PROJECTIONLESS REAL C^{*}-ALGEBRAS

ABDUGAFUR RAKHIMOV AND FERUZA RASHIDOVA

Abstract

In this paper the projectionless real C^{*}-algebras are investigated. Following construction of [4] a real C^{*}-algebra is constructed, which is separable, simple, nuclear, nonunital, and contains no nonzero projections. It is proved that a real C^{*} algebra is projectionless if and only if the enveloping C^{*}-algebra is projectionless. An example of a projectionless real Banach *-algebra with the C^{*}-property is constructed, the complexification of which contains a non-trivial projection.

В роботі досліджено безпроекційні дійсні C^{*}-алгебри. Використовуючи результати [4], побудовано дійсну C^{*}-алгебру, яка є сепарабельною, простою, ядерною, неунітальною, і яка не містить ненульових проекторів. Доведено, що дійсна C^{*}-алгебра є безпроекційною тоді і тільки тоді, коли огортуюча ${ }^{*}$-алгебра є безпроекційною. Побудовано приклад безпроекційної дійсної банахової *-алгебру із властивістю C^{*}, комплексифікіція якої містить нетривіальний проектор.

1. Introduction.

A real or complex C^{*}-algebra is said to be projectionless if it contains no projections other than \mathbb{I} (if present) and 0 . It has long been an open question whether there exists a projectionless simple C^{*}-algebra. The problem of whether simple infinite-dimensional C^{*}-algebras with this property exist was posed in 1958 by Irving Kaplansky and the first example of one was published in 1981 by Bruce Blackadar (see [4, 6, 8]). In the paper [4] a projectionless simple separable nuclear nonunital C^{*}-algebra is constructed and in [10] a sufficient condition for a unital C^{*}-algebra to have no nontrivial projections is given.

In this paper the projectionless real C^{*}-algebras are investigated. It is proved that a real C^{*}-algebra is projectionless if and only if the enveloping C^{*}-algebra is projectionless. Following construction of [4] a real C^{*}-algebra is constructed, which is separable, simple, nuclear, nonunital, and contains no nonzero projections. An example of a projectionless real Banach *-algebra with the C^{*}-property is constructed, the complexification of which contains a non-trivial projection.

2. Preliminaries.

Let A be a Banach *-algebra over the field \mathbb{C}. The algebra A is called a C^{*}-algebra if $\left\|a a^{*}\right\|=\|a\|^{2}$ for any $a \in A$. A C^{*}-algebra M is called a W^{*}-algebra if there exists a Banach space M_{*}, so-called a predual of M such that $\left(M_{*}\right)^{*}=M$. Let $B(H)$ be the algebra of all bounded linear operators acting on a complex Hilbert space H and let $M \subset B(H)$ be a ${ }^{*}$-subalgebra. The subset $M^{\prime}=\{a \in B(H): b a=a b, \forall b \in M\}$ is called the commutant of M. It is easy to see that $M \subset M^{\prime \prime}=M^{I V}=M^{V I}=\ldots$. and $M^{\prime}=M^{I I I}=M^{V}=\ldots$, where $M^{\prime \prime}=\left(M^{\prime}\right)^{\prime}$. If $M=M^{\prime \prime}$, then it is called a von Neumann algebra. By the bicommutant theorem any von Neumann algebra is W^{*}-algebra, i.e. M is weakly closed with $\mathbb{I} \in M$. The converse is also true. Therefore, W^{*}-algebras are also called von Neumann algebras.

Now, a real *-subalgebra $R \subset B(H)$ with \mathbb{I} is called a real W^{*}-algebra if it is weakly closed and $R \cap i R=\{0\}$. The smallest (complex) W^{*}-algebra M containing R coincides

[^0]with its complexication $R+i R$, i.e. $M=R+i R$. It is known that R generates a natural involutive (i.e. of order 2) *-antiautomorphism α_{R} of M, namely $\alpha_{R}(x+i y)=x^{*}+i y^{*}$, where $x+i y \in M, x, y \in R$. In this case $R=\left\{x \in M: \alpha_{R}(x)=x^{*}\right\}$. Conversely, given a W^{*}-algebra M and any involutive *-antiautomorphism α on M, the set $(M, \alpha)=\left\{a \in M: \alpha(a)=a^{*}\right\}$ is a real W^{*}-algebra (see [2]).

