix}, \quad x \in \Omega^{ex}, \\ G(x,y,k) &= \begin{pmatrix} 0 \\ G^{in}(x,y,k) \end{pmatrix} + \beta_{+}^{ex} \begin{pmatrix} G^{ex}(x,x^{0},k) + G^{ex}(x,x^{1},k) \\ 0 \end{pmatrix} \\ &+ \beta_{-}^{ex} \begin{pmatrix} G^{ex}(x,x^{0},k) - G^{ex}(x,x^{1},k) \\ 0 \end{pmatrix} + \beta_{+}^{in} \begin{pmatrix} G^{in}(x,x^{0},k) + G^{in}(x,x^{1},k) \end{pmatrix} \\ &+ \beta_{-}^{in} \begin{pmatrix} 0 \\ G^{in}(x,x^{0},k) - G^{in}(x,x^{1},k) \end{pmatrix}, \quad x \in \Omega^{in}. \end{split}$$

**Theorem 2.1.** The coefficients  $\alpha_{+/-}^{ex/in}$ ,  $\beta_{+/-}^{ex/in}$  from the formulas above have the following form:

$$\begin{split} \alpha^{ex}_{+} &= (G^{ex}(x^{0},y,k) \cdot (G^{ex}(x^{0},x^{1},k) + G^{in}(x^{0},x^{1},k) - g^{ex}_{1} - g^{in}_{1}) \\ &+ G^{ex}(x^{1},y,k) \cdot (G^{ex}(x^{0},x^{1},k) + G^{in}(x^{0},x^{1},k) - g^{ex}_{0} - g^{in}_{0})) \cdot g^{-1}, \\ \alpha^{ex}_{-} &= (-G^{ex}(x^{0},y,k) \cdot (G^{ex}(x^{0},x^{1},k) + G^{in}(x^{0},x^{1},k) + g^{ex}_{1} + g^{in}_{1}) \\ &+ G^{ex}(x^{1},y,k) \cdot (G^{ex}(x^{0},x^{1},k) + G^{in}(x^{0},x^{1},k) + g^{ex}_{0} + g^{in}_{0})) \cdot g^{-1}, \\ \alpha^{in}_{+} &= -\alpha^{ex}_{+}, \qquad \alpha^{in}_{-} &= -\alpha^{ex}_{-}, \\ \beta^{ex}_{+} &= (G^{in}(x^{0},y,k) \cdot (-G^{ex}(x^{0},x^{1},k) - G^{in}(x^{0},x^{1},k) + g^{ex}_{1} + g^{in}_{1}) \\ &+ G^{in}(x^{1},y,k) \cdot (-G^{ex}(x^{0},x^{1},k) - G^{in}(x^{0},x^{1},k) + g^{ex}_{0} + g^{in}_{0})) \cdot g^{-1}, \\ \beta^{ex}_{-} &= (G^{in}(x^{0},y,k) \cdot (G^{ex}(x^{0},x^{1},k) + G^{in}(x^{0},x^{1},k) + g^{ex}_{1} + g^{in}_{1}) \\ &- G^{in}(x^{1},y,k) \cdot (G^{ex}(x^{0},x^{1},k) + G^{in}(x^{0},x^{1},k) - g^{ex}_{0} - g^{in}_{0})) \cdot g^{-1}, \\ \beta^{in}_{+} &= -\beta^{ex}_{+}, \qquad \beta^{in}_{-} &= -\beta^{ex}_{-}, \end{split}$$

where 
$$g = (g_0^{ex} + g_0^{in}) \cdot (g_1^{ex} + g_1^{in}) - (G^{ex}(x^0, x^1, k) + G^{in}(x^0, x^1, k))^2.$$

*Proof.* At first consider the case where  $x \in \Omega^{ex}$ . The Green function can be written as follows:

$$\begin{split} G(x,y,k) &= \begin{pmatrix} G^{ex}(x,y,k) \\ 0 \end{pmatrix} + \alpha_0^{ex} \begin{pmatrix} G^{ex}(x,x^0,k) \\ 0 \end{pmatrix} + \alpha_0^{in} \begin{pmatrix} 0 \\ G^{in}(x,x^0,k) \end{pmatrix} \\ &+ \alpha_1^{ex} \begin{pmatrix} G^{ex}(x,x^1,k) \\ 0 \end{pmatrix} + \alpha_0^{in} \begin{pmatrix} 0 \\ G^{in}(x,x^1,k) \end{pmatrix} \\ &= \begin{pmatrix} G^{ex}(x,y,k) \\ 0 \end{pmatrix} + \alpha_0^{ex} \begin{pmatrix} G^{ex}(x,x^1,k_0) \\ 0 \end{pmatrix} + \alpha_1^{in} \begin{pmatrix} 0 \\ G^{in}(x,x^1,k_0) \end{pmatrix} \\ &+ \alpha_0^{ex} \begin{pmatrix} G^{ex}(x,x^0,k) - G^{ex}(x,x^0,k_0) \\ 0 \end{pmatrix} \\ &+ \alpha_0^{in} \begin{pmatrix} G^{in}(x,x^0,k) - G^{in}(x,x^0,k_0) \end{pmatrix} \\ &+ \alpha_1^{in} \begin{pmatrix} G^{ex}(x,x^1,k) - G^{ex}(x,x^1,k_0) \end{pmatrix} \\ &+ \alpha_1^{in} \begin{pmatrix} G^{in}(x,x^1,k) - G^{in}(x,x^1,k_0) \end{pmatrix} \\ &+ \alpha_1^{in} \begin{pmatrix} G^{in}(x,x^1,k) - G^{in}(x,x^1,k_0) \end{pmatrix} . \end{split}$$

From this expansion we immediately get that

$$\alpha_i^{ex} = a_i^{ex}, \quad \alpha_i^{in} = a_i^{in}, \quad i \in \{0, 1\},$$

therefore  $\alpha_i^{ex} = -\alpha_i^{in}$ .

