

PROJECTIONLESS REAL C*-ALGEBRAS

ABDUGAFUR RAKHIMOV AND FERUZA RASHIDOVA

ABSTRACT. In this paper the projectionless real C^* -algebras are investigated. Following construction of [4] a real C^* -algebra is constructed, which is separable, simple, nuclear, nonunital, and contains no nonzero projections. It is proved that a real C^* algebra is projectionless if and only if the enveloping C^* -algebra is projectionless. An example of a projectionless real Banach *-algebra with the C^* -property is constructed, the complexification of which contains a non-trivial projection.

В роботі досліджено безпроекційні дійсні C^* -алгебри. Використовуючи результати [4], побудовано дійсну C^* -алгебру, яка є сепарабельною, простою, ядерною, неунітальною, і яка не містить ненульових проекторів. Доведено, що дійсна C^* -алгебра є безпроекційною тоді і тільки тоді, коли огортуюча *-алгебра є безпроекційною. Побудовано приклад безпроекційної дійсної банахової *-алгебру із властивістю C^* , комплексифікіція якої містить нетривіальний проектор.

1. INTRODUCTION.

A real or complex C^* -algebra is said to be *projectionless* if it contains no projections other than $\mathbb{1}$ (if present) and 0. It has long been an open question whether there exists a projectionless simple C^* -algebra. The problem of whether simple infinite-dimensional C^* -algebras with this property exist was posed in 1958 by Irving Kaplansky and the first example of one was published in 1981 by Bruce Blackadar (see [4, 6, 8]). In the paper [4] a projectionless simple separable nuclear nonunital C^* -algebra is constructed and in [10] a sufficient condition for a unital C^* -algebra to have no nontrivial projections is given.

In this paper the projectionless real C^* -algebras are investigated. It is proved that a real C^* -algebra is projectionless if and only if the enveloping C^* -algebra is projectionless. Following construction of [4] a real C^* -algebra is constructed, which is separable, simple, nuclear, nonunital, and contains no nonzero projections. An example of a projectionless real Banach *-algebra with the C^* -property is constructed, the complexification of which contains a non-trivial projection.

2. Preliminaries.

Let A be a Banach *-algebra over the field \mathbb{C} . The algebra A is called a C^* -algebra if $||aa^*|| = ||a||^2$ for any $a \in A$. A C^* -algebra M is called a W^* -algebra if there exists a Banach space M_* , so-called a predual of M such that $(M_*)^* = M$. Let B(H) be the algebra of all bounded linear operators acting on a complex Hilbert space H and let $M \subset B(H)$ be a *-subalgebra. The subset $M' = \{a \in B(H) : ba = ab, \forall b \in M\}$ is called the commutant of M. It is easy to see that $M \subset M'' = M^{IV} = M^{VI} = \dots$ and $M' = M^{III} = M^V = \dots$, where M'' = (M')'. If M = M'', then it is called a von Neumann algebra. By the bicommutant theorem any von Neumann algebra is W^* -algebra, i.e. M is weakly closed with $\mathbf{1} \in M$. The converse is also true. Therefore, W^* -algebras are also called von Neumann algebras.

Now, a real *-subalgebra $R \subset B(H)$ with **1** is called a *real* W^* -algebra if it is weakly closed and $R \cap iR = \{0\}$. The smallest (complex) W^* -algebra M containing R coincides

²⁰²⁰ Mathematics Subject Classification. 46L05, 46L10, 46L35.

Keywords. real C^* -algebra, projection, simple algebra.

with its complexication R + iR, i.e. M = R + iR. It is known that R generates a natural involutive (i.e. of order 2) *-antiautomorphism α_R of M, namely $\alpha_R(x+iy) = x^* + iy^*$, where $x + iy \in M$, $x, y \in R$. In this case $R = \{x \in M : \alpha_R(x) = x^*\}$. Conversely, given a W^* -algebra M and any involutive *-antiautomorphism α on M, the set $(M, \alpha) = \{a \in M : \alpha(a) = a^*\}$ is a real W^* -algebra (see [2]).

