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MOMENTS AND AN INTEGRAL REPRESENTATION FOR THE
NON-SYMMETRIC DUNKL-CLASSICAL FORM

Y. HABBACHI

Abstract. In this paper, we determine the moments and an integral representation
for the non-symmetric Dunkl-classical form.

Знайдено моменти та iнтегральне представлення для несиметричної класичної
за Данклом форми.

1. Introduction and Preliminaries results

The moments and integral representation play an important role in various topics of
orthogonal polynomials, their applications are also extended to other domains such as
statistics and probability theory (see [10, 13]). The links between them and classical
orthogonal polynomials are extensively studied by many authors (see [11, 12]).

Note that the classical continous orthogonal polynomial families (Hermite, Laguerre,
Bessel and Jacobi) are very much related to probability theory and statistics (see [10]).
The measures of the Hermite, Laguerre and Jacobi polynomials are the normal, the
Gamma and the Beta distributions, respectively.

A monic orthogonal polynomial sequence (MOPS, for short) \{ Pn\} n\geq 0 is called Dunkl-
classical or T\mu -classical polynomial sequence (the associated linear functional is called
Dunkl-classical or T\mu -classical linear functional) if \{ T\mu Pn\} n\geq 1 is an orthogonal polynomial
sequence, where T\mu is the Dunkl operator [9] : T\mu = D + 2\mu H - 1, \mu >  - 1

2 , D (resp.
H - 1) denotes the derivative operator D = d

dx (resp. the Hahn operator given by
(H - 1f)(x) =

f(x) - f( - x)
2x ).

Y. Ben Cheikh and his coworker [3] introduced the notion of Dunkl-classical orthogonal
polynomials and proved that the only symmetric Dunkl-classical orthogonal polynomials
are the generalized Hermite polynomials and the generalized Gegenbauer polynomials.
Later on, non-symmetric Dunkl-classical orthogonal polynomials have been studied as
shown in [6], precisely the authors showed that the unique non-symmetric Dunkl-classical
linear form is \widetilde \scrG (\alpha , \mu  - 1

2
) =  - 2\alpha 

1 + 2\mu + 2\alpha 
(x - 1) - 1\scrG (\alpha , \mu  - 1

2
) + \delta 1

where n + \alpha \not = 0, 2\mu + 2\alpha + 2n + 1 \not = 0, n \geq 0 and \scrG (\alpha , \mu  - 1
2 ) is the generalized

Gegenbauer form [1, 2].
Recently, a distributional Rodrigues formula for non-symmetric Dunkl-classical or-

thogonal polynomial sequences has been established [7], and the previous formula was
employed to determine the recurrence coefficients of the second-order recurrence relation
that non-symmetric T\mu -classical orthogonal sequences satisfy.

In this paper, we aim to determine the moments and an integral representation for
non-symmetric Dunkl-classical form \widetilde \scrG (\alpha , \mu  - 1

2 ).
Our study was initiated by giving some preliminary results needed for the sequel. By

\scrP we denote the vector space of polynomials with coefficients in \BbbC , and \scrP \prime denotes its
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dual. We call elements of \scrP \prime linear forms. We denote by \langle u, f\rangle the action of u \in \scrP \prime on f
\in \scrP . In particular, we denote by (u)n = \langle u, xn\rangle , n \geq 0, the moments of u.

The left-multiplication of a linear form by a polynomial is defined by

\langle gu, f\rangle = \langle u, gf\rangle , f, g \in \scrP , u \in \scrP \prime .

The homothetic of a linear form is

\langle hau, f\rangle = \langle u, haf\rangle , f \in \scrP , u \in \scrP \prime , a \in \BbbC \setminus \{ 0\} ,
where

haf(x) = f(ax), f \in \scrP , a \in \BbbC \setminus \{ 0\} .
The derivative of a linear form u is the linear form Du such that

\langle Du, f\rangle =  - \langle u, f \prime \rangle , f \in \scrP , u \in \scrP \prime .

The Dirac mass at the point c \in \BbbC , denoted by \delta c, is the form defined by

\langle \delta c, f\rangle = f(c), f \in \scrP .

