A NOTE ON PENCIL OF BOUNDED LINEAR OPERATORS ON NON-ARCHIMEDEAN BANACH SPACES

AZIZ BLALI, ABDELKHALEK EL AMRANI, AND JAWAD ETTAYB

Abstract. We give a characterization of the essential spectrum for \((A, B)\), where \(A\) is a closed linear operator and \(B\) is a bounded linear operator, by means of Fredholm operators on a Banach space of countable type over \(\Bbb{Q}_p\).

Introduction and Preliminaries

Throughout this paper, \(X\) and \(Y\) are non-archimedean (n.a) Banach spaces over a (n.a) non trivially complete valued field \(\Bbb{K}\) with valuation \(\| \cdot \|\), \(\mathcal{L}(X, Y)\) denotes the set of all bounded linear operators from \(X\) into \(Y\). When, \(X = Y\), we have \(\mathcal{L}(X, Y) = \mathcal{L}(X)\). If \(A \in \mathcal{L}(X), N(A)\) and \(R(A)\) denote the kernel and the range of \(A\), respectively. For more details, we refer to [3, 7]. \(X\) is said to be of countable type if there is a countable set in \(X\) whose linear hull is dense. Recall that an unbounded linear operator \(A : D(A) \subseteq X \rightarrow Y\) is said to be closed if for all \((x_n) \subset D(A)\) such that \(\|x_n - x\| \rightarrow 0\) and \(\|Ax_n - y\| \rightarrow 0\) as \(n \rightarrow \infty\), for some \(x \in X\) and \(y \in Y\), then \(x \in D(A)\) and \(y = Ax\). The collection of all closed linear operators from \(X\) into \(Y\) is denoted by \(\mathcal{C}(X, Y)\). When \(X = Y\), if \(A \in \mathcal{L}(X)\) and \(B\) is unbounded linear operator, then \(A + B\) is closed if and only if \(B\) is closed [3]. For more details on non-archimedean operators theory, we refer to [2, 3, 7]. There are many interesting works on pseudospectra in the classical Banach space, see [4, 9].

Definition 1 ([3]). Let \(\omega = (\omega_i)_i\) be a sequence of non-zero elements of \(\Bbb{K}\). We define \(\mathbb{E}_\omega\) by

\[\mathbb{E}_\omega = \{x = (x_i)_i : \forall i \in \mathbb{N}, x_i \in \mathbb{K}, \text{ and } \lim_{i \to \infty} |\omega_i|^{\frac{1}{2}}|x_i| = 0\}\]

and it is equipped with the norm

\[(\forall x \in \mathbb{E}_\omega) : x = (x_i)_i, \quad \|x\| = \sup_{i \in \mathbb{N}} |\omega_i|^{\frac{1}{2}}|x_i|\]

Remark 1.

1. [3, Example 2.21] The space \((\mathbb{E}_\omega, \| \cdot \|)\) is a non-archimedean Banach space.

2. If \((\cdot, \cdot) : \mathbb{E}_\omega \times \mathbb{E}_\omega \rightarrow \mathbb{K}\), is defined by

\[(x, y) \mapsto \sum_{i=0}^{\infty} x_i y_i \omega_i\]

where \(x = (x_i)_i\) and \(y = (y_i)_i\), then the space \((\mathbb{E}_\omega, \| \cdot \|, (\cdot, \cdot))\) is called a \(p\)-adic (or non-archimedean) Hilbert space.

2. The orthogonal basis \(\{e_i, i \in \mathbb{N}\}\) is called the canonical basis of \(\mathbb{E}_\omega\), where for all \(i \in \mathbb{N}\), \(|e_i| = |\omega_i|^{\frac{1}{2}}\).

In the next definition, \(X\) and \(Y\) are two vector spaces over \(\Bbb{K}\).

2020 Mathematics Subject Classification. 47S10.

Keywords. Non-archimedean Banach spaces, spectrum, essential spectrum.
Definition 2 ([6]). We say that \(A \in \mathcal{L}(X, Y) \) has an index when both \(\alpha(A) = \dim N(A) \) and \(\beta(A) = \dim \left(Y/R(A) \right) \) are finite. In this case, the index of the linear operator \(A \) is defined as \(\text{ind}(A) = \alpha(A) - \beta(A) \).

Definition 3 ([6]). Let \(A \in \mathcal{L}(X, Y) \). \(A \) is said to be upper semi-Fredholm operator if
\[\alpha(A) \text{ is finite and } R(A) \text{ is closed.} \]
The set of all upper semi-Fredholm operators is denoted by \(\Phi_+(X, Y) \).