A real Banach *-algebra A is called a real C*-algebra if $||aa^*|| = ||a||^2$ and the element $\mathbf{1} + aa^*$ is invertible for any $a \in A$. It is known that A is a real C*-algebra if and only if the norm on A can be extended on the complexification $A^c = A + iA$ of A so that A^c is a C*-algebra (see [11, 5.1.1]).

Let A be a real or complex algebra. A subspace I of an algebra A is called an left ideal (resp. right ideal) if $xy \in I$ for all $x \in A$ and $y \in I$ (resp. for all $x \in I$ and $y \in A$). A left and right ideal is called a two-sided ideal or ideal. An algebra A is said to be *simple* if it contains no non-trivial two-sided ideals and the multiplication operation is not zero (that is, there is some a and some b such that $ab \neq 0$). The second condition in the definition precludes the following situation; consider the algebra with the usual matrix operations:

$$\left\{ \left(\begin{array}{cc} 0 & \alpha \\ 0 & 0 \end{array} \right) \quad : \quad \alpha \in \mathbb{C} \right\}$$

This is a one-dimensional algebra in which the product of any two elements is zero. This condition ensures that the algebra has a minimal nonzero left ideal, which simplifies certain arguments.

It is easy to see that if the complexification A + iA of a real algebra A is simple, then a real algebra A is also simple. But the converse is not true. We will show this below (see Example 3.6).

Now recall that [12] a real (resp. complex) C^* -algebra A is *nuclear* if for all real (resp. complex) C^* -algebras B the algebraic tensor product $A \otimes_{\mathbb{R}} B$ (resp. $A \otimes_{\mathbb{C}} B$) has a unique C^* -norm. It is known that (see [12, Proposition 2.]) a real C^* -algebra A is nuclear if and only if the C^* -algebra A + iA is nuclear.

3. MAIN RESULTS.

3.1. A simple real C^* -algebra with no nontrivial projections. Following the construction of the paper [4], we construct a projectionless real C^* -algebras as follows and herewith the similar moments we will skip, or briefly summarize.

The algebra B will be the (unique) simple unital AF algebra whose ordered group $K_0(B)$ is isomorphic to the additive group of real algebraic numbers [5, 7]. B has the following properties:

- (1) B has a unique normalized trace τ , which is faithful.
- (2) If p and q are projections in B, then $p \sim q$ if and only if $\tau(p) = \tau(q)$.
- (3) If λ is a number with $0 < \lambda < 1$, then there is a projection $p \in B$ with $\tau(p) = \lambda$.
- (4) If p is any nonzero projection of B, then $pBp \cong B$.

The fact that B satisfies (l)-(4) follows easily from the results of [6] and [7, III.2.11, III.2.12, III.3.4]

Let us define an algebra $A_1 = A(\sigma_1)$ as the real C^* -algebra of continuous real functions $f: [0,1] \to B$ such that $f(1) = \sigma_1(f(0))$. Since B is a real C^* -algebra (even is simple AF C^* -algebra), and the norm and the involution on A_1 are defined by $||f|| = \sup_{0 \le t \le 1} ||f(t)||$ and $f^*(t) = f(t)^*$, respectively. We have

$$\begin{split} \|ff^*\| &= \sup_{0 \le t \le 1} \|(ff^*)(t)\| &= \sup_{0 \le t \le 1} \|f(t)f(t)^*\| = \sup_{0 \le t \le 1} \|f(t)\|^2 = \|f\|^2, \\ (\mathbf{1}_A + ff^*)(t) &= \mathbf{1}_A(t) + (ff^*)(t) = \mathbf{1} + f(t)f^*(t), \end{split}$$

therefore, the invertibility of $\mathbf{1} + f(t)f^*(t)$ implies the invertibility of $\mathbf{1}_A + ff^*$. Hence A_1 is a real C^* -algebra. Then the complexification $A_1^c = A_1 + iA_1$ of A_1 is a (complex) C^* -algebra. Similarly to [4, Proposition 1.1.] we have

Proposition 3.1. $A(\sigma_1)$ is projectionless if and only if $\sigma_1(\mathbf{1}) \neq \mathbf{1}_1$, where $\mathbf{1}_1 = p_1$ is the unit of p_1Bp_1 .