The division of a linear form by a polynomial of first degree is given as

(x - c) - 1((x - c)u) = u - (u)0\delta c, u \in \scrP \prime , c \in \BbbC .
Let \{ Pn\} n\geq 0 be a sequence of monic polynomials with \mathrm{d}\mathrm{e}\mathrm{g}Pn = n, n \geq 0. The dual
sequence associated to \{ Pn\} n\geq 0 is the sequence \{ un\} n\geq 0, un \in \scrP \prime , defined by

\langle un, Pm\rangle = \delta n,m, n, m \geq 0,

where \delta n,m is the Kroneckers symbol.
A sequence \{ Pn\} n\geq 0 is called orthogonal (MOPS) if we can associate with it a form u

((u)0 = 1) and a sequence of numbers \{ rn\} n\geq 0 (rn \not = 0, n \geq 0) such that [8]

\langle u, PmPn\rangle = rn\delta n,m, n, m \geq 0.

In this case, the form u is called regular or quasi-definite.

Theorem 1.1 (Favard’s Theorem [8]). Let \{ Pn\} n\geq 0 be a monic polynomial sequence.
Then \{ Pn\} n\geq 0 is orthogonal with respect to a quasi-definite linear form if and only if there
exist two sequences of complex numbers \{ \beta n\} n\geq 0 and \{ \gamma n\} n\geq 1, such that \gamma n \not = 0, n \geq 1
and it satisfies the three-term recurrence relation

P0(x) = 1, P1(x) = x - \beta 0,

Pn+2(x) = (x - \beta n+1)Pn+1(x) - \gamma n+1Pn(x), n \geq 0.
(1.1)

A form u is said to be symmetric if and only if (u)2n+1 = 0, n \geq 0, or equivalently, in
(1.1), \beta n = 0, n \geq 0.

Let us introduce the Dunkl’s operator [9]:

T\mu f(x) = f \prime (x) + \mu 
f(x) - f( - x)

x
, \mu >  - 1

2
, f \in \scrP . (1.2)

By transposition, we define the operator T\mu from \scrP \prime to \scrP \prime as follows:

\langle T\mu u, f\rangle =  - \langle u, T\mu f\rangle , f \in \scrP , u \in \scrP \prime .

In particular,
(T\mu u)n =  - \mu n(u)n - 1, n \geq 0,

with the convention (u) - 1 = 0; where

\mu n = n+ \mu (1 - ( - 1)n), n \geq 0.

Now, consider a MOPS \{ Pn\} n\geq 0 and let

P [1]
n (x, \mu ) =

1

\mu n+1
(T\mu Pn+1)(x), \mu \not =  - n - 1

2
, n \geq 0.
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Let us denote by \{ u[1]
n \} n\geq 0, the dual sequence of \{ P [1]

n (., \mu )\} n\geq 0.

2. Main result

In the section, we describe the moments and an integral representation of \widetilde \scrG (\alpha , \mu  - 1
2 ).

For this we need the following results. In the beginning it’s important to introduce some
properties of the generalized Gegenbauer polynomials \{ S(\alpha ,\mu  - 1

2 )
n \} n\geq 0. They satisfy the

three-term recurrence relation (1.1) in [2]:

\beta n = 0,

\gamma n+1 =
(n+ 1 + \delta n)(n+ 1 + 2\alpha + \delta n)

4(n+ \alpha + \mu + 1
2 )(n+ \alpha + \mu + 3

2 )
,

\delta n = \mu (1 + ( - 1)n),

n \geq 0.

The sequence \{ S(\alpha ,\mu  - 1
2 )

n \} n\geq 0 is orthogonal with respect to the form \scrG (\alpha , \mu  - 1
2 ) satisfying

the following integral representation and moments for all f \in \scrP :

\langle \scrG (\alpha , \mu  - 1

2
), f\rangle =

\Gamma (\alpha + \mu + 3
2 )

\Gamma (\alpha + 1)\Gamma (\mu + 1
2 )

\int +1

 - 1

| x| 2\mu (1 - x2)\alpha f(x) dx, Re(\alpha ) >  - 1,

(\scrG (\alpha , \mu  - 1

2
))2n+1 = 0,

(\scrG (\alpha , \mu  - 1

2
))2n =

\Gamma (\alpha + \mu + 3
2 )\Gamma (n+ \mu + 1

2 )

\Gamma (\mu + 1
2 )\Gamma (n+ \alpha + \mu + 3

2 )
, n \geq 0.