Now let us find the values of the coefficients  $b_i^{ex}, b_i^{in}$ . It is clear that they can be obtained from the following expressions:

$$\begin{split} b_0^{ex} &= G^{ex}(x^0, y, k) + \alpha_0^{ex} \left( G^{ex}(x, x^0, k) - G^{ex}(x, x^0, k_0) \right) \Big|_{x=x^0} + \alpha_1^{ex} G^{ex}(x^0, x^1, k), \\ b_1^{ex} &= G^{ex}(x^1, y, k) + \alpha_1^{ex} \left( G^{ex}(x, x^1, k) - G^{ex}(x, x^1, k_0) \right) \Big|_{x=x^1} + \alpha_0^{ex} G^{ex}(x^1, x^0, k), \\ b_1^{in} &= \alpha_0^{in} \left( G^{in}(x, x^0, k) - G^{in}(x, x^0, k_0) \right) \Big|_{x=x^0} + \alpha_1^{in} G^{in}(x^0, x^1, k), \\ b_2^{in} &= \alpha_1^{in} \left( G^{in}(x, x^1, k) - G^{in}(x, x^1, k_0) \right) \Big|_{x=x_2} + \alpha_0^{in} G^{in}(x^1, x^0, k). \end{split}$$

Let us introduce the following auxiliary notations:

$$g_i^{in,ex} = (G^{in,ex}(x,x^i,k) - G^{in,ex}(x,x^i,k_0))|_{x=x^i}, \quad i \in \{0,1\}.$$

The solution to the system of equations  $b_0^{ex} = b_1^{ex}, b_0^{in} = b_1^{in}$  are the following expressions:

$$\begin{split} \alpha_0^{ex} &= \frac{-G^{ex}(x^0,y,k)(g_1^{ex}+g_1^{in})+G^{ex}(x^1,y,k)(G^{ex}(x^0,x^1,k)+G^{in}(x^0,x^1,k))}{(g_0^{ex}+g_0^{in})(g_1^{ex}+g_1^{in})-(G^{ex}(x^0,x^1,k)+G^{in}(x^0,x^1,k))^2},\\ \alpha_1^{ex} &= \frac{-G^{ex}(x^1,y,k)(g_0^{ex}+g_0^{in})+G^{ex}(x^0,y,k)(G^{ex}(x^0,x^1,k)+G^{in}(x^0,x^1,k))}{(g_0^{ex}+g_0^{in})(g_1^{ex}+g_1^{in})-(G^{ex}(x^0,x^1,k)+G^{in}(x^0,x^1,k))^2}. \end{split}$$

Let us now rewrite G(x, y, k) for  $x \in \Omega^{ex}$  in another way,

$$\begin{split} G(x,y,k) &= \begin{pmatrix} G^{ex}(x,y,k) \\ 0 \end{pmatrix} + \alpha_{+}^{ex} \begin{pmatrix} G^{ex}(x,x^{0},k) + G^{ex}(x,x^{1},k) \\ 0 \end{pmatrix} \\ &+ \alpha_{-}^{ex} \begin{pmatrix} G^{ex}(x,x^{0},k) - G^{ex}(x,x^{1},k) \\ 0 \end{pmatrix} + \alpha_{+}^{in} \begin{pmatrix} 0 \\ G^{in}(x,x^{0},k) + G^{in}(x,x^{1},k) \end{pmatrix} \\ &+ \alpha_{-}^{in} \begin{pmatrix} 0 \\ G^{in}(x,x^{0},k) - G^{in}(x,x^{1},k) \end{pmatrix}, \end{split}$$

where

$$\alpha_{+}^{ex} = \alpha_{0}^{ex} + \alpha_{1}^{ex}, \quad \alpha_{-}^{ex} = \alpha_{0}^{ex} - \alpha_{1}^{ex}, \quad \alpha_{+}^{in} = -\alpha_{+}^{ex}, \quad \alpha_{-}^{in} = -\alpha_{-}^{ex}.$$