The proof of Proposition 3.1 is carried out similarly to the proof of [4, Proposition 1.1]. Only here, it is necessary to clarify the following point. A trace τ is extended to the enveloping (complex) C^* -algebra $B^c = B + iB$ as $\overline{\tau}(a + ib) = \tau(a)$, since $a + ib \ge 0$ implies $a \ge 0$ (see [2, Corollary 1.1.4]). Since any projector of a real C^* -algebra B is automatically a projector in the enveloping C^* -algebra B^c , according to [9, Lemma 1.8] for projectors $e, h \in B$, the condition ||e - h|| < 1 implies $e \sim h$, i.e., $\tau(e) = \tau(h)$.

An isomorphism σ_1 can be extended by linearity to an isomorphism $\overline{\sigma}_1$ between B^c and $B_1^c = p_1 B p_1 + i p_1 B p_1$ as $\overline{\sigma}_1(x + i y) = \sigma_1(x) + i \sigma_1(y)$, $x, y \in p_1 B p_1$. Then it is directly shown that $A_1^c = A(\overline{\sigma}_1)$ and A_1^c is the C^* -algebra of continuous functions $F : [0, 1] \to B^c$ with $F(1) = \overline{\sigma}_1(F(0))$. Moreover $A_1 = (A_1^c, \alpha) = \{x \in A_1^c : \alpha(x) = x^*\}$, where α is an involutive *-antiautomorphism of A_1^c , defined by $\alpha(a + ib) = a^* + ib^*$ $(a, b \in A_1)$. And by [4, Proposition 1.1.] we also have the fillowing.

Proposition 3.2. $A(\overline{\sigma}_1)$ is projectionless if and only if $\overline{\sigma}_1(\mathbf{1}) \neq \mathbf{1}_1$.

It is easily shown that $\overline{\sigma}_1(\mathbf{1}) \neq \mathbf{1}_1 \iff \sigma_1(\mathbf{1}) \neq \mathbf{1}_1$, therefore we have

Proposition 3.3. $A(\sigma_1)$ is projectionless if and only if $A(\overline{\sigma}_1)$ is projectionless.

Further, sequences of real C^* -algebras A_2, A_3, \ldots and of C^* -algebras A_2^c, A_3^c, \ldots are constructed similarly to the scheme for constructing the same sequence from [4]: suppose A_2, A_3, \ldots, A_n have been defined, with $A_n = A(\sigma_n)$, where σ_n is an isomorphism of Bonto $p_n B p_n$. $p_n \in B$ is a projection with $0 < \lambda_n = \tau(p_n) < 1$. Let $\mu = \lambda_n^{1/2}/(1+\lambda_n^{1/2})$ and let $q, r \in B$ be orthogonal projections with $\tau(q) = \mu, \tau(r) = \lambda_n(1-\mu)$. Put $s = \mathbf{1} - q - r$. Choose a fixed isomorphism σ_{n+1} of B onto (q+r)B(q+r) such that $\sigma_{n+1}(q) = r$. This is possible because

$$\tau(\sigma_{n+1}(q)) = [\mu + \lambda_n(1-\mu)] = \lambda_n(1-\mu) = \tau(r).$$

Analogously, this isomorphism can be extended by linearity to an isomorphism $\overline{\sigma}_{n+1}$ between B^c and $(q+r)B^c(q+r)$. Set $A_{n+1} = A(\sigma_{n+1})$, σ_{n+1} induces isomorphisms $\beta_1 : qBq \to rBr$ and $\beta_2 : (\mathbf{1} - q)B(\mathbf{1} - q) \to qBq$ by restriction. Let $\gamma : B \to qBq$ and $\delta : B \to (\mathbf{1} - q)B(\mathbf{1} - q)$ be arbitrary isomorphisms with $\delta(p) = r$. It is also possible since $\tau(\delta(p)) = \lambda_n(1-\mu) = \tau(r)$. The linear extensions of these isomorphisms to the complexification of the corresponding algebras are denoted by $\overline{\beta}_1, \overline{\beta}_2, \overline{\gamma}$, and $\overline{\delta}$, respectively.