The following theorem was proved in [4]

Theorem 2.1. Let \{ Pn\} n\geq 0 be a MPS orthogonal with respect to a linear form u0. For

\mu \not = 1

2
and \mu \not = 0, the following statements are equivalent:

(a) The sequence \{ Pn\} n\geq 0 is Dunkl-classical.
(b) There exist a non-zero complex number K and three (monic) polynomials \Phi , B

and \Psi with \mathrm{d}\mathrm{e}\mathrm{g}\Phi \leq 2, \mathrm{d}\mathrm{e}\mathrm{g}B \leq 3 and \mathrm{d}\mathrm{e}\mathrm{g}\Psi = 1 such that

\Psi \prime (0) +
K\Phi \prime \prime (0)

2(1 - 4\mu 2)
(4\mu 2[n] - n) +

KB\prime \prime \prime (0)

3(1 - 4\mu 2)
\mu ([n] - n) \not = 0,

and

T\mu 

\Bigl( 
\Phi u0  - 2\mu h - 1(\Phi u0)

\Bigr) 
+

1 - 4\mu 2

K
\Psi u0 = 0,

with
x\Phi (x)u0 = h - 1(B(x)u0).

In our previous investigation [6], we proved that Theorem 2.1 can be successfully used
to classify all Dunkl-classical linear forms. More particularly, it was shown that the unique

non-symmetric Dunkl-classical linear form for \mu \not = 1

2
and \mu \not = 0 is, up to a dilatation, the

perturbed generalized Gegenbauer linear form \widetilde \scrG (\alpha , \mu  - 1
2 ) satisfying:

T\mu 

\Bigl( 
(x2  - 1)\widetilde \scrG (\alpha , \mu  - 1

2
)
\Bigr) 
 - 1 + 2\mu 

\beta 0
(x - \beta 0)\widetilde \scrG (\alpha , \mu  - 1

2
) = 0, (2.3)

(x - 1)\widetilde \scrG (\alpha , \mu  - 1

2
) = h - 1((x - 1)\widetilde \scrG (\alpha , \mu  - 1

2
)), (2.4)

with the regularity conditions

\beta 0 /\in \{ 0, 1\} , 1 + 2\mu + \beta 0(n - 2\mu [n]) \not = 0, n \geq 0,
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since (\widetilde \scrG (\alpha , \mu  - 1
2 ))0 = 1, (\widetilde \scrG (\alpha , \mu  - 1

2 ))1 = \beta 0, (\scrG (\alpha , \mu  - 1
2 ))0 = 1 and the fact that

(x - 1)\widetilde \scrG (\alpha , \mu  - 1

2
) =  - 2\alpha 

1 + 2\mu + 2\alpha 
\scrG (\alpha , \mu  - 1

2
)

Then, we can deduce that \beta 0 = 1+2\mu 
1+2\mu +2\alpha . Therefore (2.3) becomes

T\mu 

\Bigl( 
(x2  - 1)\widetilde \scrG (\alpha , \mu  - 1

2
)
\Bigr) 
 - 
\Bigl( 
(1 + 2\mu + 2\alpha )x+ 1 + 2\mu 

\Bigr) \widetilde \scrG (\alpha , \mu  - 1

2
) = 0, (2.5)

2.1. Moments expression.

Proposition 2.2. The moments of the non-symmetric Dunkl-classical form \widetilde \scrG (\alpha , \mu  - 1
2 )

are given by

(\widetilde \scrG (\alpha , \mu  - 1
2 ))0 = 1,

(\widetilde \scrG (\alpha , \mu  - 1

2
))2n+1 = (\widetilde \scrG (\alpha , \mu  - 1

2
))2n+2 =

n\prod 
k=0

1 + 2\mu + 2k

1 + 2\mu + 2\alpha + 2k
, n \geq 0.

