
Methods of Functional Analysis and Topology
Vol. 28 (2022), no. 2, pp. 144–149
https://doi.org/10.31392/MFAT-npu26_2.2022.06

PROJECTIONLESS REAL C\ast -ALGEBRAS

ABDUGAFUR RAKHIMOV AND FERUZA RASHIDOVA

Abstract. In this paper the projectionless real C\ast -algebras are investigated. Fol-
lowing construction of [4] a real C\ast -algebra is constructed, which is separable, simple,
nuclear, nonunital, and contains no nonzero projections. It is proved that a real C\ast -
algebra is projectionless if and only if the enveloping C\ast -algebra is projectionless. An
example of a projectionless real Banach \ast -algebra with the C\ast -property is constructed,
the complexification of which contains a non-trivial projection.

В роботi дослiджено безпроекцiйнi дiйснi C\ast -алгебри. Використовуючи результати
[4], побудовано дiйсну C\ast -алгебру, яка є сепарабельною, простою, ядерною,
неунiтальною, i яка не мiстить ненульових проекторiв. Доведено, що дiйсна
C\ast -алгебра є безпроекцiйною тодi i тiльки тодi, коли огортуюча \ast -алгебра є
безпроекцiйною. Побудовано приклад безпроекцiйної дiйсної банахової \ast -алгебру
iз властивiстю C\ast , комплексифiкiцiя якої мiстить нетривiальний проектор.

1. Introduction.

A real or complex C\ast -algebra is said to be projectionless if it contains no projections
other than \bfone \mathrm{I} (if present) and 0. It has long been an open question whether there exists
a projectionless simple C\ast -algebra. The problem of whether simple infinite-dimensional
C\ast -algebras with this property exist was posed in 1958 by Irving Kaplansky and the first
example of one was published in 1981 by Bruce Blackadar (see [4, 6, 8]). In the paper [4]
a projectionless simple separable nuclear nonunital C\ast -algebra is constructed and in [10]
a sufficient condition for a unital C\ast -algebra to have no nontrivial projections is given.

In this paper the projectionless real C\ast -algebras are investigated. It is proved that a
real C\ast -algebra is projectionless if and only if the enveloping C\ast -algebra is projectionless.
Following construction of [4] a real C\ast -algebra is constructed, which is separable, simple,
nuclear, nonunital, and contains no nonzero projections. An example of a projectionless
real Banach *-algebra with the C\ast -property is constructed, the complexification of which
contains a non-trivial projection.

2. Preliminaries.

Let A be a Banach *-algebra over the field \BbbC . The algebra A is called a C\ast -algebra
if \| aa\ast \| = \| a\| 2 for any a \in A. A C\ast -algebra M is called a W \ast -algebra if there exists
a Banach space M\ast , so-called a predual of M such that (M\ast )

\ast = M . Let B(H) be
the algebra of all bounded linear operators acting on a complex Hilbert space H and
let M \subset B(H) be a *-subalgebra. The subset M \prime = \{ a \in B(H) : ba = ab,\forall b \in M\} 
is called the commutant of M . It is easy to see that M \subset M \prime \prime = M IV = MV I = . . .
and M \prime = M III = MV = . . ., where M \prime \prime = (M \prime )\prime . If M = M \prime \prime , then it is called a von
Neumann algebra. By the bicommutant theorem any von Neumann algebra is W \ast -algebra,
i.e. M is weakly closed with \bfone \mathrm{I} \in M . The converse is also true. Therefore, W \ast -algebras
are also called von Neumann algebras.

Now, a real *-subalgebra R \subset B(H) with \bfone \mathrm{I} is called a real W \ast -algebra if it is weakly
closed and R \cap iR = \{ 0\} . The smallest (complex) W \ast -algebra M containing R coincides
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with its complexication R+ iR, i.e. M = R+ iR. It is known that R generates a natural
involutive (i.e. of order 2) *-antiautomorphism \alpha R of M , namely \alpha R(x+ iy) = x\ast + iy\ast ,
where x + iy \in M , x, y \in R. In this case R = \{ x \in M : \alpha R(x) = x\ast \} . Con-
versely, given a W \ast -algebra M and any involutive *-antiautomorphism \alpha on M , the
set (M,\alpha ) = \{ a \in M : \alpha (a) = a\ast \} is a real W \ast -algebra (see [2]).