Thus, the coefficients  $\alpha_{+/-}^{ex/in}$  are obtained. Now consider the case where  $x \in \Omega^{in}$ . We have,

$$\begin{split} G(x,y,k) &= \begin{pmatrix} 0 \\ G^{in}(x,y,k) \end{pmatrix} + \beta_0^{ex} \begin{pmatrix} G^{ex}(x,x^0,k) \\ 0 \end{pmatrix} + \beta_0^{in} \begin{pmatrix} 0 \\ G^{in}(x,x^0,k) \end{pmatrix} \\ &+ \beta_1^{ex} \begin{pmatrix} G^{ex}(x,x^1,k) \\ 0 \end{pmatrix} + \beta_1^{in} \begin{pmatrix} 0 \\ G^{in}(x,x^1,k) \end{pmatrix} \\ &= \begin{pmatrix} 0 \\ G^{in}(x,y,k) \end{pmatrix} + \beta_0^{ex} \begin{pmatrix} G^{ex}(x,x^0,k_0) \\ 0 \end{pmatrix} + \beta_0^{in} \begin{pmatrix} 0 \\ G^{in}(x,x^0,k_0) \end{pmatrix} \\ &+ \beta_1^{ex} \begin{pmatrix} G^{ex}(x,x^1,k_0) \\ 0 \end{pmatrix} + \beta_1^{in} \begin{pmatrix} 0 \\ G^{in}(x,x^1,k_0) \end{pmatrix} \\ &+ \beta_0^{ex} \begin{pmatrix} G^{ex}(x,x^0,k) - G^{ex}(x,x^0,k_0) \\ 0 \end{pmatrix} + \beta_0^{in} \begin{pmatrix} 0 \\ G^{in}(x,x^0,k) - G^{in}(x,x^0,k_0) \end{pmatrix} \\ &+ \beta_1^{ex} \begin{pmatrix} G^{ex}(x,x^1,k) - G^{ex}(x,x^1,k_0) \\ 0 \end{pmatrix} + \beta_1^{in} \begin{pmatrix} 0 \\ G^{in}(x,x^1,k) - G^{in}(x,x^1,k_0) \end{pmatrix} . \end{split}$$

It is clear that  $\beta_i^{ex} = -\beta_i^{in}$ . Now we can find the value of the coefficients  $b_i^{ex}, b_i^{in}$ ,

$$\begin{split} b_0^{ex} &= \beta_0^{ex} (G^{ex}(x, x^0, k) - G^{ex}(x, x^0, k_0))|_{x=x^0} + \beta_1^{ex} G^{ex}(x^0, x^1, k), \\ b_1^{ex} &= \beta_1^{ex} (G^{ex}(x, x^1, k) - G^{ex}(x, x^1, k_0))|_{x=x^1} + \beta_0^{ex} G^{ex}(x^1, x^0, k), \\ b_0^{in} &= G^{in}(x^0, y, k) + \beta_0^{in} (G^{in}(x, x^0, k) - G^{in}(x, x^0, k_0))|_{x=x^0} + \beta_1^{in} G^{in}(x^0, x^1, k), \\ b_1^{in} &= G^{in}(x^1, y, k) + \beta_1^{in} (G^{in}(x, x^1, k) - G^{in}(x, x^1, k_0))|_{x=x^1} + \beta_0^{in} G^{in}(x^1, x^0, k). \end{split}$$

A solution to the system of equations  $b_0^{ex} = b_1^{ex}, b_0^{in} = b_1^{in}$  are the following expressions:

$$\begin{split} \beta_0^{ex} &= \frac{G^{in}(x^0,y,k)(g_1^{ex}+g_1^{in})-G^{in}(x^1,y,k)(G^{ex}(x^0,x^1,k)+G^{in}(x^0,x^1,k))}{(g_0^{ex}+g_0^{in})(g_1^{ex}+g_1^{in})-(G^{ex}(x^0,x^1,k)+G^{in}(x^0,x^1,k))^2},\\ \beta_1^{ex} &= \frac{G^{in}(x^1,y,k)(g_0^{ex}+g_0^{in})-G^{in}(x^0,y,k)(G^{ex}(x^0,x^1,k)+G^{in}(x^0,x^1,k))}{(g_0^{ex}+g_0^{in})(g_1^{ex}+g_1^{in})-(G^{ex}(x^0,x^1,k)+G^{in}(x^0,x^1,k))^2}. \end{split}$$

Now we wish to rewrite G(x, y, k) for  $x \in \Omega^{in}$  in the following way:

$$\begin{split} G(x,y,k) &= \begin{pmatrix} 0\\ G^{in}(x,y,k) \end{pmatrix} + \beta_{+}^{ex} \begin{pmatrix} G^{ex}(x,x^{0},k) + G^{ex}(x,x^{1},k) \\ 0 \end{pmatrix} \\ &+ \beta_{-}^{ex} \begin{pmatrix} G^{ex}(x,x^{0},k) - G^{ex}(x,x^{1},k) \\ 0 \end{pmatrix} + \beta_{+}^{in} \begin{pmatrix} 0\\ G^{in}(x,x^{0},k) + G^{in}(x,x^{1},k) \end{pmatrix} \\ &+ \beta_{-}^{in} \begin{pmatrix} 0\\ G^{in}(x,x^{0},k) - G^{in}(x,x^{1},k) \end{pmatrix}, \end{split}$$

where

 $\beta_{+}^{ex} = \beta_{0}^{ex} + \beta_{1}^{ex}, \quad \beta_{-}^{ex} = \beta_{0}^{ex} - \beta_{1}^{ex}, \quad \beta_{+}^{in} = -\beta_{+}^{ex}, \quad \beta_{-}^{in} = -\beta_{-}^{ex}.$ 

Thus, the theorem is proved.