By [4, Theorem 2.3] there is a pointwise-continuous path of automorphisms θ_t ($0 \le t \le 1$) of qB^cq with

$$\overline{\theta}_0 = id$$
 and $\overline{\theta}_1 = \overline{\beta}_2 \circ \overline{\delta} \circ \overline{\gamma}^{-1}$.

In the proof of the theorem, passing from a real C^* -algebra to its complexification, for automorphisms $\overline{\theta}_t$ one can obtain the $\tilde{\alpha}$ -invariance: $\overline{\theta}_t \circ \tilde{\alpha} = \tilde{\alpha} \circ \overline{\theta}_t$, where $\tilde{\alpha}$ is the involutive *-antiautomorphism of qB^cq , generating qBq, i.e., $qBq = (qB^cq, \tilde{\alpha})$. Let $w_t \in rB^cr$ $(0 \leq t < 1)$ be a continuous path of unitaries with $w_0 = r$ such that the family of inner *-automorphisms $Ad(w_t) = w_t \cdot w_t^*$ converges pointwise to $\overline{\beta}_1 \circ \overline{\gamma} \circ \overline{\sigma}_n^{-1} \circ \overline{\delta}^{-1}|_{rB^cr}$ as $t \to 1$. Similarly, here we can also choose as: $Ad(w_t) \circ \hat{\alpha} = \hat{\alpha} \circ Ad(w_t)$, where $\hat{\alpha}$ is the involutive *-antiautomorphism of rB^cr , generating rBr, i.e., $rBr = (rB^cr, \hat{\alpha})$. Put $u_t = w_t + s$. Then u_t is unitary in $(\mathbf{1} - q)B^c(\mathbf{1} - q)$, for which the inner *-automorphisms $\pi_t = Ad(u_t)$ $(0 \leq t < 1)$ are invariant under the corresponding involutive *-antiautomorphism. Now define $\overline{\phi}_n : A_n^c \to A_{n+1}^c$ as follows:

$$[\overline{\phi}_n(f)](t) = \begin{bmatrix} (\overline{\theta}_t \circ \overline{\gamma})[f(t/2)] & 0 & 0\\ 0 & (\overline{\pi}_t \circ \overline{\delta})[f((t+1)/2)] & \\ 0 & \end{bmatrix}, \quad \text{if} \quad t < 1$$

and

$$\begin{split} [\overline{\phi}_n(f)](0) &= \left[\begin{array}{cc} \overline{\gamma}[f(0)] & 0 & 0 \\ 0 & \overline{\delta}[f(1/2)] \\ 0 \end{array} \right] \\ [\overline{\phi}_n(f)](1) &= \left[\begin{array}{cc} (\overline{\beta}_2 \circ \overline{\delta})[f(1/2)] & 0 & 0 \\ 0 & (\overline{\beta}_1 \circ \overline{\gamma})[f(0)] & 0 \\ 0 & 0 & 0 \end{array} \right], \end{split}$$

with B^c symbolically represented as 3×3 matrices:

$$x \sim \begin{bmatrix} qxq & qxr & qxs \\ rxq & rxr & rxs \\ sxq & sxr & sxs \end{bmatrix}$$

Here the entries (23), (32), (33) of the first and the second matrices are missing (i.e., not written), since they are not important and a little cumbersome. For example, the element (33) of the first matrix, for $x = [\overline{\phi}_n(f)](t)$, in fact, has the form

$$xs + (\mathbf{1} - s)x + (\overline{\theta}_t \circ \overline{\gamma})[f(t/2)] + (\overline{\pi}_t \circ \overline{\delta})[f((t+1)/2)].$$

