

A NOTE ON PENCIL OF BOUNDED LINEAR OPERATORS ON NON-ARCHIMEDEAN BANACH SPACES

AZIZ BLALI, ABDELKHALEK EL AMRANI, AND JAWAD ETTAYB

ABSTRACT. We give a characterization of the essential spectrum for (A, B), where A is a closed linear operator and B is a bounded linear operator, by means of Fredholm operators on a Banach space of countable type over \mathbb{Q}_p .

За допомогою фредгольмових операторів на банаховому просторі зліченого типу над \mathbb{Q}_p надано характеристику істотного спектра для (A, B), де A — замкнеґний лінійний оператор, а B — обмежений.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, X and Y are non-archimedean (n.a) Banach spaces over a (n.a) non trivially complete valued field K with valuation $|\cdot|$, $\mathcal{L}(X, Y)$ denotes the set of all bounded linear operators from X into Y. When, X = Y, we have $\mathcal{L}(X, Y) = \mathcal{L}(X)$. If $A \in \mathcal{L}(X)$, N(A) and R(A) denote the kernel and the range of A, respectively. For more details, we refer to [3, 7]. X is said to be of countable type if there is a countable set in X whose linear hull is dense. Recall that an unbounded linear operator $A : D(A) \subseteq X \to Y$ is said to be closed if for all $(x_n) \subset D(A)$ such that $||x_n - x|| \to 0$ and $||Ax_n - y|| \to 0$ as $n \to \infty$, for some $x \in X$ and $y \in Y$, then $x \in D(A)$ and y = Ax. The collection of all closed linear operators from X into Y is denoted by $\mathcal{C}(X, Y)$. When X = Y, if $A \in \mathcal{L}(X)$ and B is unbounded linear operator, then A + B is closed if and only if B is closed [3]. For more details on non-archimedean operators theory, we refer to [2, 3, 7]. There are many interesting works on pseudospectra in the classical Banach space, see [4, 9].

Definition 1 ([3]). Let $\omega = (\omega_i)_i$ be a sequence of non-zero elements of K. We define \mathbb{E}_{ω} by

$$\mathbb{E}_{\omega} = \{ x = (x_i)_i : \forall i \in \mathbb{N}, \ x_i \in \mathbb{K}, \ and \ \lim_{i \to \infty} |\omega_i|^{\frac{1}{2}} |x_i| = 0 \},$$

and it is equipped with the norm

$$(\forall x \in \mathbb{E}_{\omega}) : x = (x_i)_i, \ \|x\| = \sup_{i \in \mathbb{N}} (|\omega_i|^{\frac{1}{2}} |x_i|).$$

Remark 1. (1) [3, Example 2.21] The space $(\mathbb{E}_{\omega}, \|\cdot\|)$ is a non-archimedean Banach space.

(2) If $\langle \cdot, \cdot \rangle : \mathbb{E}_{\omega} \times \mathbb{E}_{\omega} \longrightarrow \mathbb{K}$, is defined by

$$(x,y)\longmapsto \sum_{i=0}^{\infty} x_i y_i \omega_i,$$

where $x = (x_i)_i$ and $y = (y_i)_i$, then the space $\left(\mathbb{E}_{\omega}, \|\cdot\|, \langle\cdot, \cdot\rangle\right)$ is called a *p*-adic (or non-archimedean) Hilbert space.

(2) The orthogonal basis $\{e_i, i \in \mathbb{N}\}$ is called the canonical basis of \mathbb{E}_{ω} , where for all $i \in \mathbb{N}, ||e_i|| = |\omega_i|^{\frac{1}{2}}$.

In the next definition, X and Y are two vector spaces over \mathbb{K} .

Keywords. Non-archimedean Banach spaces, spectrum, essential spectrum.

²⁰²⁰ Mathematics Subject Classification. 47S10.

Definition 2 ([6]). We say that $A \in \mathcal{L}(X, Y)$ has an index when both $\alpha(A) = \dim N(A)$ and $\beta(A) = \dim (Y/R(A))$ are finite. In this case, the index of the linear operator A is defined as $ind(A) = \alpha(A) - \beta(A)$.

Definition 3 ([6]). Let $A \in \mathcal{L}(X, Y)$. A is said to be upper semi-Fredholm operator if $\alpha(A)$ is finite and R(A) is closed.

The set of all upper semi-Fredholm operators is denoted by $\Phi_+(X,Y)$.

Definition 4 ([6]). Let $A \in \mathcal{L}(X, Y)$. A is said to be lower semi-Fredholm operator if $\beta(A)$ is finite.

The set of all lower semi-Fredholm operators is denoted by $\Phi_{-}(X, Y)$.