(2.6)

Proof. From (2.5), we have

\langle T\mu 

\Bigl( 
(x2  - 1)\widetilde \scrG (\alpha , \mu  - 1

2
)
\Bigr) 
 - 
\Bigl( 
(1 + 2\mu + 2\alpha )x+ 1 + 2\mu 

\Bigr) \widetilde \scrG (\alpha , \mu  - 1

2
), xn\rangle = 0, n \geq 0.

Using the definition (1.2), we obtain

(\mu n+1+2\mu +2\alpha )(\widetilde \scrG (\alpha , \mu  - 1

2
))n+1 - (1+2\mu )(\widetilde \scrG (\alpha , \mu  - 1

2
))n - \mu n(\widetilde \scrG (\alpha , \mu  - 1

2
))n - 1 = 0, n \geq 0.

with (\widetilde \scrG (\alpha , \mu  - 1
2 )) - 1 = 0.

The changes of the indices n \rightarrow 2n and n \rightarrow 2n+1 in the last equation give respectively

(2n+ 2\alpha + 2\mu + 1)(\widetilde \scrG (\alpha , \mu  - 1

2
))2n+1  - (1 + 2\mu )(\widetilde \scrG (\alpha , \mu  - 1

2
))2n

 - 2n(\widetilde \scrG (\alpha , \mu  - 1

2
))2n - 1 = 0, n \geq 0.

and

(2n+ 2\alpha + 4\mu + 2)(\widetilde \scrG (\alpha , \mu  - 1

2
))2n+2  - (1 + 2\mu )(\widetilde \scrG (\alpha , \mu  - 1

2
))2n+1

 - (2n+ 2\mu + 1)(\widetilde \scrG (\alpha , \mu  - 1

2
))2n = 0, n \geq 0. (2.7)

On the other hand, from (2.4), we have

\langle (x - 1)\widetilde \scrG (\alpha , \mu  - 1

2
) - h - 1

\Bigl( 
(x - 1)\widetilde \scrG (\alpha , \mu  - 1

2
)
\Bigr) 
, xn\rangle = 0, n \geq 0.

Then \Bigl( 
1 - ( - 1)n

\Bigr) \Bigl( 
(\widetilde \scrG (\alpha , \mu  - 1

2
))n+1  - (\widetilde \scrG (\alpha , \mu  - 1

2
))n

\Bigr) 
= 0, n \geq 0.

Making the change of indice n \rightarrow 2n+ 1 in the last equation, we obtain

(\widetilde \scrG (\alpha , \mu  - 1

2
))2n+2 = (\widetilde \scrG (\alpha , \mu  - 1

2
))2n+1, n \geq 0.

Therefore, equation (2.7) becomes

(2n+ 2\alpha + 2\mu + 1)(\widetilde \scrG (\alpha , \mu  - 1

2
))2n+2 = (2n+ 2\mu + 1)(\widetilde \scrG (\alpha , \mu  - 1

2
))2n, n \geq 0. (2.8)

Consequently by induction and using (2.8) we can prove (2.6). \square 
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Corollary 2.3. The form \widetilde \scrG (\alpha , \mu  - 1
2 ) satisfies the following relation

(\widetilde \scrG (\alpha , \mu  - 1

2
))2n+2 =

\Gamma (\alpha + \mu + 1
2 )\Gamma (n+ \mu + 3

2 )

\Gamma (\mu + 1
2 )\Gamma (n+ \alpha + \mu + 3

2 )
, n \geq 0,

where \Gamma is the gamma function.

Proof. The result follows immediately from the definition of the gamma function \Gamma 
and (2.6). \square 

2.2. Integral representation.

Proposition 2.4. The form \widetilde \scrG (\alpha , \mu  - 1
2 ) has the following integral representation:

\langle \widetilde \scrG (\alpha , \mu  - 1
2 ), f\rangle =

\Gamma (\alpha + \mu + 1
2 )

\Gamma (\mu + 1
2 )\Gamma (\alpha )

\int +1

 - 1

| x| 2\mu (1 - x2)\alpha  - 1(1 + x)f(x) dx, f \in \scrP ,

Re(\alpha ) > 0.