According to the third matrix we have $\overline{\sigma}_{n+1}([\overline{\phi}_n(f)](0)) = [\overline{\phi}_n(f)](\mathbb{1})$. Since all automorphisms and isomorphisms are invariant under the corresponding involutive *-anti-automorphisms, their restrictions to the corresponding real part, denoted by symbols without a dash (without a wave, without a cap), we obtain the following:

$$\sigma_{n+1}: B \to (q+r)B(q+r), \ \phi_n: A_n \to A_{n+1} \text{ and } \sigma_{n+1}([\phi_n(f)](0)) = [\phi_n(f)](\mathbb{1}).$$

Further, following [4], we put $p_{n+1} = q + r$, $\lambda_{n+1} = \mu + \lambda_n(1 - \mu)$. Now let the algebra A (respectively, A^c) be constructed as an inductive limit of real (respectively, complex) C^* -algebras,

$$A = \lim \{A_n, \phi_n\} \quad \text{and} \quad A^c = \lim \{A_n^c, \overline{\phi}_n\}.$$

By construction, we also have $A + iA = A^c$. By [4, Lemma 3.2], the C^* -algebra A^c is simple, by [4, Proposition 3.3 and Corollary 3.4], A^c is a projectionless C^* -algebra, and by [4, Proposition 3.5], A^c is nuclear. Since simplicity of the algebra $A + iA = A^c$ implies simplicity of A, the real C^* -algebra A is simple. Since A^c is projectionless, A is also projectionless. By [12, Proposition 2.], A is also nuclear.

Thus, following the scheme of the paper [4], we have constructed a real C^* -algebra A which is separable, simple, nuclear and contains no nonzero projections. Moreover, its enveloping C^* -algebra, A + iA, is also separable, simple, nuclear and contains no nonzero projections.

3.2. A connection between a projectionless real C^* -algebra and an enveloping C^* -algebra. Obviously, every projection of a real C^* -algebra is a projection of an enveloping C^* -algebra, but the converse is not true. The set of all projections of (complex) algebras is larger than the set of all projections of real subalgebras. Therefore, if a (complex) algebra contains no nonzero projections, then any its subalgebra also does not have nonzero projections. Hence and in connection with the previous example, a natural question arises: if a real C^* -algebra A is projectionless, is then the complexification A+iA of A also projectionless?

Despite the fact that the set of all projections of A + iA is larger than the set of all projections of A, the answer to the question is positive. Namely, the following result holds.

Theorem 3.4. A real C^* -algebra A is projectionless if and only if its enveloping C^* algebra $A + iA = A^c$ (i.e. its complexification) is projectionless.

Proof. Sufficiency is obvious. Let us show the necessity. Let α be an involutive *-antiautomorphism of A^c , generating A, i.e., $A = (A^c, \alpha)$ (see [11, Proposition 5.1.3.] and [1]). Let e = a + ib be a nonzero projection of A^c , where $a, b \in A$. Since

$$e = \frac{1}{2}(e + \alpha(e)) + i \cdot \frac{e - \alpha(e)}{2i}$$

for $f = e + \alpha(e)$ and $q = \frac{e - \alpha(e)}{2i}$ we have $a = \frac{1}{2}f$, $b = q \in A$ and $f^* = f$, $q^* = -q$. Put $p = e \wedge \alpha(e)$. Since $f, f^2 \in A$, we have $p \in A$. If $p \neq 0$, then the real C^* -algebra A contains a nonzero projection and if p = 0, then $e \perp \alpha(e)$, i.e., $e\alpha(e) = 0$. Then $f = e + \alpha(e)$ is a nonzero projection of A.

Remark 3.5. A slightly more general notion of real C^* -algebras was given also by Berberian [3, p. 26, Exercise 14A]. We define a *real* C^* -algebra (in the sense of Berberian) as a Banach *-algebra over the field of real numbers such that $||x^*x|| = ||x||^2$ for all $x \in A$, i.e., here the condition of invertibility of $\mathbf{1} + x^*x$ (for any $x \in A$) is not required. In this case, the theorem 3.4 is not true, i.e., the condition of invertibility of $\mathbf{1} + x^*x$ ($\forall x \in A$) is essential as the following example shows.