The set of all Fredholm operators is defined by

$$\Phi(X,Y) = \Phi_+(X,Y) \cap \Phi_-(X,Y).$$

Let X be a non-archimedean Banach space over K. A subset A of X is said to be compactoid if for every $\varepsilon > 0$, there is a finite subset B of X such that $A \subset B_{\varepsilon}(0) + C_0(B)$, where $B_{\varepsilon}(0) = \{x \in X : ||x|| \le \varepsilon\}$ and $C_0(B)$ is an absolutely convex hull of X, i.e.

$$C_0(B) = \{\lambda_1 x_1 + \dots + \lambda_n x_n : n \in \mathbb{N}, \ \lambda_1, \dots, \lambda_n \in B_K, \ x_1, \dots, x_n \in B\}.$$

We have the following definition [7, page 142], for more details, see [7].

Definition 5 ([7]). Let X and Y be two non-archimedean Banach spaces over \mathbb{K} . A linear map $A : X \to Y$ is said to be compact if $A(B_X)$ is compactoid in Y, where $B_X = \{x \in X : ||x|| \le 1\}.$

We denote by $\mathcal{K}(X, Y)$, the set of all compact operators from X into Y.

Definition 6 ([7]). Let $T \in \mathcal{L}(X, Y)$. T is called an operator of finite rank if R(A) is a finite dimensional subspace of Y.

Theorem 1 ([7]). Let $T \in \mathcal{L}(X, Y)$. Then T is compact if, and only if, for every $\varepsilon > 0$, there exists an $S \in \mathcal{L}(X, Y)$ such that R(S) is finite-dimensional and $||T - S|| < \varepsilon$.

Definition 7 ([3]). Let X be a non-archimedean Banach space and let $T \in \mathcal{L}(X)$. T is said to be completely continuous, if there exists a sequence of finite rank linear operators (T_n) such that $||T_n - T|| \to 0$ as $n \to \infty$.

The collection of completely continuous linear operators on X is denoted by $\mathcal{C}_c(X)$.

- **Remark 2** ([7]). (i) In a non-archimedean Banach space X, we do not have the relationship between $\mathcal{C}_c(X)$ and $\mathcal{K}(X)$ as in the classical case. J. P. Serre has proved that those concepts coincide, when \mathbb{K} is locally compact.
 - (ii) If \mathbb{K} is locally compact, then all completely continuous linear operators on X are compact on X.
 - (iii) If \mathbb{K} is locally compact, then T is compact if and only if $T(B_X)$ has compact closure.

Theorem 2 ([6]). Suppose that \mathbb{K} is spherically complete. Then, for each $T \in \Phi(X, Y)$ and $K \in \mathcal{K}(X, Y)$, $T + K \in \Phi(X, Y)$ and ind(T + K) = ind(T).

Lemma 1 ([8]). If x_1^*, \dots, x_n^* are linearly independent vectors in X^* , then there are vectors x_1, \dots, x_n in X, such that

$$x_{j}^{*}(x_{k}) = \delta_{j,k} = \begin{cases} 1, & \text{if } j = k, \\ 0, & \text{if } j \neq k, \end{cases} \quad 1 \le j,k \le n.$$
(1.1)

Moreover, if x_1, \dots, x_n are linearly independent vectors in X, then there are vectors x_1^*, \dots, x_n^* in X^* such that (1.1) holds.

Theorem 3 ([5]). Assume that X, Y are non-archimedean Banach spaces. Let $A : D(A) \subseteq X \to Y$ be a surjective closed linear operator. Then A is an open map.

When the domain of A is dense in X, the adjoint operator A^* of A is defined as usual. Specifically, the operator $A^* : D(A^*) \subseteq Y^* \to X^*$ satisfies

$$\langle Ax, y^* \rangle = \langle x, A^*y^* \rangle$$

for all $x \in D(A)$, $y^* \in D(A^*)$. As in the classic case, the following property is an immediate consequence of the definition.

Proposition 1 ([5]). Let A be a linear operator with dense domain. Then A^* is a closed linear operator.

Proposition 2 ([5]). Let A be a linear operator with dense domain. Then the following statement holds:

$$R(A)^{\perp} = \ker(A^*) \cong (Y/\overline{R(A)})^*.$$

Theorem 4 ([7]). Let X be a non-archimedean Banach space. For any nonzero $x \in X$, there exists $x^* \in X^*$ such that $x^*(x) = 1$ and $||x^*|| = ||x||^{-1}$.

Definition 8 ([1]). Let $A, B \in \mathcal{L}(X)$ such that $A \neq B$ and B be a non-null operator. The Fredholm spectrum of a pair (A, B) is defined by

$$\sigma_F(A,B) = \{\lambda \in \mathbb{K} : A - \lambda B \notin \Phi(X)\}.$$
(1.2)

The Fredholm resolvent is defined by $\rho_F(A, B) = \mathbb{K} \setminus \sigma_F(A, B)$.

