

A NOTE ON PENCIL OF BOUNDED LINEAR OPERATORS ON NON-ARCHIMEDEAN BANACH SPACES

AZIZ BLALI, ABDELKHALEK EL AMRANI, AND JAWAD ETTAYB

ABSTRACT. We give a characterization of the essential spectrum for (A, B) , where A is a closed linear operator and B is a bounded linear operator, by means of Fredholm operators on a Banach space of countable type over \mathbb{Q}_p .

За допомогою фредгольмових операторів на банаховому просторі зліченого типу над \mathbb{Q}_p надано характеристику істотного спектра для (A, B) , де A — замкнеґний лінійний оператор, а B — обмежений.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, X and Y are non-archimedean $(n.a)$ Banach spaces over a (n.a) non trivially complete valued field K with valuation $|\cdot|$, $\mathcal{L}(X, Y)$ denotes the set of all bounded linear operators from X into Y. When, $X = Y$, we have $\mathcal{L}(X, Y) = \mathcal{L}(X)$. If $A \in \mathcal{L}(X)$, $N(A)$ and $R(A)$ denote the kernel and the range of A, respectively. For more details, we refer to [3, 7]. X is said to be of countable type if there is a countable set in X whose linear hull is dense. Recall that an unbounded linear operator $A: D(A) \subseteq X \to Y$ is said to be closed if for all $(x_n) \subset D(A)$ such that $||x_n - x|| \to 0$ and $||Ax_n - y|| \to 0$ as $n \to \infty$, for some $x \in X$ and $y \in Y$, then $x \in D(A)$ and $y = Ax$. The collection of all closed linear operators from X into Y is denoted by $\mathcal{C}(X,Y)$. When $X = Y$, if $A \in \mathcal{L}(X)$ and B is unbounded linear operator, then $A + B$ is closed if and only if B is closed [3]. For more details on non-archimedean operators theory, we refer to $[2, 3, 7]$. There are many interesting works on pseudospectra in the classical Banach space, see [4, 9].

Definition 1 ([3]). Let $\omega = (\omega_i)_i$ be a sequence of non-zero elements of K. We define \mathbb{E}_{ω} by

$$
\mathbb{E}_{\omega} = \{ x = (x_i)_i : \forall i \in \mathbb{N}, x_i \in \mathbb{K}, \text{ and } \lim_{i \to \infty} |\omega_i|^{\frac{1}{2}} |x_i| = 0 \},\
$$

and it is equipped with the norm

$$
(\forall x \in \mathbb{E}_{\omega}) : x = (x_i)_i, \|x\| = \sup_{i \in \mathbb{N}} (|\omega_i|^{\frac{1}{2}} |x_i|).
$$

Remark 1. (1) [3, Example 2.21] The space $(\mathbb{E}_{\omega}, \|\cdot\|)$ is a non-archimedean Banach space.

(2) If $\langle \cdot, \cdot \rangle : \mathbb{E}_{\omega} \times \mathbb{E}_{\omega} \longrightarrow \mathbb{K}$, is defined by

$$
(x,y)\longmapsto \sum_{i=0}^{\infty}x_iy_i\omega_i,
$$

where $x = (x_i)_i$ and $y = (y_i)_i$, then the space $(\mathbb{E}_{\omega}, \|\cdot\|, \langle \cdot, \cdot \rangle)$ is called a *p*-adic (or non-archimedean) Hilbert space.

(2) The orthogonal basis $\{e_i, i \in \mathbb{N}\}\$ is called the canonical basis of \mathbb{E}_{ω} , where for all $i \in \mathbb{N}, ||e_i|| = |\omega_i|^{\frac{1}{2}}.$

In the next definition, X and Y are two vector spaces over \mathbb{K} .

Keywords. Non-archimedean Banach spaces, spectrum, essential spectrum.

²⁰²⁰ Mathematics Subject Classification. 47S10.

Definition 2 ([6]). We say that $A \in \mathcal{L} (X, Y)$ has an index when both $\alpha (A) = \dim N(A)$ and $\beta (A) = \dim \mathrm{I}\{ Y / R(A) \}$ are finite. In this case, the index of the linear operator A is defined as $ind(A) = \alpha (A) - \beta (A)$ $ind(A) = \alpha (A) - \beta (A)$ $ind(A) = \alpha (A) - \beta (A)$.