**Corollary 2.1.** For a better understanding of the result given by the theorem above, consider a special case, where the regions  $\Omega^{ex}$ ,  $\Omega^{in}$  are half-planes and the two points are given by  $\mp x^0 = (\mp x_0, 0)$ ,  $x_0 > 0$ . The formulas turn out to be as follows:

$$\alpha_{+}^{ex} = \frac{1}{\frac{2}{\pi} \ln \frac{k}{k_0} - 2G(-x^0, x^0, k)} (G^{ex}(-x^0, y, k) + G^{ex}(x^0, y, k)),$$

100 A. G. BELOLIPETSKAIA, A. A. BOITSEV, S. FASSARI, I. Y. POPOV, AND F. RINALDI

$$\begin{aligned} \alpha^{ex}_{-} &= \frac{1}{\frac{2}{\pi} \ln \frac{k}{k_0} + 2G(-x^0, x^0, k)} (G^{ex}(-x^0, y, k) - G^{ex}(x^0, y, k)), \\ \beta^{ex}_{+} &= \frac{1}{\frac{2}{\pi} \ln \frac{k}{k_0} + 2G(-x^0, x^0, k)} (G^{in}(-x^0, y, k) + G^{in}(x^0, y, k)), \\ \beta^{ex}_{-} &= \frac{1}{\frac{2}{\pi} \ln \frac{k}{k_0} - 2G(-x^0, x^0, k)} (G^{in}(-x^0, y, k) - G^{in}(x^0, y, k)). \end{aligned}$$

3. Regularization of the Green function and existence of the limit as  $x^0 \rightarrow 0$ 

As a consequence of the considerations in the previous section, the external Green function can be expressed as

$$\begin{split} G(x,y,k) &= \begin{pmatrix} G^{ex}(x,y,k) \\ 0 \end{pmatrix} + \alpha_{-}^{ex} \begin{pmatrix} G^{ex}_{sym}(x,x^{0},k) \\ 0 \end{pmatrix} + \alpha_{-}^{ex} \begin{pmatrix} G^{ex}_{asym}(x,x^{0},k) \\ 0 \end{pmatrix} \\ &+ \alpha_{+}^{in} \begin{pmatrix} 0 \\ G^{in}_{sym}(x,x^{0},k) \end{pmatrix} + \alpha_{-}^{in} \begin{pmatrix} 0 \\ G^{in}_{asym}(x,x^{0},k) \end{pmatrix} \end{split}$$

with

$$\begin{split} G^{ex}_{sym}(x,x^0,k) &= G^{ex}(x,x^0,k) + G^{ex}(x,-x^0,k), \\ G^{ex}_{asym}(x,x^0,k) &= G^{ex}(x,x^0,k) - G^{ex}(x,-x^0,k). \end{split}$$

Of course, the internal Green function is defined in a similar way. Taking account of the fact that  $\alpha_{+}^{in} = -\alpha_{+}^{ex}$  and  $\alpha_{-}^{in} = -\alpha_{+}^{ex}$  from theorem 2.1, it can be rewritten as follows:

$$G(x, y, k) = \begin{pmatrix} G^{ex}(x, y, k) \\ 0 \end{pmatrix} + \alpha^{ex}_{+} \begin{pmatrix} G^{ex}_{sym}(x, x^{0}, k) \\ -G^{in}_{sym}(x, x^{0}, k) \end{pmatrix} + \alpha^{ex}_{-} \begin{pmatrix} G^{ex}_{asym}(x, x^{0}, k) \\ -G^{in}_{asym}(x, x^{0}, k) \end{pmatrix}$$

By setting  $\Gamma(x^0; k) = G^{ex}(-x^0, x^0, k) + G^{in}(-x^0, x^0, k)$ , the coefficients  $\alpha_+^{ex}, \alpha_-^{ex}$  can be written as

$$\begin{aligned} \alpha^{ex}_{+} &= \left[ G^{ex}(-x^{0}, y, k) \left( \frac{2}{\pi} \ln \frac{k}{k_{0}} + 2\Gamma(x^{0}, k) \right) + G^{ex}(x^{0}, k) \left( \frac{2}{\pi} \ln \frac{k}{k_{0}} + 2\Gamma(x^{0}, k) \right) \right] \\ &\times \left[ \frac{4}{\pi^{2}} \left( \ln \frac{k}{k_{0}} \right)^{2} - 4\Gamma^{2}(x^{0}, k) \right]^{-1}, \end{aligned}$$

that can easily be rewritten as

$$\alpha_{+}^{ex} = \frac{G_{sym}^{ex}(x^{0}, y, k)}{\frac{2}{\pi} \ln \frac{k}{k_{0}} - 2\Gamma(x^{0}, k)}.$$

Similarly,

$$\alpha_{-}^{ex} = \frac{G_{asym}^{ex}(x^{0}, y, k)}{\frac{2}{\pi} \ln \frac{k}{k_{0}} + 2\Gamma(x^{0}, k)}$$