Definition 9 ([1]). Let $A, B \in \mathcal{L}(X)$ such that $A \neq B$ and B be a non-null operator. The essential spectrum of a pencil of bounded linear operators (A, B) is defined by

 $\sigma_e(A, B) = \{\lambda \in \mathbb{K} : A - \lambda B \text{ is not a Fredholm operator of index } 0\}.$

Proposition 3 ([1]). Suppose that $\mathbb{K} = \mathbb{Q}_p$. Let $A, B \in \mathcal{L}(X)$ be such that B is a non null operator. Then, the Fredholm resolvent $\rho_F(A, B)$ is open.

Theorem 5 ([1]). Suppose that $\mathbb{K} = \mathbb{Q}_p$. Let $A - \lambda B \in \Phi(X)$ and $K \in \mathcal{K}(X)$. Then $A + K - \lambda B \in \Phi(X)$.

Remark 3. We set $\sigma_1(A, B) = \bigcap_{K \in \mathcal{K}(X)} \sigma(A + K, B).$

The following result gives a characterization of the essential spectrum for (A, B), where $A \neq B$ by means of a Fredholm operator on a Banach space of countable type over \mathbb{Q}_p .

Theorem 6. Let X be (n.a) Banach space of countable type over \mathbb{Q}_p . Let $B \in \mathcal{L}(X)$ and $A \in \mathcal{C}(X), \lambda \in \mathbb{K}$ be such that A^* , B^* exist, and $N((A - \lambda B)^*) = R(A - \lambda B)^{\perp}$. Then

$$\lambda \notin \sigma_1(A,B)$$
 if and only if $A - \lambda B \in \Phi(X)$ and $ind(A - \lambda B) = 0$.

Proof. Let $\lambda \notin \sigma_1(A, B)$, then there exists $K \in \mathcal{K}(X)$ such that $\lambda \in \rho(A + K, B)$. Hence

$$A + K - \lambda B \in \Phi(X)$$

and

$$ind(A+K-\lambda B)=0.$$

The operator $A - \lambda B$ can be written in the form

$$A - \lambda B = A + K - \lambda B - K.$$

Since $K \in \mathcal{K}(X)$, using Theorem 2, we have

$$A - \lambda B \in \Phi(X)$$

and

108

$$ind(A - \lambda B) = 0.$$

Conversely, let $\lambda \in \mathbb{Q}_p$ such that $A - \lambda B \in \Phi(X)$ and $ind(A - \lambda B) = 0$. Put $\alpha(A - \lambda B) = \beta(A - \lambda B) = n$. Let $\{x_1, \dots, x_n\}$ be a basis for $N(A - \lambda B)$ and $\{y_1^*, \dots, y_n^*\}$ be a basis for $R(A - \lambda B)^{\perp}$. By Lemma 1, there are functionals x_1^*, \dots, x_n^* in X^* (X^* is the dual space of X) and elements y_1, \dots, y_n in X such that

$$x_j^*(x_k) = \delta_{j,k}$$
 and $y_j^*(y_k) = \delta_{j,k}$, $1 \le j, k \le n$,

where $\delta_{j,k} = 0$ if $j \neq k$ and $\delta_{j,k} = 1$ if j = k. Consider an operator $F: X \to X$ defined by

$$x\longmapsto \sum_{i=1}^n x_i^*(x)y_i$$

It is easy to see that F is a linear operator and D(F) = X. In fact, for all $x \in X$,

$$\|Fx\| = \|\sum_{i=1}^{n} x_{i}^{*}(x)y_{i}\|$$

$$\leq \max_{1 \leq i \leq n} \|x_{i}^{*}(x)y_{i}\|$$

$$\leq \max_{1 \leq i \leq n} (\|x_{i}^{*}\|\|y_{i}\|)\|x\|$$

Moreover, R(F) is contained in a finite dimensional subspace of X. So, F is a finite rank operator, hence F is a compact operator. We demonstrate that

 $N(A - \lambda B) \cap N(F) = \{0\}, \tag{1.3}$

and

$$R(A - \lambda B) \cap R(F) = \{0\}.$$
(1.4)

Let $x \in N(A - \lambda B) \cap N(F)$, hence

$$x = \sum_{i=1}^{n} \alpha_{i} x_{i}, \qquad \alpha_{1}, \cdots, \alpha_{n} \in \mathbb{Q}_{p}.$$
$$x^{*}(x) = \sum_{i=1}^{n} \alpha_{i} \delta_{i} = \alpha_{i} \text{ On the other}$$