Definition 3 ([6]). Let $A \in \mathcal{L} (X, Y)$. A is said to be upper semi-Fredholm operator if $\alpha(A)$ is finite and $R(A)$ is closed.

The set of al[l u](#page-4-5)pper semi-Fredholm operators is denoted by $\Phi_+(X, Y)$.

Definition 4 ([6]). Let $A \in \mathcal{L} (X, Y)$. A is said to be lower semi-Fredholm operator if $\beta (A)$ is finite.

The set of all lower semi-Fredholm operators is denoted by $\Phi = (X, Y)$.

The set of all Fredholm operators is defined by

$$
\Phi(X,Y) = \Phi_+(X,Y) \cap \Phi_-(X,Y).
$$

Let X be a non-archimedean Banach space over $\Bbb K$. A subset A of X is said to be compactoid if for every $\varepsilon > 0$, there is a finite subset B of X such that $A \subset B_{\varepsilon}(0) + C_0(B)$, where $B_\varepsilon (0) = \{ x \in X : \|x\| \leq \varepsilon \}$ and $C_0(B)$ is an absolutely convex hull of X, i.e.

$$
C_0(B) = \{\lambda_1 x_1 + \dots + \lambda_n x_n : n \in \mathbb{N}, \lambda_1, \dots, \lambda_n \in B_K, x_1, \dots, x_n \in B\}.
$$

We have t[he](#page-4-1) following definition [7, page 142], for more details, see [7].

Definition 5 ([7]). Let X and Y be two non-archimedean Banach spaces over \mathbb{K} . A linear map $A: X \rightarrow Y$ is said to be compact if $A(B_X)$ is compactoid in Y, where $B_X = \{ x \in X : ||x|| \leq 1\}.$

We denot[e b](#page-4-1)y $\mathcal{K} (X, Y)$, the set of all compact operators from X into Y.

Definitio[n 6](#page-4-1) ([7]). Let $T \in \mathcal L (X, Y)$. T is called an operator of finite rank if $R(A)$ is a finite dimensional subspace of Y.

Theorem 1 ([7]). Let $T \in \mathcal{L}(X, Y)$. Then T is compact if, and only if, for every $\varepsilon > 0$, there exists [an](#page-4-0) $S \in \mathcal{L} (X, Y)$ such that $R(S)$ is finite-dimensional and $\| T - S \| < \varepsilon$.

Definition 7 ([3]). Let X be a non-archimedean Banach space and let $T \in \mathcal{L}(X)$. T is said to be completely continuous, if there exists a sequence of finite rank linear operators (T_n) such that $\| T_n - T \| \rightarrow 0$ as $n \rightarrow \infty$.

The col[lec](#page-4-1)tion of completely continuous linear operators on X is denoted by $\mathcal{C}_c(X)$.

- **Remark 2** ([7]). (i) In a non-archimedean Banach space X, we do not have the relationship between $\mathcal{C}_c(X)$ and $\mathcal{K}(X)$ as in the classical case. J. P. Serre has proved that those concepts coincide, when $\mathbb K$ is locally compact.
	- (ii) If \Bbb{K} is locally compact, then all completely continuous linear operators on X are compact on X.
	- (iii) If \Bbb{K} is locally compact, then T is compact if and only if $T(B_X)$ has compact clo[su](#page-4-5)re.

Theore[m 2](#page-4-6) ([6]). Suppose that $\Bbb K$ is spherically complete. Then, for each $T \in \Phi (X, Y)$ and $K \in \mathcal{K} (X, Y), T + K \in \Phi (X, Y)$ and ind $(T + K) = ind(T)$.

Lemma 1 ([8]). If x_1^*, \dots, x_n^* are linearly independent vectors in X^* , then there are vectors x_1, \cdots, x_n in X, such that

$$
x_j^*(x_k) = \delta_{j,k} = \begin{cases} 1, & \text{if } j = k, \\ 0, & \text{if } j \neq k, \end{cases} \quad 1 \le j,k \le n. \tag{1.1}
$$

Moreover, if x_1, \dots, x_n [are](#page-1-0) linearly independent vectors in X, then there are vectors x_1^*, \cdots, x_n^* in X^* such that (1.1) holds.