Definition 4 ([6]). Let \(A \in \mathcal{L}(X, Y) \). \(A \) is said to be lower semi-Fredholm operator if
\[\beta(A) \text{ is finite.} \]
The set of all lower semi-Fredholm operators is denoted by \(\Phi_-(X, Y) \).

The set of all Fredholm operators is defined by
\[\Phi(X, Y) = \Phi_+(X, Y) \cap \Phi_-(X, Y). \]
Let \(X \) be a non-archimedean Banach space over \(\mathbb{K} \). A subset \(A \) of \(X \) is said to be compactoid if for every \(\varepsilon > 0 \), there is a finite subset \(B \) of \(X \) such that \(A \subset B(0) + C_0(B) \), where \(B(0) = \{ x \in X : ||x|| \leq \varepsilon \} \) and \(C_0(B) \) is an absolutely convex hull of \(X \), i.e.
\[C_0(B) = \{ \lambda_1 x_1 + \cdots + \lambda_n x_n : n \in \mathbb{N}, \lambda_1, \cdots, \lambda_n \in B_K, x_1, \cdots, x_n \in B \}. \]

We have the following definition [7, page 142], for more details, see [7].

Definition 5 ([7]). Let \(X \) and \(Y \) be two non-archimedean Banach spaces over \(\mathbb{K} \). A linear map \(A : X \to Y \) is said to be compact if \(A(B_X) \) is compactoid in \(Y \), where \(B_X = \{ x \in X : ||x|| \leq 1 \} \).

We denote by \(K(X, Y) \), the set of all compact operators from \(X \) into \(Y \).

Definition 6 ([7]). Let \(T \in \mathcal{L}(X, Y) \). \(T \) is called an operator of finite rank if \(R(A) \) is a finite dimensional subspace of \(Y \).

Theorem 1 ([7]). Let \(T \in \mathcal{L}(X, Y) \). Then \(T \) is compact if, and only if, for every \(\varepsilon > 0 \), there exists an \(S \in \mathcal{L}(X, Y) \) such that \(R(S) \) is finite-dimensional and \(||T - S|| < \varepsilon \).

Definition 7 ([3]). Let \(X \) be a non-archimedean Banach space and let \(T \in \mathcal{L}(X) \). \(T \) is said to be completely continuous, if there exists a sequence of finite rank linear operators \((T_n) \) such that \(||T_n - T|| \to 0 \) as \(n \to \infty \).

The collection of completely continuous linear operators on \(X \) is denoted by \(\mathcal{C}_c(X) \).

Remark 2 ([7]).
(i) In a non-archimedean Banach space \(X \), we do not have the relationship between \(\mathcal{C}_c(X) \) and \(K(X) \) as in the classical case. J. P. Serre has proved that those concepts coincide, when \(\mathbb{K} \) is locally compact.
(ii) If \(\mathbb{K} \) is locally compact, then all completely continuous linear operators on \(X \) are compact on \(X \).
(iii) If \(\mathbb{K} \) is locally compact, then \(T \) is compact if and only if \(T(B_X) \) has compact closure.

Theorem 2 ([6]). Suppose that \(\mathbb{K} \) is spherically complete. Then, for each \(T \in \Phi(X, Y) \) and \(K \in K(X, Y) \), \(T + K \in \Phi(X, Y) \) and \(\text{ind}(T + K) = \text{ind}(T) \).

Lemma 1 ([8]). If \(x_1, \cdots, x_n \) are linearly independent vectors in \(X^* \), then there are vectors \(x_1, \cdots, x_n \) in \(X \), such that
\[x_j^*(x_k) = \delta_{j,k} = \begin{cases} 1, & \text{if } j = k, \\ 0, & \text{if } j \neq k, \end{cases} \quad 1 \leq j, k \leq n. \quad (1.1) \]
Moreover, if \(x_1, \cdots, x_n \) are linearly independent vectors in \(X \), then there are vectors \(x_1^*, \cdots, x_n^* \) in \(X^* \) such that (1.1) holds.
Theorem 3 ([5]). Assume that X, Y are non-archimedean Banach spaces. Let $A : D(A) \subseteq X \to Y$ be a surjective closed linear operator. Then A is an open map.