Hence, the expression of the external Green function can be recast as

$$\begin{split} G(x,y,k) &= \begin{pmatrix} G^{ex}(x,y,k) \\ 0 \end{pmatrix} + \frac{1}{\frac{2}{\pi} \ln \frac{k}{k_0} - 2\Gamma(x^0,k)} \begin{pmatrix} G^{ex}_{sym}(x,x^0,k) G^{ex}_{sym}(x^0,y,k) \\ -G^{in}_{sym}(x,x^0,k) G^{ex}_{sym}(x^0,y,k) \end{pmatrix} \\ &+ \frac{1}{\frac{2}{\pi} \ln \frac{k}{k_0} + 2\Gamma(x^0,k)} \begin{pmatrix} G^{ex}_{asym}(x,x^0,k) G^{ex}_{asym}(x^0,y,k) \\ -G^{in}_{asym}(x,x^0,k) G^{ex}_{asym}(x^0,y,k) \end{pmatrix}. \end{split}$$

As this situation is quite reminiscent of the one encountered in [8], the denominators in  $\alpha_{+/-}^{ex}$  can be rewritten as:

$$\frac{2}{\pi}\ln\frac{k}{k_0} - 2\Gamma(x^0, k) = 2\left[\frac{1}{\pi}\ln k + \beta^{-1}(k_0) - \Gamma(x^0, k)\right],$$

and

$$\frac{2}{\pi}\ln\frac{k}{k_0} + 2\Gamma(x^0, k) = 2\left[\frac{1}{\pi}\ln k + \beta^{-1}(k_0) + \Gamma(x^0, k)\right],$$

where  $\beta^{-1}(k_0) = -\frac{1}{\pi} \ln k_0$ . At this stage it is crucial to notice that  $\Gamma(x^0, k)$  behaves like  $-\frac{\ln(kx^0)+\gamma}{\pi}$  for small values of  $x^0$  with  $\gamma$  denoting the well-known Euler-Mascheroni constant (see [1]), which would lead to a negatively divergent lowest eigenvalue as  $x_0 \to 0_+$ . Therefore, mimicking what was done in [8] to regularise this singular behaviour, the coupling  $\beta$  must be regularized as follows:

$$\beta^{-1}(k_0, x^0) = -\frac{1}{\pi} \ln k_0 + \Gamma(x^0, k_0).$$

As a consequence of this regularization, the denominator of the second term in the right-hand side of the external Green function would read

$$2\left[\frac{1}{\pi}\ln k + \beta^{-1}(k_0, x^0) - \Gamma(x^0, k)\right] = 2\left[\frac{1}{\pi}\ln k - \frac{1}{\pi}\ln k_0 + \Gamma(x^0, k_0) - \Gamma(x^0, k)\right],$$

which behaves like

$$\frac{2}{\pi}\ln\frac{k}{k_0} + \frac{2}{\pi}\left[\ln\left(x^0k\right) - \ln\left(x^0k_0\right)\right] = \frac{4}{\pi}\ln\frac{k}{k_0} = \frac{2}{\pi}\ln\frac{k^2}{k_0^2}$$

in a proximity of  $x^0 = 0_+$ . The latter fact implies the convergence of the regularized Green function

$$\begin{split} G_{x^0}^{reg}(x,y,k) &= \begin{pmatrix} G^{ex}(x,y,k) \\ 0 \end{pmatrix} \\ &+ \frac{1}{\frac{2}{\pi} \ln \frac{k}{k_0} + 2\Gamma(x^0,k_0) - 2\Gamma(x^0,k)} \begin{pmatrix} G_{sym}^{ex}(x,x^0,k) G_{sym}^{ex}(x^0,y,k) \\ -G_{sym}^{in}(x,x^0,k) G_{sym}^{ex}(x^0,y,k) \end{pmatrix} \\ &+ \frac{1}{\frac{2}{\pi} \ln \frac{k}{k_0} + 2\Gamma(x^0,k_0) + 2\Gamma(x^0,k)} \begin{pmatrix} G_{asym}^{ex}(x,x^0,k) G_{asym}^{ex}(x^0,y,k) \\ -G_{asym}^{in}(x,x^0,k) G_{asym}^{ex}(x^0,y,k) \end{pmatrix} \end{split}$$
to

τo

$$G_0(x, y, k) = \binom{G^{ex}(x, y, k)}{0} + \frac{1}{\frac{4}{\pi} \ln \frac{k}{k_0}} \binom{G^{ex}_{sym}(x, 0, k) G^{ex}_{sym}(0, y, k)}{-G^{in}_{sym}(x, 0, k) G^{ex}_{sym}(0, y, k)}$$

3.1. Regularization: the general case. For a further research, it is more convenient to introduce the following auxiliary variables:

$$\begin{split} &\Delta = (g_0^{ex} + g_0^{in})(g_1^{ex} + g_1^{in}) - (G^{ex}(x^0, x^1, k) + G^{in}(x^0, x^1, k))^2, \\ &\Delta_{\alpha_+} = G^{ex}(x^0, y, k) \cdot (G^{ex}(x^0, x^1, k) + G^{in}(x^0, x^1, k) - g_1^{ex} - g_1^{in}) \\ &\quad + G^{ex}(x^1, y, k) \cdot (G^{ex}(x^0, x^1, k) + G^{in}(x^0, x^1, k) - g_0^{ex} - g_0^{in}), \\ &\Delta_{\alpha_-} = G^{ex}(x^0, y, k) \cdot (-G^{ex}(x^0, x^1, k) - G^{in}(x^0, x^1, k) - g_1^{ex} - g_1^{in}) \\ &\quad + G^{ex}(x^1, y, k) \cdot (G^{ex}(x^0, x^1, k) + G^{in}(x^0, x^1, k) + g_0^{ex} + g_0^{in}), \\ &\Delta_{\beta_+} = G^{in}(x^0, y, k) \cdot (-G^{ex}(x^0, x^1, k) - G^{in}(x^0, x^1, k) + g_1^{ex} + g_1^{in}) \\ &\quad + G^{in}(x^1, y, k) \cdot (-G^{ex}(x^0, x^1, k) - G^{in}(x^0, x^1, k) + g_0^{ex} + g_0^{in}), \\ &\Delta_{\beta_-} = G^{in}(x^0, y, k) \cdot (G^{ex}(x^0, x^1, k) + G^{in}(x^0, x^1, k) + g_1^{ex} + g_1^{in}) \\ &\quad + G^{in}(x^1, y, k) \cdot (-G^{ex}(x^0, x^1, k) - G^{in}(x^0, x^1, k) - g_0^{ex} - g_0^{in}). \end{split}$$

Note that using the new variables, one can obtain the following expressions for the coefficients  $\alpha_{+/-}^{ex}, \beta_{+/-}^{ex}$ :

$$\alpha_{+}^{ex} = \frac{\Delta_{\alpha_{+}}}{\Delta}, \quad \alpha_{-}^{ex} = \frac{\Delta_{\alpha_{-}}}{\Delta},$$

102 A. G. BELOLIPETSKAIA, A. A. BOITSEV, S. FASSARI, I. Y. POPOV, AND F. RINALDI

$$\beta_{+}^{ex} = \frac{\Delta_{\beta_{+}}}{\Delta}, \quad \beta_{-}^{ex} = \frac{\Delta_{\beta_{-}}}{\Delta}$$

**Theorem 3.1.** In a vicinity of the point  $x_0 \in \partial \Omega$ , the coefficients  $\alpha_{+/-}^{ex}$ ,  $\beta_{+/-}^{ex}$  take the following form:

$$\begin{aligned} \alpha^{ex}_{+} &= \frac{2G^{ex}(x^{0}, y, k)}{\frac{2}{\pi} \ln |x - x^{0}|^{-1} + c^{ex}(x^{0}, k_{0}) + c^{in}(x^{0}, k_{0}) + 2g^{ex} + 2g^{in}},\\ \beta^{ex}_{+} &= \frac{-2G^{in}(x^{0}, y, k)}{\frac{2}{\pi} \ln |x - x^{0}|^{-1} + c^{ex}(x^{0}, k_{0}) + c^{in}(x^{0}, k_{0}) + 2g^{ex} + 2g^{in}},\\ \alpha^{ex}_{-} &= 0, \quad \beta^{ex}_{-} = 0. \end{aligned}$$

*Proof.* We will use the following asymptotics for the functions  $G^{in,ex}(x, x^0, k)$  in a vicinity of the point  $x^0 \in \partial \Omega$ . For  $x \in \Omega^{in}$  we have

$$\begin{aligned} G^{in}(x,x^0,k) &= \frac{1}{\pi} \ln |x-x^0|^{-1} + c^{in}(x^0,k_0) \\ &+ (k^2 - k_0^2) \sum_n \frac{|\varphi_n(x^0)|^2}{(\lambda_n - k^2)(\lambda_n - k_0^2)} + v^{in}(x,x^0,k) \end{aligned}$$

for  $x \in \Omega^{ex}$  we have

$$\begin{aligned} G^{ex}(x,x^{0},k) &= \frac{1}{\pi} \ln |x-x^{0}|^{-1} + c^{ex}(x^{0},k_{0}) \\ &+ (k^{2} - k_{0}^{2}) \int_{\mathbb{R}^{2}} \frac{|\varphi(x_{0},|s|,\nu)|^{2}}{(s^{2} - k^{2})(s^{2} - k_{0}^{2})} d^{2}s + v^{ex}(x,x^{0},k), \end{aligned}$$

where  $v^{in,ex} \in \mathfrak{D}(\overline{\Delta_0^{in,ex}})$ ,  $v^{in,ex} = o(|x - x^0|^0)$ ,  $\lambda_n$  are eigenvalues for the operator  $\Delta^{in}$ ,  $\varphi_n$  are the corresponding normalized eigenfunctions,  $\varphi(x^0, |s|, \nu)$  are normalized to  $\delta$ -function scattered waves, corresponding to the point  $|s|^2$  of the continuous spectrum of the operator  $\Delta^{ex}$ ,  $k_0^2$  is some fixed regular value of the spectral parameter of the operator  $\Delta = \Delta^{in} \oplus \Delta^{ex}$ .