Proof. We look for a function U such that

\langle \widetilde \scrG (\alpha , \mu  - 1

2
), f\rangle =

\int +\infty 

 - \infty 
U(x)f(x) dx, f \in \scrP ,

where we assume that the function U is absolutely continuous on \BbbR and it decays as fast
as its derivative U \prime .

The relation \langle T\mu (\Phi \widetilde \scrG (\alpha , \mu  - 1
2 )) + \Psi \widetilde \scrG (\alpha , \mu  - 1

2 ), f(x)\rangle = 0 implies\int +\infty 

 - \infty 
U(x)

\Bigl( 
\Psi (x)f(x) - \Phi (x)(T\mu f)(x)

\Bigr) 
dx = 0, f \in \scrP .

Using the definition of T\mu , the last equation becomes\int +\infty 

 - \infty 
U(x)

\Bigl( 
\Psi (x)f(x) - \Phi (x)f \prime (x) - 2\mu \Phi (x)(H - 1f)(x)

\Bigr) 
dx = 0, f \in \scrP . (2.9)

On the one hand, we have\int +\infty 

 - \infty 
U(x)

\Bigl( 
\Psi (x)f(x) - \Phi (x)f \prime (x)

\Bigr) 
dx

=

\int +\infty 

 - \infty 
(U\Psi f)(x) - (U\Phi f)\prime (x) + (U\Phi )\prime (x)f(x) dx

=

\int +\infty 

 - \infty 

\Bigl( 
U\Psi + (U\Phi )\prime 

\Bigr) 
(x)f(x) - (U\Phi f)\prime (x) dx. (2.10)

On the other hand,\int +\infty 

 - \infty 
U(x)\Phi (x)(H - 1f)(x) dx =

\int +\infty 

 - \infty 

U(x)\Phi (x)

2x
f(x) dx - 

\int +\infty 

 - \infty 

U(x)\Phi (x)

2x
f( - x) dx

=

\int +\infty 

 - \infty 

U(x)\Phi (x)

2x
f(x) dx+

\int +\infty 

 - \infty 

U( - x)\Phi ( - x)

2x
f(x) dx

=

\int +\infty 

 - \infty 

U(x)\Phi (x) + U( - x)\Phi ( - x)

2x
f(x) dx, f \in \scrP . (2.11)

Substituting (2.10) and (2.11) into (2.9), we get\int +\infty 

 - \infty 

\Bigl( 
(U\Psi + (U\Phi )\prime )(x) - \mu 

U(x)\Phi (x) + U( - x)\Phi ( - x)

x

\Bigr) 
f(x) dx

 - [(U\Phi f)]+\infty 
 - \infty = 0, f \in \scrP .
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Hence, from the assumptions on U , the following conditions hold:\left\{     
\int +\infty 

 - \infty 

\Bigl( 
(U\Psi + (U\Phi )\prime )(x) - \mu 

U(x)\Phi (x) + U( - x)\Phi ( - x)

x

\Bigr) 
f(x) dx = 0, f \in \scrP ,

[(U\Phi f)]+\infty 
 - \infty = 0, f \in \scrP .

(2.12)
The first relation in (2.12) implies that

(U\Phi )\prime (x) + (U\Psi )(x) - \mu 
U(x)\Phi (x) + U( - x)\Phi ( - x)

x
= \lambda g(x), x \not = 0. (2.13)

where w is arbitrary and g is a locally integrable function with rapid decay representing
the null form \int +\infty 

 - \infty 
xng(x) dx = 0, n \geq 0.

For example the function g was given by Stieltjes [14]

g(x) =

\Biggl\{ 
0, x \leq 0,

e - x
1
4 \mathrm{s}\mathrm{i}\mathrm{n}x

1
4 , x > 0.