Theorem 3 ([5]). Assume that X, Y are non-archimedean Banach spaces. Let A : $D(A) \subseteq X \rightarrow Y$ be a surjective closed linear operator. Then A is an open map.

When the domain of A is dense in X, the adjoint operator A^* of A is defined as usual. Specifically, the operator $A^*: D(A^*) \subseteq Y^* \to X^*$ satisfies

$$
\langle Ax, y^* \rangle = \langle x, A^* y^* \rangle
$$

for all $x \in D(A)$, $y^* \in D(A^*)$. As in the classic case, the following property is an immediate co[nse](#page-4-7)quence of the definition.

Proposition 1 ([5]). Let A be a linear operator with dense domain. Then A^* is a closed linear operato[r.](#page-4-7)

Proposition 2 ([5]). Let A be a linear operator with dense domain. Then the following statement [hol](#page-4-1)ds:

$$
R(A)^{\perp} = \ker(A^*) \cong (Y/\overline{R(A)})^*.
$$

Theorem 4 ([7]). Let X be a non-archimedean Banach space. For any nonzero $x \in X$, there exists $x^* \in X^*$ such that $x^*(x) = 1$ and $||x^*|| = ||x||^{-1}$.

Definition 8 ([1]). Let $A, B \in \mathcal{L} (X)$ such that $A \neq B$ and B be a non-null operator. The Fredholm spectrum of a pair (A, B) is defined by

$$
\sigma_F(A, B) = \{ \lambda \in \mathbb{K} : A - \lambda B \notin \Phi(X) \}. \tag{1.2}
$$

The Fredhol[m](#page-4-8) resolvent is defined by $\rho_F (A, B) = \mathbb{K} \setminus \sigma_F (A, B)$.

Definition 9 ([1]). Let $A, B \in \mathcal{L} (X)$ such that $A \neq B$ and B be a non-null operator. The essential spectrum of a pencil of bounded linear operators (A, B) is defined by

 $\sigma_e(A, B) = \{ \lambda \in \mathbb{K} : A - \lambda B \text{ is not a Fredholm operator of index 0} \}.$ $\sigma_e(A, B) = \{ \lambda \in \mathbb{K} : A - \lambda B \text{ is not a Fredholm operator of index 0} \}.$ $\sigma_e(A, B) = \{ \lambda \in \mathbb{K} : A - \lambda B \text{ is not a Fredholm operator of index 0} \}.$

Proposition 3 ([1]). Suppose that $\mathbb{K} = \mathbb{Q}_p$. Let $A, B \in \mathcal{L} (X)$ be such that B is a non null operato[r.](#page-4-8) Then, the Fredholm resolvent $\rho_F (A, B)$ is open.

Theorem 5 ([1]). Suppose that $\mathbb{K} = \mathbb{Q}_p$. Let $A - \lambda B \in \Phi (X)$ and $K \in \mathcal{K} (X)$. Then $A + K - \lambda B \in \Phi (X).$

Remark 3. We set $\sigma_1(A, B) = \bigcap$ $K \in \mathcal{K} (X)$ $\sigma (A + K, B).$

The following result gives a characterization of the essential spectrum for (A, B) , where $A \neq B$ by means of a Fredholm operator on a Banach space of countable type over \mathbb{Q}_p .

Theorem 6. Let X be (n.a) Banach space of countable type over \mathbb{Q}_p . Let $B \in \mathcal{L} (X)$ and $A \in \mathcal C(X), \ \lambda \in \mathbb K$ be such that A^*, B^* exist, and $N((A - \lambda B)^*) = R(A - \lambda B)^{\perp}$. Then $\lambda \notin \sigma_1(A, B)$ if and only if $A - \lambda B \in \Phi (X)$ and ind($A - \lambda B$) = 0.