For convenience, let us denote the following expressions for  $g^{in,ex}$ :

$$g^{in} = (k^2 - k_0^2) \sum_n \frac{|\varphi_n(x^0)|^2}{(\lambda_n - k^2)(\lambda_n - k_0^2)},$$
  
$$g^{ex} = (k^2 - k_0^2) \int_{\mathbb{R}^2} \frac{|\varphi(x^0, |s|, \nu)|^2}{(s^2 - k^2)(s^2 - k_0^2)} d^2s.$$

Then, in a vicinity of the point  $x^0 \in \partial\Omega$ ,  $g_i^{ex,in}$  behave in the following manner:

$$g_i^{in} = g^{in}, \quad g_i^{ex} = g^{ex}.$$

To investigate the behavior of the coefficients  $\alpha_{+/-}, \beta_{+/-}$  in a vicinity of the point  $x_0 \in \partial\Omega$ , we investigate the behavior of the coefficients  $\Delta_{\alpha_{+/-}}, \Delta_{\beta_{+/-}}$  in a vicinity of the point  $x_0 \in \partial\Omega$ ,

$$\Delta_{\alpha_{+}} = 2G^{ex}(x^{0}, y, k) \cdot \left(\frac{2}{\pi} \ln|x - x^{0}|^{-1} + c^{ex}(x^{0}, k_{0}) + c^{in}(x^{0}, k_{0})\right),$$
  
$$\Delta_{\beta_{+}} = -2G^{in}(x^{0}, y, k) \cdot \left(\frac{2}{\pi} \ln|x - x^{0}|^{-1} + c^{ex}(x^{0}, k_{0}) + c^{in}(x^{0}, k_{0})\right),$$
  
$$\Delta_{\alpha_{-}} = 0, \quad \Delta_{\beta_{-}} = 0.$$

Thus, we obtain that in a vicinity of the point  $x_0 \in \partial\Omega$ , the coefficients  $\alpha_{+/-}, \beta_{+/-}$  take the following form:

$$\begin{aligned} \alpha^{ex}_{+} &= \frac{2G^{ex}(x^{0}, y, k)}{\frac{2}{\pi} \ln |x - x^{0}|^{-1} + c^{ex}(x^{0}, k_{0}) + c^{in}(x^{0}, k_{0}) + 2g^{ex} + 2g^{in}}, \\ \beta^{ex}_{+} &= \frac{-2G^{in}(x^{0}, y, k)}{\frac{2}{\pi} \ln |x - x^{0}|^{-1} + c^{ex}(x^{0}, k_{0}) + c^{in}(x^{0}, k_{0}) + 2g^{ex} + 2g^{in}}, \\ \alpha^{ex}_{-} &= 0, \quad \beta^{ex}_{-} = 0. \end{aligned}$$

Thus, the theorem is proved.

**Corollary 3.1.** The equation describing resonances is  $\Delta = 0$ . Then, in a vicinity of the point  $x^0 \in \partial\Omega$ , the equation  $\Delta = 0$  is equivalent to the combination of the following two equations:

$$\frac{2}{\pi} \ln |x - x^0|^{-1} + c^{ex}(x^0, k_0) + c^{in}(x^0, k_0) = 0,$$
  
$$\frac{2}{\pi} \ln |x - x^0|^{-1} + c^{ex}(x^0, k_0) + c^{in}(x^0, k_0) + 2g^{ex} + 2g^{in} = 0.$$

To consider a regularization when the distance between point-like windows approaches 0, one should deal with the equation  $\Delta = 0$ . We may consider the surface to be smooth. The regularization is based on the existence of a relation between  $k_0$  related to the windows width and the distance between the windows,  $|x^0 - x^1|$ . The main term of the asymptotics in  $k_0$ , for  $k_0 \to \infty$ , is determined by the first term of  $\Delta$ , by  $g_{0,1}^{in,ex}$ . The main term of the asymptotics with respect to the distance  $|x^0 - x^1|$ , when  $|x^0 - x^1| \to 0$ , is determined by the second term of  $\Delta$ . Thus, for the regularization, we choose  $|x^0 - x^1|$  corresponding to  $k_0/2$  in accordance with the equation  $\Delta = 0$ . We are led to an energy-dependent (k-dependent) condition.

## References

- [1] G. B. Arfken and H. J. Weber, Mathematical methods for physicists, 1999.
- [2] M. R. Bothien and D. Wassmer, Impact of density discontinuities on the resonance frequency of helmholtz resonators, AIAA journal 53 (2015), no. 4, 877–887.
- [3] J. C. Bruggeman, A. Hirschberg, M. E. van Dongen, A. P. Wijnands, and J. Gorter, Self-sustained aero-acoustic pulsations in gas transport systems: experimental study of the influence of closed side branches, Journal of sound and vibration 150 (1991), no. 3, 371–393.
- [4] R. Chanaud, Effects of geometry on the resonance frequency of helmholtz resonators, Journal of Sound and Vibration 178 (1994), no. 3, 337–348.
- [5] P. Chevalier, P. Bouchon, R. Haïdar, and F. Pardo, Optical helmholtz resonators, Applied Physics Letters 105 (2014), no. 7, 071110.
- [6] P. Durrieu, G. Hofmans, G. Ajello, R. Boot, Y. Aurégan, A. Hirschberg, and M. Peters, *Quasisteady aero-acoustic response of orifices*, The Journal of the Acoustical Society of America **110** (2001), no. 4, 1859–1872.
- [7] F. Fahy and C. Schofield, A note on the interaction between a helmholtz resonator and an acoustic mode of an enclosure, Journal of Sound and Vibration 72 (1980), no. 3, 365–378.
- [8] S. Fassari, I. Popov, and F. Rinaldi, On the behaviour of the two-dimensional hamiltonian as the distance between the two centres vanishes, Physica Scripta 95 (2020), no. 7, 075209.
- [9] M. Howe, On the helmholtz resonator, Journal of Sound and Vibration 45 (1976), no. 3, 427-440.
- [10] M. Junger, Helmholtz resonators in load-bearing walls, (1975).
- [11] L. Kela, Resonant frequency of an adjustable helmholtz resonator in a hydraulic system, Archive of Applied Mechanics 79 (2009), no. 12, 1115–1125.
- [12] A. Maurel, J. F. Mercier, K. Pham, J. J. Marigo, and A. Ourir, *Enhanced resonance of sparse arrays of helmholtz resonators—application to perfect absorption*, The Journal of the Acoustical Society of America **145** (2019), no. 4, 2552–2560.
- [13] L. Ning, Y. Z. Wang, and Y. S. Wang, Active control of elastic metamaterials consisting of symmetric double helmholtz resonator cavities, International Journal of Mechanical Sciences 153 (2019), 287–298.
- [14] O. Nordhaus and J. Pelzl, Frequency dependence of resonant photoacoustic cells: The extended helmholtz resonator, Applied physics 25 (1981), no. 3, 221–229.