When the domain of A is dense in X, the adjoint operator A^* of A is defined as usual. Specifically, the operator $A^* : D(A^*) \subseteq Y^* \to X^*$ satisfies

\[
\langle Ax, y^* \rangle = \langle x, A^* y^* \rangle
\]

for all $x \in D(A)$, $y^* \in D(A^*)$. As in the classic case, the following property is an immediate consequence of the definition.

Proposition 1 ([5]). Let A be a linear operator with dense domain. Then A^* is a closed linear operator.

Proposition 2 ([5]). Let A be a linear operator with dense domain. Then the following statement holds:

\[
R(A)^\bot = \ker(A^*) \cong (Y/R(A))^*.
\]

Theorem 4 ([7]). Let X be a non-archimedean Banach space. For any nonzero $x \in X$, there exists $x^* \in X^*$ such that $x^* (x) = 1$ and $\|x^*\| = \|x\|^{-1}$.

Definition 8 ([11]). Let $A, B \in \mathcal{L}(X)$ such that $A \neq B$ and B be a non-null operator. The Fredholm spectrum of a pair (A, B) is defined by

\[
\sigma_F(A, B) = \{ \lambda \in \mathbb{K} : A - \lambda B \notin \Phi(X) \}.
\]

The Fredholm resolvent is defined by $\rho_F(A, B) = \mathbb{K}\setminus\sigma_F(A, B)$.

Definition 9 ([11]). Let $A, B \in \mathcal{L}(X)$ such that $A \neq B$ and B be a non-null operator. The essential spectrum of a pencil of bounded linear operators (A, B) is defined by

\[
\sigma_e(A, B) = \{ \lambda \in \mathbb{K} : A - \lambda B \text{ is not a Fredholm operator of index } 0 \}.
\]

Proposition 3 ([11]). Suppose that $\mathbb{K} = \mathbb{Q}_p$. Let $A, B \in \mathcal{L}(X)$ be such that B is a non-null operator. Then, the Fredholm resolvent $\rho_F(A, B)$ is open.

Theorem 5 ([11]). Suppose that $\mathbb{K} = \mathbb{Q}_p$. Let $A - \lambda B \in \Phi(X)$ and $K \in \mathcal{K}(X)$. Then $A + K - \lambda B \in \Phi(X)$.

Remark 3. We set $\sigma_1(A, B) = \bigcap_{K \in \mathcal{K}(X)} \sigma(A + K, B)$.

The following result gives a characterization of the essential spectrum for (A, B), where $A \neq B$ by means of a Fredholm operator on a Banach space of countable type over \mathbb{Q}_p.

Theorem 6. Let X be a (n.a) Banach space of countable type over \mathbb{Q}_p. Let $B \in \mathcal{L}(X)$ and $A \in \mathcal{C}(X)$, $\lambda \in \mathbb{K}$ be such that A^*, B^* exist, and $N \left((A - \lambda B)^* \right) = R(A - \lambda B)^\bot$. Then

\[
\lambda \notin \sigma_1(A, B) \quad \text{if and only if} \quad A - \lambda B \in \Phi(X) \quad \text{and} \quad \text{ind}(A - \lambda B) = 0.
\]

Proof. Let $\lambda \notin \sigma_1(A, B)$, then there exists $K \in \mathcal{K}(X)$ such that $\lambda \in \rho(A + K, B)$. Hence $A + K - \lambda B \in \Phi(X)$ and

\[
\text{ind}(A + K - \lambda B) = 0.
\]

The operator $A - \lambda B$ can be written in the form

\[
A - \lambda B = A + K - \lambda B - K.
\]

Since $K \in \mathcal{K}(X)$, using Theorem 2, we have

\[
A - \lambda B \in \Phi(X).
\]
and

\[ind(A - \lambda B) = 0. \]

Conversely, let \(\lambda \in \mathbb{Q}_p \) such that \(A - \lambda B \in \Phi(X) \) and \(ind(A - \lambda B) = 0 \). Put \(\alpha(A - \lambda B) = \beta(A - \lambda B) = n \). Let \(\{x_1, \ldots, x_n\} \) be a basis for \(N(A - \lambda B) \) and \(\{y_1, \ldots, y_n\} \) be a basis for \(R(A - \lambda B) \). By Lemma 1, there are functionals \(x_1^*, \ldots, x_n^* \) in \(X^* \) (\(X^* \) is the dual space of \(X \)) and elements \(y_1, \ldots, y_n \) in \(X \) such that

\[x_j^*(x_k) = \delta_{j,k} \quad \text{and} \quad y_j^*(y_k) = \delta_{j,k}, \quad 1 \leq j, k \leq n, \]

where \(\delta_{j,k} = 0 \) if \(j \neq k \) and \(\delta_{j,k} = 1 \) if \(j = k \). Consider an operator \(F: X \rightarrow X \) defined by

\[x \mapsto \sum_{i=1}^{n} x_i^*(x) y_i. \]