A real Banach *-algebra A is called a real C\ast -algebra if \| aa\ast \| = \| a\| 2 and the element
\bfone \mathrm{I} + aa\ast is invertible for any a \in A. It is known that A is a real C\ast -algebra if and only if
the norm on A can be extended on the complexification Ac = A+ iA of A so that Ac is a
C\ast -algebra (see [11, 5.1.1]).

Let A be a real or complex algebra. A subspace I of an algebra A is called an left ideal
(resp. right ideal) if xy \in I for all x \in A and y \in I (resp. for all x \in I and y \in A). A left
and right ideal is called a two-sided ideal or ideal. An algebra A is said to be simple if it
contains no non-trivial two-sided ideals and the multiplication operation is not zero (that
is, there is some a and some b such that ab \not = 0). The second condition in the definition
precludes the following situation; consider the algebra with the usual matrix operations:\Biggl\{ \Biggl( 

0 \alpha 

0 0

\Biggr) 
: \alpha \in \BbbC 

\Biggr\} 
This is a one-dimensional algebra in which the product of any two elements is zero. This
condition ensures that the algebra has a minimal nonzero left ideal, which simplifies
certain arguments.

It is easy to see that if the complexification A+ iA of a real algebra A is simple, then
a real algebra A is also simple. But the converse is not true. We will show this below
(see Example 3.6).

Now recall that [12] a real (resp. complex) C\ast -algebra A is nuclear if for all real (resp.
complex) C\ast -algebras B the algebraic tensor product A\otimes \BbbR B (resp. A\otimes \BbbC B) has a unique
C\ast -norm. It is known that (see [12, Proposition 2.]) a real C\ast -algebra A is nuclear if and
only if the C\ast -algebra A+ iA is nuclear.

3. Main results.

3.1. A simple real C\ast -algebra with no nontrivial projections. Following the con-
struction of the paper [4], we construct a projectionless real C\ast -algebras as follows and
herewith the similar moments we will skip, or briefly summarize.

The algebra B will be the (unique) simple unital AF algebra whose ordered group
K0(B) is isomorphic to the additive group of real algebraic numbers [5, 7]. B has the
following properties:

(1) B has a unique normalized trace \tau , which is faithful.
(2) If p and q are projections in B, then p \sim q if and only if \tau (p) = \tau (q).
(3) If \lambda is a number with 0 < \lambda < 1, then there is a projection p \in B with \tau (p) = \lambda .
(4) If p is any nonzero projection of B, then pBp \sim = B.

The fact that B satisfies (l)-(4) follows easily from the results of [6] and [7, III.2.11,
III.2.12, III.3.4]

Let us define an algebra A1 = A(\sigma 1) as the real C\ast -algebra of continuous real functions
f : [0, 1] \rightarrow B such that f(1) = \sigma 1(f(0)). Since B is a real C\ast -algebra (even is simple AF
C\ast -algebra), and the norm and the involution on A1 are defined by \| f\| = \mathrm{s}\mathrm{u}\mathrm{p}0\leq t\leq 1 \| f(t)\| 
and f\ast (t) = f(t)\ast , respectively. We have

\| ff\ast \| = \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t\leq 1

\| (ff\ast )(t)\| = \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t\leq 1

\| f(t)f(t)\ast \| = \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t\leq 1

\| f(t)\| 2 = \| f\| 2,

(\bfone \mathrm{I}A + ff\ast )(t) = \bfone \mathrm{I}A(t) + (ff\ast )(t) = \bfone \mathrm{I} + f(t)f\ast (t),
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therefore, the invertiblity of \bfone \mathrm{I} + f(t)f\ast (t) implies the invertiblity of \bfone \mathrm{I}A + ff\ast . Hence
A1 is a real C\ast -algebra. Then the complexification Ac

1 = A1 + iA1 of A1 is a (complex)
C\ast -algebra. Similarly to [4, Proposition 1.1.] we have

Proposition 3.1. A(\sigma 1) is projectionless if and only if \sigma 1(\bfone \mathrm{I}) \not = \bfone \mathrm{I}1, where \bfone \mathrm{I}1 = p1 is the
unit of p1Bp1.