103

- 104 A. G. BELOLIPETSKAIA, A. A. BOITSEV, S. FASSARI, I. Y. POPOV, AND F. RINALDI
- [15] M. P. Peiró-Torres, S. Castiñeira-Ibáñez, J. Redondo, and J. V. Sánchez-Pérez, Interferences in locally resonant sonic metamaterials formed from helmholtz resonators, Applied Physics Letters 114 (2019), no. 17, 171901.
- [16] I. Y. Popov, The resonator with narrow slit and the model based on the operator extensions theory, Journal of mathematical physics 33 (1992), no. 11, 3794–3801.
- [17] I. Y. Popov and S. Popova, The extension theory and resonances for a quantum waveguide, Physics Letters A 173 (1993), no. 6, 484–488.
- [18] I. Y. Popov and S. Popova, Zero-width slit model and resonances in mesoscopic systems, Europhysics Letters 24 (1993), 373–373.
- [19] I. Y. Popov and S. Popova, Eigenvalues and bands imbedded in the continuous spectrum for a system of resonators and a waveguide: solvable model, Physics Letters A 222 (1996), no. 4, 286–290.
- [20] I. Y. Popov, Model of point-like window for electromagnetic helmholtz resonator, Zeitschrift für Analysis und ihre Anwendungen 32 (2013), no. 2, 155–162.
- [21] I. Y. Popov, Extension theory and localization of resonances for domains of trap type, Matematicheskii sbornik 181 (1990), no. 10, 1366–1390.
- [22] L. Rayleigh, The theory of the helmholtz resonator, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 92 (1916), no. 638, 265–275.
- [23] A. Sanada and N. Tanaka, Extension of the frequency range of resonant sound absorbers using two-degree-of-freedom helmholtz-based resonators with a flexible panel, Applied Acoustics 74 (2013), no. 4, 509–516.
- [24] A. Vorobiev, Resonance asymptotics for quantum waveguides with semitransparent multi-perforated wall, Наносистемы: физика, химия, математика **12** (2021), no. 4, 462–471.
- [25] A. Vorobiev, E. S. Trifanova, and I. Y. Popov, Resonance asymptotics for a pair quantum waveguides with common semitransparent perforated wall, Наносистемы: физика, химия, математика 11 (2020), по. 6, 619–627.
- [26] E. S. Webster and C. E. Davies, The use of helmholtz resonance for measuring the volume of liquids and solids, Sensors 10 (2010), no. 12, 10663–10672.
- [27] G. Wu, Z. Lu, X. Xu, W. Pan, W. Wu, J. Li, and J. Ci, Numerical investigation of aeroacoustics damping performance of a helmholtz resonator: Effects of geometry, grazing and bias flow, Aerospace Science and Technology 86 (2019), 191–203.
- [28] M. Zworski, Mathematical study of scattering resonances, Bulletin of Mathematical Sciences 7 (2017), no. 1, 1–85.

A. G. Belolipetskaia: annabel1502@mail.ru

Department of Higher Mathematics, ITMO University, 197101 St. Petersburg, Russian Federation

A. A. Boitsev: boitsevanton@gmail.com Department of Higher Mathematics, ITMO University, 197101 St. Petersburg, Russian Federation

S. Fassari: silvestro.fassari@uva.es

Department of Higher Mathematics, ITMO University, 197101 St. Petersburg, Russian Federation, CERFIM, PO Box 1132, CH-6601 Locarno, Switzerland, Univ. degli Studi Guglielmo Marconi, Via Plinio 44, I-00193 Rome, Italy

I. Y. Popov: popov1955@gmail.com

Department of Higher Mathematics, ITMO University, 197101 St. Petersburg, Russian Federation

F. Rinaldi: f.rinaldi@unimarconi.it

Univ. degli Studi Guglielmo Marconi, Via Plinio 44, I-00193 Rome, Italy, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Naples, Italy

Received 27/01/2022