Using in (2.13) the fact that

\Phi (x) = x2  - 1, \Psi (x) =  - (1 + 2\mu + 2\alpha )x - 1 - 2\mu ,

and taking \lambda = 0, we get\Bigl( 
(x2  - 1)U(x)

\Bigr) \prime 
 - 
\Bigl( 
(1 + 2\mu + 2\alpha )x - 1 - 2\mu 

\Bigr) 
U(x) - \mu 

(x2  - 1)(U(x) + U( - x))

x
= 0,

or equivalently

(x3 - x)U \prime (x)+
\Bigl( 
(1 - 2\mu  - 2\alpha )x+1+2\mu 

\Bigr) 
xU(x) - \mu (x2 - 1)(U(x)+U( - x)) = 0. (2.14)

On the other hand, from (2.4), we have

\langle (x - 1)\widetilde \scrG (\alpha , \mu  - 1

2
) - h - 1

\Bigl( 
(x - 1)\widetilde \scrG (\alpha , \mu  - 1

2
)
\Bigr) 
, f\rangle = 0, f \in \scrP ,

or equivalently

\langle (x - 1)\widetilde \scrG (\alpha , \mu  - 1

2
), f(x) - f( - x)\rangle = 0, f \in \scrP .

The last equation can be written as\int +\infty 

 - \infty 
(x - 1)U(x)

\Bigl( 
f(x) - f( - x)

\Bigr) 
dx = 0, f \in \scrP , (2.15)

But by the change of variable x \rightarrow  - x, we have\int +\infty 

 - \infty 
(x - 1)U(x)f( - x) dx =  - 

\int +\infty 

 - \infty 
(x+ 1)U( - x)f(x) dx.

Then (2.15) becomes\int +\infty 

 - \infty 

\Bigl( 
(x - 1)U(x) + (x+ 1)U( - x)

\Bigr) 
f(x) dx = 0, f \in \scrP .

This implies
(x - 1)U(x) + (x+ 1)U( - x) = \alpha h(x), \alpha \in \BbbC ,

where h \not = 0 is a locally integrable function and rapid decay representing the null form.
Taking \alpha = 0, the last equation becomes

(x - 1)U(x) + (x+ 1)U( - x) = 0.
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Consequently,
(x2  - 1)(U(x) + U( - x)) = 2(x - 1)U(x). (2.16)

Substituting (2.16) into (2.14), we obtain

(x3  - x)U \prime (x) +
\Bigl( 
(1 - 2\mu  - 2\alpha )x2 + x+ 2\mu 

\Bigr) 
U(x) = 0,

Thus
U \prime (x)

U(x)
=

(2\alpha + 2\mu  - 1)x2  - x - 2\mu 

x(x - 1)(x+ 1)

=
2\mu (x2  - 1)

x(x - 1)(x+ 1)
+

2\alpha x

(x - 1)(x+ 1)
 - 1

x - 1

=
2\mu 

x
+

\alpha 

x - 1
+

\alpha 

x+ 1
 - 1

x - 1

=
2\mu 

x
+

\alpha 

x+ 1
+

\alpha  - 1

x - 1
.

Consequently,

U(x) =

\biggl\{ 
K| x| 2\mu (1 - x2)\alpha  - 1(1 + x), | x| < 1,
0, | x| > 1,

where K is a constant.
Taking into account the fact that (u)0 = 1 and since x \mapsto \rightarrow | x| 2\mu (1 - x2)\alpha  - 1x is an odd

function, we can easily determine K. In fact

1 = \langle u, 1\rangle = K

\int 1

 - 1

| x| 2\mu (1 - x2)\alpha  - 1(1 + x) dx

= K

\int 1

 - 1

| x| 2\mu (1 - x2)\alpha  - 1 dx

= 2K

\int 1

0

| x| 2\mu (1 - x2)\alpha  - 1 dx

= KB(\mu + 1
2 , \alpha ).

where B(p, q) is the beta function. Thus

K =
1

B(\mu + 1
2 , \alpha )

=
\Gamma (\alpha + \mu + 1

2 )

\Gamma (\mu + 1
2 )\Gamma (\alpha )

.

which completes the proof. \square 
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