The proof of Proposition 3.1 is carried out similarly to the proof of [4, Proposition
1.1]. Only here, it is necessary to clarify the following point. A trace \tau is extended to
the enveloping (complex) C\ast -algebra Bc = B + iB as \tau (a+ ib) = \tau (a), since a+ ib \geq 0
implies a \geq 0 (see [2, Corollary 1.1.4]). Since any projector of a real C\ast -algebra B is
automatically a projector in the enveloping C\ast -algebra Bc, according to [9, Lemma 1.8]
for projectors e, h \in B, the condition \| e - h\| < 1 implies e \sim h, i.e., \tau (e) = \tau (h).

An isomorphism \sigma 1 can be extended by linearity to an isomorphism \sigma 1 between Bc and
Bc

1 = p1Bp1 + ip1Bp1 as \sigma 1(x+ iy) = \sigma 1(x) + i\sigma 1(y), x, y \in p1Bp1. Then it is directly
shown that Ac

1 = A(\sigma 1) and Ac
1 is the C\ast -algebra of continuous functions F : [0, 1] \rightarrow Bc

with F (1) = \sigma 1(F (0)). Moreover A1 = (Ac
1, \alpha ) = \{ x \in Ac

1 : \alpha (x) = x\ast \} , where \alpha is an
involutive *-antiautomorphism of Ac

1, defined by \alpha (a+ ib) = a\ast + ib\ast (a, b \in A1). And by
[4, Proposition 1.1.] we also have the fillowing.

Proposition 3.2. A(\sigma 1) is projectionless if and only if \sigma 1(\bfone \mathrm{I}) \not = \bfone \mathrm{I}1.

It is easily shown that \sigma 1(\bfone \mathrm{I}) \not = \bfone \mathrm{I}1 \Leftarrow \Rightarrow \sigma 1(\bfone \mathrm{I}) \not = \bfone \mathrm{I}1, therefore we have

Proposition 3.3. A(\sigma 1) is projectionless if and only if A(\sigma 1) is projectionless.

Further, sequences of real C\ast -algebras A2, A3, . . . and of C\ast -algebras Ac
2, Ac

3, . . . are
constructed similarly to the scheme for constructing the same sequence from [4]: suppose
A2, A3, . . . , An have been defined, with An = A(\sigma n), where \sigma n is an isomorphism of B
onto pnBpn. pn \in B is a projection with 0 < \lambda n = \tau (pn) < 1. Let \mu = \lambda 

1/2
n /(1+\lambda 

1/2
n ) and

let q, r \in B be orthogonal projections with \tau (q) = \mu , \tau (r) = \lambda n(1 - \mu ). Put s = \bfone \mathrm{I} - q - r.
Choose a fixed isomorphism \sigma n+1 of B onto (q + r)B(q + r) such that \sigma n+1(q) = r. This
is possible because

\tau (\sigma n+1(q)) = [\mu + \lambda n(1 - \mu )] = \lambda n(1 - \mu ) = \tau (r).

Analogously, this isomorphism can be extended by linearity to an isomorphism \sigma n+1

between Bc and (q + r)Bc(q + r). Set An+1 = A(\sigma n+1), \sigma n+1 induces isomorphisms
\beta 1 : qBq \rightarrow rBr and \beta 2 : (\bfone \mathrm{I}  - q)B(\bfone \mathrm{I}  - q) \rightarrow qBq by restriction. Let \gamma : B \rightarrow qBq
and \delta : B \rightarrow (\bfone \mathrm{I}  - q)B(\bfone \mathrm{I}  - q) be arbitrary isomorphisms with \delta (p) = r. It is also
possible since \tau (\delta (p)) = \lambda n(1 - \mu ) = \tau (r). The linear extensions of these isomorphisms
to the complexification of the corresponding algebras are denoted by \beta 1, \beta 2, \gamma , and \delta ,
respectively.