A real Banach *-algebra A is called a real C^{*}-algebra if $\left\|a a^{*}\right\|=\|a\|^{2}$ and the element $\mathbb{I}+a a^{*}$ is invertible for any $a \in A$. It is known that A is a real C^{*}-algebra if and only if the norm on A can be extended on the complexification $A^{c}=A+i A$ of A so that A^{c} is a C^{*}-algebra (see [11, 5.1.1]).

Let A be a real or complex algebra. A subspace I of an algebra A is called an left ideal (resp. right ideal) if $x y \in I$ for all $x \in A$ and $y \in I$ (resp. for all $x \in I$ and $y \in A$). A left and right ideal is called a two-sided ideal or ideal. An algebra A is said to be simple if it contains no non-trivial two-sided ideals and the multiplication operation is not zero (that is, there is some a and some b such that $a b \neq 0$). The second condition in the definition precludes the following situation; consider the algebra with the usual matrix operations:

$$
\left\{\left(\begin{array}{ll}
0 & \alpha \\
0 & 0
\end{array}\right): \alpha \in \mathbb{C}\right\}
$$

This is a one-dimensional algebra in which the product of any two elements is zero. This condition ensures that the algebra has a minimal nonzero left ideal, which simplifies certain arguments.

It is easy to see that if the complexification $A+i A$ of a real algebra A is simple, then a real algebra A is also simple. But the converse is not true. We will show this below (see Example 3.6).

Now recall that [12] a real (resp. complex) C^{*}-algebra A is nuclear if for all real (resp. complex) C^{*}-algebras B the algebraic tensor product $A \otimes_{\mathbb{R}} B$ (resp. $A \otimes_{\mathbb{C}} B$) has a unique C^{*}-norm. It is known that (see [12, Proposition 2.]) a real C^{*}-algebra A is nuclear if and only if the C^{*}-algebra $A+i A$ is nuclear.

3. Main results.

3.1. A simple real C^{*}-algebra with no nontrivial projections. Following the construction of the paper [4], we construct a projectionless real C^{*}-algebras as follows and herewith the similar moments we will skip, or briefly summarize.

The algebra B will be the (unique) simple unital AF algebra whose ordered group $K_{0}(B)$ is isomorphic to the additive group of real algebraic numbers [5, 7]. B has the following properties:
(1) B has a unique normalized trace τ, which is faithful.
(2) If p and q are projections in B, then $p \sim q$ if and only if $\tau(p)=\tau(q)$.
(3) If λ is a number with $0<\lambda<1$, then there is a projection $p \in B$ with $\tau(p)=\lambda$.
(4) If p is any nonzero projection of B, then $p B p \cong B$.

The fact that B satisfies (1)-(4) follows easily from the results of [6] and [7, III.2.11, III.2.12, III.3.4]

Let us define an algebra $A_{1}=A\left(\sigma_{1}\right)$ as the real C^{*}-algebra of continuous real functions $f:[0,1] \rightarrow B$ such that $f(1)=\sigma_{1}(f(0))$. Since B is a real C^{*}-algebra (even is simple AF C^{*}-algebra), and the norm and the involution on A_{1} are defined by $\|f\|=\sup _{0 \leq t \leq 1}\|f(t)\|$ and $f^{*}(t)=f(t)^{*}$, respectively. We have

$$
\begin{aligned}
\left\|f f^{*}\right\|=\sup _{0 \leq t \leq 1}\left\|\left(f f^{*}\right)(t)\right\| & =\sup _{0 \leq t \leq 1}\left\|f(t) f(t)^{*}\right\|=\sup _{0 \leq t \leq 1}\|f(t)\|^{2}=\|f\|^{2}, \\
\left(\mathbb{I}_{A}+f f^{*}\right)(t) & =\mathbb{\mathbb { I }}_{A}(t)+\left(f f^{*}\right)(t)=\mathbb{I}+f(t) f^{*}(t),
\end{aligned}
$$

therefore, the invertiblity of $\mathbb{I}+f(t) f^{*}(t)$ implies the invertiblity of $\mathbb{\mathbb { I }}_{A}+f f^{*}$. Hence A_{1} is a real C^{*}-algebra. Then the complexification $A_{1}^{c}=A_{1}+i A_{1}$ of A_{1} is a (complex) C^{*}-algebra. Similarly to [4, Proposition 1.1.] we have