Then for all $1 \le j \le n$, $x_j^*(x) = \sum_{i=1}^{n} \alpha_i \delta_{i,j} = \alpha_j$. On the other hand, if $x \in N(F)$, then Fx = 0, so

$$\sum_{j=1}^{n} x_j^*(x) y_j = 0.$$

Therefore, we have for all $1 \le j \le n$, $x_j^*(x) = 0$. Hence x = 0. Consequently,

$$N(A - \lambda B) \cap N(F) = \{0\}.$$

Let $y \in R(A - \lambda B) \cap R(F)$, then $y \in R(A - \lambda B)$ and $y \in R(F)$. Let $y \in R(F)$, we have *n*

$$y = \sum_{i=1}^{n} \alpha_i y_i, \qquad \alpha_1 \cdots \alpha_n \in \mathbb{Q}_p.$$

Then for all $1 \le j \le n$, $y_j^*(y) = \sum_{i=1}^n \alpha_i \delta_{i,j} = \alpha_j$. On the other hand, if $y \in R(A - \lambda B)$, then for all $1 \le j \le n$, $y_j^*(y) = 0$. Thus y = 0. Therefore,

$$R(A - \lambda B) \cap R(F) = 0.$$

On the other hand, F is a compact operator, hence we deduce from Theorem 2, $A - \lambda B + F \in \Phi(X)$ and $ind(A + F - \lambda B) = 0$. Thus

$$\alpha(A + F - \lambda B) = \beta(A + F - \lambda B).$$
(1.5)

If $x \in N(A + F - \lambda B)$, then $(A - \lambda B)x = -Fx$ in $R(A - \lambda B) \cap R(F)$. It follows from (1.4) that $(A - \lambda B)x = -Fx = 0$, hence $x \in N(A - \lambda B) \cap N(F)$ and from (1.3), we have x = 0. Thus $\alpha(A + F - \lambda B) = 0$, it follow from (1.5), $R(A + F - \lambda B) = X$. Consequently, $A - \lambda B + F$ is invertible and we conclude that $\lambda \notin \sigma_1(A, B)$.

By Theorem 6, we conclude that $\sigma_e(A, B) = \bigcap_{K \in \mathcal{K}(X)} \sigma(A + K, B).$

References

- R. Ameziane Hassani, A. El Amrani, A. Blali, and J. Ettayb, Pseudospectra and essential Pseudospectra of a Pencil of bounded linear operators on non archimedean Banach spaces, Filomat, to appear.
- [2] A. Ammara, A. Bouchekouaa, and A. Jeribi, Pseudospectra in a Non-Archimedean Banach Space and Essential Pseudospectra in E_w, Filomat **33** (2019), no. 12, 3961-3976, doi.org/10.2298/FIL1912961A.
- [3] T. Diagana and F. Ramaroson, Non-archimedean Operators Theory, Springer, 2016, doi.org/10. 1007/978-3-319-27323-5.
- Jos L. M. Van Dorsselaer, Pseudospectra for matrix pencils and stability of equilibria, BIT 37 (1997), no. 4, 833-845, doi.org/10.1007/BF02510354.
- [5] H. R. Henriquez, H. Samuel Navarro, and G. Jose Aguayo, Closed linear operators between nonarchimedean Banach spaces, Indag. Mathem., N.S., 16 (2) (2005), 201-214, doi.org/10.1016/ S0019-3577(05)80023-0.
- [6] C. Perez-Garcia and S. Vega, Perturbation theory of p-adic Fredholm and semi-Fredholm operators, Indag. Mathem., N.S., 15 (2004), no. 1, 115-128, doi.org/10.1016/S0019-3577(04)90009-2.
- [7] A. C. M. van Rooij, Non-Archimedean functional analysis. Monographs and Textbooks in Pure and Applied Math., 51. Marcel Dekker, Inc., New York, 1978.
- [8] M. Schechter, Principles of Functional Analysis. Graduate Studies in Mathematics, vol. 36 American Mathematical Society, Providence, 2002.
- [9] L. N. Trefethen and M. Embree, Spectra and pseudospectra. The behavior of nonnormal matrices and operators. Princeton University Press, Princeton, 2005, doi.org/10.2307/j.ctvzxx9kj.

Aziz Blali: aziz.blali@usmba.ac.ma Department of Mathematics, University of Sidi Mohamed Ben Abdellah, ENS, Fez, Morocco

Abdelkhalek El Amrani: abdelkhalek.elamrani@usmba.ac.ma

Department of Mathematics and Computer Science, University of Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Fez, Morocco

Jawad Ettayb: jawad.ettayb@usmba.ac.ma

Department of Mathematics and Computer Science, University of Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Fez, Morocco

Received 18/01/2022; Revised 10/02/2022