By [4, Theorem 2.3] there is a pointwise-continuous path of automorphisms \theta t (0 \leq 
t \leq 1) of qBcq with

\theta 0 = id \mathrm{a}\mathrm{n}\mathrm{d} \theta 1 = \beta 2 \circ \delta \circ \gamma  - 1.

In the proof of the theorem, passing from a real C\ast -algebra to its complexification, for
automorphisms \theta t one can obtain the \~\alpha -invariance: \theta t\circ \~\alpha = \~\alpha \circ \theta t, where \~\alpha is the involutive
*-antiautomorphism of qBcq, generating qBq, i.e., qBq = (qBcq, \~\alpha ). Let wt \in rBcr
(0 \leq t < 1) be a continuous path of unitaries with w0 = r such that the family of inner
*-automorphisms Ad(wt) = wt . w

\ast 
t converges pointwise to \beta 1\circ \gamma \circ \sigma  - 1

n \circ \delta  - 1| rBcr as t \rightarrow 1.
Similarly, here we can also choose as: Ad(wt) \circ \^\alpha = \^\alpha \circ Ad(wt), where \^\alpha is the involutive
*-antiautomorphism of rBcr, generating rBr, i.e., rBr = (rBcr, \^\alpha ). Put ut = wt + s.
Then ut is unitary in (\bfone \mathrm{I} - q)Bc(\bfone \mathrm{I} - q), for which the inner *-automorphisms \pi t = Ad(ut)
(0 \leq t < 1) are invariant under the corresponding involutive *-antiautomorphism. Now
define \phi n : Ac

n \rightarrow Ac
n+1 as follows:
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[\phi n(f)](t) =

\left[  (\theta t \circ \gamma )[f(t/2)] 0 0

0 (\pi t \circ \delta )[f((t+ 1)/2)]
0

\right]  , \mathrm{i}\mathrm{f} t < 1

and

[\phi n(f)](0) =

\left[  \gamma [f(0)] 0 0

0 \delta [f(1/2)]
0

\right]  

[\phi n(f)](1) =

\left[  (\beta 2 \circ \delta )[f(1/2)] 0 0

0 (\beta 1 \circ \gamma )[f(0)] 0
0 0 0

\right]  ,

with Bc symbolically represented as 3\times 3 matrices:

x \sim 

\left[  qxq qxr qxs
rxq rxr rxs
sxq sxr sxs

\right]  
Here the entries (23), (32), (33) of the first and the second matrices are missing (i.e., not
written), since they are not important and a little cumbersome. For example, the element
(33) of the first matrix, for x = [\phi n(f)](t), in fact, has the form

xs+ (\bfone \mathrm{I} - s)x+ (\theta t \circ \gamma )[f(t/2)] + (\pi t \circ \delta )[f((t+ 1)/2)].

According to the third matrix we have \sigma n+1([\phi n(f)](0)) = [\phi n(f)](\bfone \mathrm{I}). Since all
automorphisms and isomorphisms are invariant under the corresponding involutive \ast -anti-
automorphisms, their restrictions to the corresponding real part, denoted by symbols
without a dash (without a wave, without a cap), we obtain the following:

\sigma n+1 : B \rightarrow (q + r)B(q + r), \phi n : An \rightarrow An+1 \mathrm{a}\mathrm{n}\mathrm{d} \sigma n+1([\phi n(f)](0)) = [\phi n(f)](\bfone \mathrm{I}).

Further, following [4], we put pn+1 = q + r, \lambda n+1 = \mu + \lambda n(1 - \mu ). Now let the algebra
A (respectively, Ac) be constructed as an inductive limit of real (respectively, complex)
C\ast -algebras,

A = \mathrm{l}\mathrm{i}\mathrm{m}
\rightarrow 

\{ An, \phi n\} \mathrm{a}\mathrm{n}\mathrm{d} Ac = \mathrm{l}\mathrm{i}\mathrm{m}
\rightarrow 

\{ Ac
n, \phi n\} .

By construction, we also have A + iA = Ac. By [4, Lemma 3.2], the C\ast -algebra Ac is
simple, by [4, Proposition 3.3 and Corollary 3.4], Ac is a projectionless C\ast -algebra, and
by [4, Proposition 3.5], Ac is nuclear. Since simplicity of the algebra A+ iA = Ac implies
simplicity of A, the real C\ast -algebra A is simple. Since Ac is projectionless, A is also
projectionless. By [12, Proposition 2.], A is also nuclear.