Proof. Let $\lambda \notin \sigma_1(A, B)$, then there exists $K \in \mathcal{K}(X)$ such that $\lambda \in \rho(A + K, B)$. Hence $A + K - \lambda B \in \Phi (X)$

and

$$
ind(A + K - \lambda B) = 0.
$$

The operator $A - \lambda B$ can be written in the form

$$
A - \lambda B = A + K - \lambda B - K.
$$

Since $K \in \mathcal{K} (X)$, using Theorem 2, we have

$$
A - \lambda B \in \Phi(X)
$$

and

$$
ind(A - \lambda B) = 0.
$$

Conversely, let $\lambda \in \Bbb Q_p$ suc[h t](#page-1-2)hat $A - \lambda B \in \Phi (X)$ and $ind(A - \lambda B) = 0$. Put $\alpha (A - \lambda B) = 0$ $\beta (A - \lambda B) = n$. Let $\{ x_1, \dots, x_n\}$ be a basis for $N(A - \lambda B)$ and $\{ y_1^*, \dots, y_n^* \}$ be a basis for $R(A - \lambda B)^{\perp}$. By Lemma 1, there are functionals x_1^*, \cdots, x_n^* in X^* (X^* is the dual space of X) and elements y_1, \cdots, y_n in X such that

$$
x_j^*(x_k) = \delta_{j,k}
$$
 and $y_j^*(y_k) = \delta_{j,k}$, $1 \le j, k \le n$,

where $\delta_{j,k} = 0$ if $j \neq k$ and $\delta_{j,k} = 1$ if $j = k$. Consider an operator $F : X \rightarrow X$ defined by

$$
x \longmapsto \sum_{i=1}^{n} x_i^*(x) y_i.
$$

It is easy to see that F is a linear operator and $D(F) = X$. In fact, for all $x \in X$,

$$
||Fx|| = ||\sum_{i=1}^{n} x_i^*(x)y_i||
$$

\n
$$
\leq \max_{1 \leq i \leq n} ||x_i^*(x)y_i||
$$

\n
$$
\leq \max_{1 \leq i \leq n} (||x_i^*|| ||y_i||) ||x||.
$$

Moreover, $R(F)$ is contained in a finite dimensional subspace of X. So, F is a finite rank operator, hence F is a compact operator. We demonstrate that

$$
N(A - \lambda B) \cap N(F) = \{0\},\tag{1.3}
$$

and

$$
R(A - \lambda B) \cap R(F) = \{0\}.\tag{1.4}
$$

Let $x \in N(A - \lambda B) \cap N(F)$, hence

$$
x = \sum_{i=1}^{n} \alpha_i x_i, \qquad \alpha_1, \cdots, \alpha_n \in \mathbb{Q}_p.
$$

Then for all $1 \leq j \leq n, x_j^*(x) = \sum^n$ $i=1$ $\alpha_i \delta_{i,j} = \alpha_j$. On the other hand, if $x \in N(F)$, then $Fx=0, so$

$$
\sum_{j=1}^{n} x_j^*(x) y_j = 0.
$$

Therefore, we have for all $1 \leq j \leq n$, $x_j^*(x) = 0$. Hence $x = 0$. Consequently,

$$
N(A - \lambda B) \cap N(F) = \{0\}.
$$

Let $y \in R(A - \lambda B) \cap R(F)$, then $y \in R(A - \lambda B)$ and $y \in R(F)$. Let $y \in R(F)$, we have $y = \sum_{n=1}^{\infty}$ $i=1$ $\alpha_i y_i, \qquad \alpha_1 \cdots \alpha_n \in \mathbb{Q}_p.$

Then for all $1 \leq j \leq n, y^*_j(y) = \sum^n$ $i=1$ $\alpha_i \delta_{i,j} = \alpha_j$. On the other hand, if $y \in R(A - \lambda B)$, then for all $1 \leq j \leq n, y_j^*(y) = 0$. Thus $y = 0$. Therefore,

$$
R(A - \lambda B) \cap R(F) = 0.
$$

On the other hand, F is a compact operator, hence we deduce from Theorem 2, $A - \lambda B +$ $F \in \Phi (X)$ and $ind(A + F - \lambda B) = 0$. Thus