Proposition 3.1. $A\left(\sigma_{1}\right)$ is projectionless if and only if $\sigma_{1}(\mathbb{I}) \neq \mathbb{I}_{1}$, where $\mathbb{\Pi}_{1}=p_{1}$ is the unit of $p_{1} B p_{1}$.

The proof of Proposition 3.1 is carried out similarly to the proof of [4, Proposition 1.1]. Only here, it is necessary to clarify the following point. A trace τ is extended to the enveloping (complex) C^{*}-algebra $B^{c}=B+i B$ as $\bar{\tau}(a+i b)=\tau(a)$, since $a+i b \geq 0$ implies $a \geq 0$ (see [2, Corollary 1.1.4]). Since any projector of a real C^{*}-algebra B is automatically a projector in the enveloping C^{*}-algebra B^{c}, according to [9, Lemma 1.8] for projectors $e, h \in B$, the condition $\|e-h\|<1$ implies $e \sim h$, i.e., $\tau(e)=\tau(h)$.

An isomorphism σ_{1} can be extended by linearity to an isomorphism $\bar{\sigma}_{1}$ between B^{c} and $B_{1}^{c}=p_{1} B p_{1}+i p_{1} B p_{1}$ as $\bar{\sigma}_{1}(x+i y)=\sigma_{1}(x)+i \sigma_{1}(y), x, y \in p_{1} B p_{1}$. Then it is directly shown that $A_{1}^{c}=A\left(\bar{\sigma}_{1}\right)$ and A_{1}^{c} is the C^{*}-algebra of continuous functions $F:[0,1] \rightarrow B^{c}$ with $F(1)=\bar{\sigma}_{1}(F(0))$. Moreover $A_{1}=\left(A_{1}^{c}, \alpha\right)=\left\{x \in A_{1}^{c}: \alpha(x)=x^{*}\right\}$, where α is an involutive *-antiautomorphism of A_{1}^{c}, defined by $\alpha(a+i b)=a^{*}+i b^{*}\left(a, b \in A_{1}\right)$. And by [4, Proposition 1.1.] we also have the fillowing.

Proposition 3.2. $A\left(\bar{\sigma}_{1}\right)$ is projectionless if and only if $\bar{\sigma}_{1}(\mathbb{1}) \neq \mathbb{1}_{1}$.
It is easily shown that $\bar{\sigma}_{1}(\mathbb{I}) \neq \mathbb{I}_{1} \Longleftrightarrow \sigma_{1}(\mathbb{\mathbb { I }}) \neq \mathbb{I}_{1}$, therefore we have
Proposition 3.3. $A\left(\sigma_{1}\right)$ is projectionless if and only if $A\left(\bar{\sigma}_{1}\right)$ is projectionless.
Further, sequences of real C^{*}-algebras A_{2}, A_{3}, \ldots and of C^{*}-algebras $A_{2}^{c}, A_{3}^{c}, \ldots$ are constructed similarly to the scheme for constructing the same sequence from [4]: suppose $A_{2}, A_{3}, \ldots, A_{n}$ have been defined, with $A_{n}=A\left(\sigma_{n}\right)$, where σ_{n} is an isomorphism of B onto $p_{n} B p_{n} . p_{n} \in B$ is a projection with $0<\lambda_{n}=\tau\left(p_{n}\right)<1$. Let $\mu=\lambda_{n}^{1 / 2} /\left(1+\lambda_{n}^{1 / 2}\right)$ and let $q, r \in B$ be orthogonal projections with $\tau(q)=\mu, \tau(r)=\lambda_{n}(1-\mu)$. Put $s=\mathbb{I}-q-r$. Choose a fixed isomorphism σ_{n+1} of B onto $(q+r) B(q+r)$ such that $\sigma_{n+1}(q)=r$. This is possible because

$$
\tau\left(\sigma_{n+1}(q)\right)=\left[\mu+\lambda_{n}(1-\mu)\right]=\lambda_{n}(1-\mu)=\tau(r) .
$$