Example 3.6. Let $A = \mathbb{C}$ be the field of complex numbers. Then A with the identical involution $z^* = z$ becomes a real Banach *-algebra. Since $||zz^*||^2 = |z^2|^2 = (a^2+b^2)^2 = |z|^4$ (where $\forall z = a + ib \in \mathbb{C}$), we have $||zz^*|| = ||z||^2$. Moreover, for z = i the element $\mathbf{1} + zz^* = 1 + i^2 = 0$ is not invertible. Thus A is not a real C*-algebra, because it is not a symmetric *-algebra, which means that $\mathbf{1} + x^*x$ is invertible for any $x \in A$. But A is a real C*-algebra in the sense of Berberian. And also A contains no nonzero projections and it is simple.

Now we consider the complexification $A + iA = \mathbb{C} + i\mathbb{C}$ of $A = \mathbb{C}$. In order to give an explicit form of the complexification, note that we can not put formally $M = A + iA = \{x+iy : x, y \in A\}$, because $A \cap iA = \mathbb{C} \neq \{0\}$. Therefore let us consider the representation of A in the form

$$A \cong A_0 := \{ (\lambda, \lambda) : \lambda \in \mathbb{C} \},\$$

where \cong means a real isometric *-isomorphism. Now it is clear that $A_0 \cap iA_0 = \{0\}$ and therefore

$$A + iA \cong A_0 + iA_0 = \{(\lambda, \overline{\lambda}) + i(\mu, \overline{\mu}) : \lambda, \mu \in A\} = \{(\lambda + i\mu, \overline{\lambda} + i\overline{\mu}) : \lambda, \mu \in A\}.$$

Let us show that the algebra $M \cong A_0 + iA_0$ has nontrivial projections. For this, we describe projections of M. Let $p = (\lambda + i\mu, \overline{\lambda} + i\overline{\mu})$ be a projection, i.e., $p^* = p = p^2$. From the last equalities we get

$$\lambda^2 - \mu^2 = \lambda$$
 and $2\lambda\mu = \mu$.

If $\mu = 0$ we get $\lambda = 0$ or $\lambda = 1$ and if $\mu \neq 0$ we get $\lambda = 1/2$, $\mu = \pm i/2$. Then

$$p = \left(\frac{1}{2} + i\frac{\pm i}{2}, \frac{1}{2} - i\frac{\pm i}{2}\right) = \left(\frac{1}{2} \mp \frac{1}{2}, \frac{1}{2} \pm \frac{1}{2}\right) = (0, 1) \text{ or } (1, 0).$$

Since $p_1 = (0,1)$ and $p_2 = (1,0)$ are non-trivial projections of M, the (complex) C^* -algebra M = A + iA has non-trivial projections, therefore, it is not a projectionless C^* -algebra. Moreover, the C^* -algebra

$$M = A + iA \cong A_0 + iA_0 = \{a + ib : \mid a = (\lambda, \lambda), b = (\mu, \overline{\mu}) \in A_0\}$$

is not simple, because M has nonzero proper ideals $\{(0, b) : b \in A_0\}$ and $\{(a, 0) : a \in A_0\}$. Thus A is a projectionless simple real C^* -algebra (in the sense of Berberian), for which the enveloping C^* -algebra A + iA is not simple and has non-trivial projections.

Remark 3.7. Unlike the C^* -algebras, the real and complex W^* -algebras always have nontrivial projections. Moreover, the set of all projections of real and complex W^* -algebras is rich enough.