Thus, following the scheme of the paper [4], we have constructed a real C\ast -algebra A
which is separable, simple, nuclear and contains no nonzero projections. Moreover, its
enveloping C\ast -algebra, A+ iA, is also separable, simple, nuclear and contains no nonzero
projections.

3.2. A connection between a projectionless real C\ast -algebra and an enveloping
C\ast -algebra. Obviously, every projection of a real C\ast -algebra is a projection of an
enveloping C\ast -algebra, but the converse is not true. The set of all projections of (complex)
algebras is larger than the set of all projections of real subalgebras. Therefore, if a
(complex) algebra contains no nonzero projections, then any its subalgebra also does not
have nonzero projections. Hence and in connection with the previous example, a natural
question arises: if a real C\ast -algebra A is projectionless, is then the complexification A+ iA
of A also projectionless?

Despite the fact that the set of all projections of A+ iA is larger than the set of all
projections of A, the answer to the question is positive. Namely, the following result
holds.
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Theorem 3.4. A real C\ast -algebra A is projectionless if and only if its enveloping C\ast -
algebra A+ iA = Ac (i.e. its complexification) is projectionless.

Proof. Sufficiency is obvious. Let us show the necessity. Let \alpha be an involutive \ast -anti-
automorphism of Ac, generating A, i.e., A = (Ac, \alpha ) (see [11, Proposition 5.1.3.] and [1]).
Let e = a+ ib be a nonzero projection of Ac, where a, b \in A. Since

e =
1

2
(e+ \alpha (e)) + i \cdot e - \alpha (e)

2i

for f = e+ \alpha (e) and q =
e - \alpha (e)

2i
we have a = 1

2f , b = q \in A and f\ast = f , q\ast =  - q.

Put p = e \wedge \alpha (e). Since f, f2 \in A, we have p \in A. If p \not = 0, then the real C\ast -algebra
A contains a nonzero projection and if p = 0, then e \bot \alpha (e), i.e., e\alpha (e) = 0. Then
f = e+ \alpha (e) is a nonzero projection of A. \square 

Remark 3.5. A slightly more general notion of real C\ast -algebras was given also by
Berberian [3, p. 26, Exercise 14A]. We define a real C\ast -algebra (in the sense of Berberian)
as a Banach *-algebra over the field of real numbers such that \| x\ast x\| = \| x\| 2 for all x \in A,
i.e., here the condition of invertibility of \bfone \mathrm{I} + x\ast x (for any x \in A) is not required. In this
case, the theorem 3.4 is not true, i.e., the condition of invertibility of \bfone \mathrm{I} + x\ast x (\forall x \in A) is
essential as the following example shows.

Example 3.6. Let A = \BbbC be the field of complex numbers. Then A with the identical
involution z\ast = z becomes a real Banach \ast -algebra. Since \| zz\ast \| 2 = | z2| 2 = (a2+b2)2 = | z| 4
(where \forall z = a + ib \in \BbbC ), we have \| zz\ast \| = \| z\| 2. Moreover, for z = i the element
\bfone \mathrm{I} + zz\ast = 1+ i2 = 0 is not invertible. Thus A is not a real C\ast -algebra, because it is not a
symmetric \ast -algebra, which means that \bfone \mathrm{I} + x\ast x is invertible for any x \in A. But A is a
real C\ast -algebra in the sense of Berberian. And also A contains no nonzero projections
and it is simple.

Now we consider the complexification A+ iA = \BbbC + i\BbbC of A = \BbbC . In order to give an
explicit form of the complexification, note that we can not put formally M = A+ iA =
\{ x+iy : x, y \in A\} , because A\cap iA = \BbbC \not = \{ 0\} . Therefore let us consider the representation
of A in the form

A \sim = A0 := \{ (\lambda , \lambda ) : \lambda \in \BbbC \} ,
where \sim = means a real isometric *-isomorphism. Now it is clear that A0 \cap iA0 = \{ 0\} and
therefore

A+ iA \sim = A0 + iA0 = \{ (\lambda , \lambda ) + i(\mu , \mu ) : \lambda , \mu \in A\} = \{ (\lambda + i\mu , \lambda + i\mu ) : \lambda , \mu \in A\} .