Analogously, this isomorphism can be extended by linearity to an isomorphism $\bar{\sigma}_{n+1}$ between B^{c} and $(q+r) B^{c}(q+r)$. Set $A_{n+1}=A\left(\sigma_{n+1}\right), \sigma_{n+1}$ induces isomorphisms $\beta_{1}: q B q \rightarrow r B r$ and $\beta_{2}:(\mathbb{I}-q) B(\mathbb{I}-q) \rightarrow q B q$ by restriction. Let $\gamma: B \rightarrow q B q$ and $\delta: B \rightarrow(\mathbb{I}-q) B(\mathbb{I}-q)$ be arbitrary isomorphisms with $\delta(p)=r$. It is also possible since $\tau(\delta(p))=\lambda_{n}(1-\mu)=\tau(r)$. The linear extensions of these isomorphisms to the complexification of the corresponding algebras are denoted by $\bar{\beta}_{1}, \bar{\beta}_{2}, \bar{\gamma}$, and $\bar{\delta}$, respectively.

By [4, Theorem 2.3] there is a pointwise-continuous path of automorphisms $\bar{\theta}_{t}(0 \leq$ $t \leq 1$) of $q B^{c} q$ with

$$
\bar{\theta}_{0}=i d \quad \text { and } \quad \bar{\theta}_{1}=\bar{\beta}_{2} \circ \bar{\delta} \circ \bar{\gamma}^{-1} .
$$

In the proof of the theorem, passing from a real C^{*}-algebra to its complexification, for automorphisms $\bar{\theta}_{t}$ one can obtain the $\tilde{\alpha}$-invariance: $\bar{\theta}_{t} \circ \tilde{\alpha}=\tilde{\alpha} \circ \bar{\theta}_{t}$, where $\tilde{\alpha}$ is the involutive ${ }^{*}$-antiautomorphism of $q B^{c} q$, generating $q B q$, i.e., $q B q=\left(q B^{c} q, \tilde{\alpha}\right)$. Let $w_{t} \in r B^{c} r$ $(0 \leq t<1)$ be a continuous path of unitaries with $w_{0}=r$ such that the family of inner ${ }^{*}$-automorphisms $A d\left(w_{t}\right)=w_{t} . w_{t}^{*}$ converges pointwise to $\left.\bar{\beta}_{1} \circ \bar{\gamma} \circ \bar{\sigma}_{n}^{-1} \circ \bar{\delta}^{-1}\right|_{r B^{c} r}$ as $t \rightarrow 1$. Similarly, here we can also choose as: $A d\left(w_{t}\right) \circ \hat{\alpha}=\hat{\alpha} \circ A d\left(w_{t}\right)$, where $\hat{\alpha}$ is the involutive *-antiautomorphism of $r B^{c} r$, generating $r B r$, i.e., $r B r=\left(r B^{c} r, \hat{\alpha}\right)$. Put $u_{t}=w_{t}+s$. Then u_{t} is unitary in $(\mathbb{I}-q) B^{c}(\mathbb{I}-q)$, for which the inner ${ }^{*}$-automorphisms $\pi_{t}=A d\left(u_{t}\right)$ $(0 \leq t<1)$ are invariant under the corresponding involutive ${ }^{*}$-antiautomorphism. Now define $\bar{\phi}_{n}: A_{n}^{c} \rightarrow A_{n+1}^{c}$ as follows:

$$
\left[\bar{\phi}_{n}(f)\right](t)=\left[\begin{array}{ccc}
\left(\bar{\theta}_{t} \circ \bar{\gamma}\right)[f(t / 2)] & 0 & 0 \\
0 & \left(\bar{\pi}_{t} \circ \bar{\delta}\right)[f((t+1) / 2)] & \\
0 & & \text { if } \quad t<1
\end{array}\right.
$$