It is easy to see that \(F \) is a linear operator and \(D(F) = X \). In fact, for all \(x \in X \),

\[\|Fx\| = \| \sum_{i=1}^{n} x_i^*(x) y_i \| \leq \max_{1 \leq i \leq n} \| x_i^*(x) y_i \| \leq \max_{1 \leq i \leq n} (\| x_i^* \| \| y_i \|) \| x \|. \]

Moreover, \(R(F) \) is contained in a finite dimensional subspace of \(X \). So, \(F \) is a finite rank operator, hence \(F \) is a compact operator. We demonstrate that

\[N(A - \lambda B) \cap N(F) = \{0\}, \quad (1.3) \]

and

\[R(A - \lambda B) \cap R(F) = \{0\}. \quad (1.4) \]

Let \(x \in N(A - \lambda B) \cap N(F) \), hence

\[x = \sum_{i=1}^{n} \alpha_i x_i, \quad \alpha_1, \ldots, \alpha_n \in \mathbb{Q}_p. \]

Then for all \(1 \leq j \leq n \), \(x_j^*(x) = \sum_{i=1}^{n} \alpha_i \delta_{i,j} = \alpha_j \). On the other hand, if \(x \in N(F) \), then \(Fx = 0 \), so

\[\sum_{j=1}^{n} x_j^*(x) y_j = 0. \]

Therefore, we have for all \(1 \leq j \leq n \), \(x_j^*(x) = 0 \). Hence \(x = 0 \). Consequently,

\[N(A - \lambda B) \cap N(F) = \{0\}. \]

Let \(y \in R(A - \lambda B) \cap R(F) \), then \(y \in R(A - \lambda B) \) and \(y \in R(F) \). Let \(y \in R(F) \), we have

\[y = \sum_{i=1}^{n} \alpha_i y_i, \quad \alpha_1 \ldots \alpha_n \in \mathbb{Q}_p. \]

Then for all \(1 \leq j \leq n \), \(y_j^*(y) = \sum_{i=1}^{n} \alpha_i \delta_{i,j} = \alpha_j \). On the other hand, if \(y \in R(A - \lambda B) \), then for all \(1 \leq j \leq n \), \(y_j^*(y) = 0 \). Thus \(y = 0 \). Therefore,

\[R(A - \lambda B) \cap R(F) = 0. \]

On the other hand, \(F \) is a compact operator, hence we deduce from Theorem 2, \(A - \lambda B + F \in \Phi(X) \) and \(ind(A + F - \lambda B) = 0 \). Thus

\[\alpha(A + F - \lambda B) = \beta(A + F - \lambda B). \quad (1.5) \]
A NOTE ON PENCIL OF BOUNDED LINEAR OPERATORS ON N. A. BANACH SPACES

If \(x \in N(A + F - \lambda B) \), then \((A - \lambda B)x = -Fx \) in \(R(A - \lambda B) \cap R(F) \). It follows from (1.4) that \((A - \lambda B)x = -Fx = 0\), hence \(x \in N(A - \lambda B) \cap N(F) \) and from (1.3), we have \(x = 0 \). Thus \(\alpha(A + F - \lambda B) = 0 \), it follow from (1.5), \(R(A + F - \lambda B) = X \). Consequently, \(A - \lambda B + F \) is invertible and we conclude that \(\lambda \notin \sigma_1(A, B) \).

By Theorem 6, we conclude that \(\sigma_e(A, B) = \bigcap_{K \in \mathcal{K}(X)} \sigma(A + K, B) \).

REFERENCES

Aziz Blali: aziz.blali@usmba.ac.ma
Department of Mathematics, University of Sidi Mohamed Ben Abdellah, ENS, Fez, Morocco

Abdelkhalek El Amrani: abdelkhaled_elamrani@usmba.ac.ma
Department of Mathematics and Computer Science, University of Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Fez, Morocco

Jawad Ettayeb: jawad.ettayeb@usmba.ac.ma
Department of Mathematics and Computer Science, University of Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Fez, Morocco

Received 18/01/2022; Revised 10/02/2022