Let us show that the algebra M \sim = A0 + iA0 has nontrivial projections. For this, we
describe projections of M . Let p = (\lambda + i\mu , \lambda + i\mu ) be a projection, i.e., p\ast = p = p2.
From the last equalities we get

\lambda 2  - \mu 2 = \lambda \mathrm{a}\mathrm{n}\mathrm{d} 2\lambda \mu = \mu .

If \mu = 0 we get \lambda = 0 or \lambda = 1 and if \mu \not = 0 we get \lambda = 1/2, \mu = \pm i/2. Then

p =

\biggl( 
1

2
+ i

\pm i

2
,
1

2
 - i

\pm i

2

\biggr) 
=

\biggl( 
1

2
\mp 1

2
,
1

2
\pm 1

2

\biggr) 
= (0, 1) or (1, 0).

Since p1 = (0, 1) and p2 = (1, 0) are non-trivial projections of M , the (complex) C\ast -
algebra M = A + iA has non-trivial projections, therefore, it is not a projectionless
C\ast -algebra. Moreover, the C\ast -algebra

M = A+ iA \sim = A0 + iA0 = \{ a+ ib : | a = (\lambda , \lambda ), b = (\mu , \mu ) \in A0\} 
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is not simple, because M has nonzero proper ideals \{ (0, b) : b \in A0\} and \{ (a, 0) : a \in A0\} .
Thus A is a projectionless simple real C\ast -algebra (in the sense of Berberian), for which
the enveloping C\ast -algebra A+ iA is not simple and has non-trivial projections.

Remark 3.7. Unlike the C\ast -algebras, the real and complex W \ast -algebras always have non-
trivial projections. Moreover, the set of all projections of real and complex W \ast -algebras
is rich enough.

Indeed, let M \subset B(H) be a W \ast -algebra. In the finite-dimensional case, the C\ast - and
W \ast - algebras coincide, and in this case, all projectors are described, i.e., the explicit form
of the projectors is known. Therefore, suppose that M is infinite-dimensional. We take
an arbitrary nonzero vector \xi \in H and consider the projection map e\xi : H \rightarrow M \prime \xi . Let
us show that the mapping e\xi is a projection of M , i.e., e\xi \in M . Let \forall x, x\prime \in M \prime and
\forall \eta , \gamma \in H. Let \gamma = \gamma 1 + \gamma 2, where \gamma 1 \in M \prime \xi and \gamma 2 \in 

\bigl( 
M \prime \xi 

\bigr) \bot . Since (x\prime (\xi ), x\ast (\gamma 2)) =

(xx\prime (\xi ), \gamma 2) = 0, we have x\ast \gamma 2 \in 
\bigl( 
M \prime \xi 

\bigr) \bot , therefore e\xi (x
\ast (\gamma 2)) = 0. Then we will get

(e\xi x(\eta ), \gamma ) = (e\xi x(\eta ), \gamma 1) + (e\xi x(\eta ), \gamma 2) = (x(\eta ), e\xi (\gamma 1)) + (x(\eta ), e\xi (\gamma 2))

= (x(\eta ), e\xi (\gamma 1)) = (x(\eta ), \gamma 1) = (\eta , x\ast (\gamma 1)) = (\eta , e\xi (x
\ast (\gamma 1)))

= (\eta , e\xi (x
\ast (\gamma 1))) + (\eta , e\xi (x

\ast (\gamma 2))) = (\eta , e\xi (x
\ast (\gamma 1 + \gamma 2)))

= (\eta , e\xi (x
\ast (\gamma ))) = (e\xi (\eta ), x

\ast (\gamma )) = (xe\xi (\eta ), \gamma ),

hence e\xi x = xe\xi . Then e\xi \in M \prime \prime . As mentioned above (see: Preliminaries), by the bicom-
mutant theorem we have M \prime \prime = M . Hence we get e\xi \in M . Recall that the bicommutant
theorem is also true for real W \ast -algebras (see [11, Theorem 4.3.8]). \Box 
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