Indeed, let $M \subset B(H)$ be a W^* -algebra. In the finite-dimensional case, the C^* - and W^* - algebras coincide, and in this case, all projectors are described, i.e., the explicit form of the projectors is known. Therefore, suppose that M is infinite-dimensional. We take an arbitrary nonzero vector $\xi \in H$ and consider the projection map $e_{\xi} : H \to \overline{M'\xi}$. Let us show that the mapping e_{ξ} is a projection of M, i.e., $e_{\xi} \in M$. Let $\forall x, x' \in M'$ and $\forall \eta, \gamma \in H$. Let $\gamma = \gamma_1 + \gamma_2$, where $\gamma_1 \in \overline{M'\xi}$ and $\gamma_2 \in (\overline{M'\xi})^{\perp}$. Since $(x'(\xi), x^*(\gamma_2)) = (xx'(\xi), \gamma_2) = 0$, we have $x^*\gamma_2 \in (\overline{M'\xi})^{\perp}$, therefore $e_{\xi}(x^*(\gamma_2)) = 0$. Then we will get

$$\begin{aligned} (e_{\xi}x(\eta),\gamma) &= (e_{\xi}x(\eta),\gamma_1) + (e_{\xi}x(\eta),\gamma_2) = (x(\eta),e_{\xi}(\gamma_1)) + (x(\eta),e_{\xi}(\gamma_2)) \\ &= (x(\eta),e_{\xi}(\gamma_1)) = (x(\eta),\gamma_1) = (\eta,x^*(\gamma_1)) = (\eta,e_{\xi}(x^*(\gamma_1))) \\ &= (\eta,e_{\xi}(x^*(\gamma_1))) + (\eta,e_{\xi}(x^*(\gamma_2))) = (\eta,e_{\xi}(x^*(\gamma_1+\gamma_2))) \\ &= (\eta,e_{\xi}(x^*(\gamma))) = (e_{\xi}(\eta),x^*(\gamma)) = (xe_{\xi}(\eta),\gamma), \end{aligned}$$

hence $e_{\xi}x = xe_{\xi}$. Then $e_{\xi} \in M''$. As mentioned above (see: Preliminaries), by the bicommutant theorem we have M'' = M. Hence we get $e_{\xi} \in M$. Recall that the bicommutant theorem is also true for real W^* -algebras (see [11, Theorem 4.3.8]).

References

- Sh. A. Ayupov and A. A. Rakhimov, Real w*-algebras, actions of groups and index theory for real factors, VDM Publishing House Ltd. Beau-Bassin, Mauritius, 2010.
- [2] Sh. A. Ayupov, A. A. Rakhimov, and Sh. M. Usmanov, Jordan, real and lie structures in operator algebras, vol. 418, Kluw.Acad.Pub., MAIA., 1997.
- [3] S. Berberian, Baer *-rings, Springer-Verlag, Berlin Heidelberg N.Y., 1972.
- [4] B. Blackadar, A simple c*-algebra with no nontrivial projections, Proceedings of the American Mathematical Society 78 (1980), no. 4, 504–508.
- [5] B. Blackadar, Traces on simple of c*-algebras, Journal of Functional Analysis 38 (1980), 156–168.
- B. Blackadar, A simple unital projectionless c*-algebra, Journal of Operator Theory 5 (1981), no. 1, 63–71.
- B. Blackadar and D. Handelman, Dimension functions and traces on c*-algebras, Journal of Functional Analysis 45 (1982), no. 3, 297–340.
- [8] K. Davidson, Blackadar's simple unital projectionless c*-algebra, c*-algebras by example, Fields Institute Monographs, American Mathematical Society 6 (1981), 124–129.
- [9] J. Glimm, On a certain class of operator algebras, Transactions of the American Mathematical Society 95 (1960), no. 2, 318–318.
- [10] L. Kaonga, Projectionless c*-algebras, Proceedings of the American Mathematical Society 130 (2001), no. 1, 33–38.
- [11] B. R. Li, Real operator algebras, vol. 1, World Sci. Pub. Co. Pte. Ltd., 2003.
- [12] A. Rakhimov and M. Nurillaev, On property of injectivity for real w*-algebras and jw- algebras, Positivity 22 (2018), 1345–1354, doi:10.1007/s11117-018-0579-0.

A. A. Rakhimov: rakhimov@ktu.edu.tr

Department of Mathematics M. Ulugbek National University of Uzbekistan, Tashkent, Uzbekistan

F.F.Rashidova: rashidova-feruza@inbox.ru

Department of Mathematics, Samarkand State University, Samarkand, Uzbekistan