$$
\alpha(A + F - \lambda B) = \beta(A + F - \lambda B). \tag{1.5}
$$

[I](#page-3-0)f $x \in N(A + F - \lambda B)$, then $(A - \lambda B)x = -Fx$ in $R(A - \lambda B) \cap R(F)$. [It](#page-3-1) follows from (1.4) that $(A - \lambda B)x = -Fx = 0$, hence $x \in N(A - \lambda B) \cap N(F)$ and from (1.3), we have $x = 0$. Thus $\alpha (A + F - \lambda B) = 0$, it follow from (1.5), $R(A + F - \lambda B) = X$. Consequently, $A - \lambda B + F$ [is](#page-2-0) invertible and we conclude that $\lambda \notin \sigma_1(A, B)$.

By Theorem 6, we conclude that $\sigma_e(A, B) = \bigcap$ $K\in \mathcal K(X)$ $\sigma (A + K, B).$

REFERENCES

- [1] R. Ameziane Hassani, A. El Amrani, A. Blali, and J. Ettayb, Pseudospectra and essential Pseudospectra of a Pencil of bounded linear operators on non archi[medean Banach spaces, Filomat](https://doi.org/10.2298/FIL1912961A), to appear.
- [2] A. Ammara, A. Bouchekouaa, and A. Jeribi, Pseudospectra in a Non-Archimedean B[anach Space a](https://doi.org/10.1007/978-3-319-27323-5)nd [Essential Pseudospectr](https://doi.org/10.1007/978-3-319-27323-5)a in E_ω , Filomat 33 (2019), no. 12, 3961-3976, doi.org/10.2298/FIL1912961A.
- [3] T. Diagana and F. Ramaroson, Non-archimedean Operators Theory, Springer, 2016, doi.org/10. 1007/978-[3-319-27323-5](https://doi.org/10.1007/BF02510354).
- [4] Jos L. M. Van Dorsselaer, Pseudospectra for matrix pencils and stability of eq[uilibria, BIT](https://doi.org/10.1016/S0019-3577(05)80023-0) 37 (1997), no. 4, 833-845, doi.org/10.1007/BF02510354.
- [5] [H. R. Henriquez, H](https://doi.org/10.1016/S0019-3577(05)80023-0). Samuel Navarro, and G. Jose Aguayo, Closed linear operators between nonarchimedean Banach spaces, Indag. Mathem., N.S., 16 [\(2\) \(2005\), 201-214,](https://doi.org/10.1016/S0019-3577(04)90009-2) doi.org/10.1016/ S0019-3577(05)80023-0.
- [6] C. Perez-Garcia and S. Vega, Perturbation theory of p-adic Fredholm and semi-Fredholm operators, Indag. Mathem., N.S., 15 (2004), no. 1, 115-128, doi.org/10.1016/S0019-3577(04)90009-2.
- [7] A. C. M. van Rooij, Non-Archimedean functional analysis. Monographs and Textbooks in Pure and Applied Math., 51. Marcel Dekker, Inc., New York, 1978.
- [8] M. Schechter, Principles of Functional Analysis. Graduat[e Studies in Mathematics, vol. 36](https://doi.org/10.2307/j.ctvzxx9kj) American Mathematical Society, Providence, 2002.
- [9] L. N. Trefethen and M. Embree, Spectra and pseudospectra. The behavior of nonnormal matrices and o[perators. Princeton Univer](aziz.blali@usmba.ac.ma)sity Press, Princeton, 2005, doi.org/10.2307/j.ctvzxx9kj.

Aziz Blali: aziz.blali@usmba.ac.ma

Department of Math[ematics, University of Sidi Mohamed](abdelkhalek.elamrani@usmba.ac.ma) Ben Abdellah, ENS, Fez, Morocco

Abdelkhalek El Amrani: abdelkhalek.elamrani@usmba.ac.ma

Department of Mathematics and Computer Science, University of Sidi Mohamed Ben Abdellah, Faculty of Sci[ences Dhar El Mahraz, Fez, M](jawad.ettayb@usmba.ac.ma)orocco

Jawad Ettayb: jawad.ettayb@usmba.ac.ma

Department of Mathematics and Computer Science, University of Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Fez, Morocco

Received 18/01/2022; Revised 10/02/2022