and

$$
\begin{gathered}
{\left[\bar{\phi}_{n}(f)\right](0)=\left[\begin{array}{ccc}
\bar{\gamma}[f(0)] \\
0 & \bar{\delta}[f(1 / 2)] & \\
0 & & 0
\end{array}\right]} \\
{\left[\bar{\phi}_{n}(f)\right](1)=\left[\begin{array}{ccc}
\left(\bar{\beta}_{2} \circ \bar{\delta}\right)[f(1 / 2)] & 0 & 0 \\
0 & \left(\bar{\beta}_{1} \circ \bar{\gamma}\right)[f(0)] & 0 \\
0 & 0 & 0
\end{array}\right],}
\end{gathered}
$$

with B^{c} symbolically represented as 3×3 matrices:

$$
x \sim\left[\begin{array}{lll}
q x q & q x r & q x s \\
r x q & r x r & r x s \\
s x q & s x r & s x s
\end{array}\right]
$$

Here the entries (23), (32), (33) of the first and the second matrices are missing (i.e., not written), since they are not important and a little cumbersome. For example, the element (33) of the first matrix, for $x=\left[\bar{\phi}_{n}(f)\right](t)$, in fact, has the form

$$
x s+(\mathbb{I}-s) x+\left(\bar{\theta}_{t} \circ \bar{\gamma}\right)[f(t / 2)]+\left(\bar{\pi}_{t} \circ \bar{\delta}\right)[f((t+1) / 2)] .
$$

According to the third matrix we have $\bar{\sigma}_{n+1}\left(\left[\bar{\phi}_{n}(f)\right](0)\right)=\left[\bar{\phi}_{n}(f)\right](\mathbb{I})$. Since all automorphisms and isomorphisms are invariant under the corresponding involutive $*$-antiautomorphisms, their restrictions to the corresponding real part, denoted by symbols without a dash (without a wave, without a cap), we obtain the following:

$$
\sigma_{n+1}: B \rightarrow(q+r) B(q+r), \phi_{n}: A_{n} \rightarrow A_{n+1} \text { and } \sigma_{n+1}\left(\left[\phi_{n}(f)\right](0)\right)=\left[\phi_{n}(f)\right](\mathbb{I}) .
$$

Further, following [4], we put $p_{n+1}=q+r, \lambda_{n+1}=\mu+\lambda_{n}(1-\mu)$. Now let the algebra A (respectively, A^{c}) be constructed as an inductive limit of real (respectively, complex) C^{*}-algebras,

$$
A=\lim _{\rightarrow}\left\{A_{n}, \phi_{n}\right\} \quad \text { and } \quad A^{c}=\lim _{\rightarrow}\left\{A_{n}^{c}, \bar{\phi}_{n}\right\} .
$$

By construction, we also have $A+i A=A^{c}$. By [4, Lemma 3.2], the C^{*}-algebra A^{c} is simple, by [4, Proposition 3.3 and Corollary 3.4], A^{c} is a projectionless C^{*}-algebra, and by [4, Proposition 3.5], A^{c} is nuclear. Since simplicity of the algebra $A+i A=A^{c}$ implies simplicity of A, the real C^{*}-algebra A is simple. Since A^{c} is projectionless, A is also projectionless. By [12, Proposition 2.], A is also nuclear.

Thus, following the scheme of the paper [4], we have constructed a real C^{*}-algebra A which is separable, simple, nuclear and contains no nonzero projections. Moreover, its enveloping C^{*}-algebra, $A+i A$, is also separable, simple, nuclear and contains no nonzero projections.
3.2. A connection between a projectionless real C^{*}-algebra and an enveloping C^{*}-algebra. Obviously, every projection of a real C^{*}-algebra is a projection of an enveloping C^{*}-algebra, but the converse is not true. The set of all projections of (complex) algebras is larger than the set of all projections of real subalgebras. Therefore, if a (complex) algebra contains no nonzero projections, then any its subalgebra also does not have nonzero projections. Hence and in connection with the previous example, a natural question arises: if a real C^{*}-algebra A is projectionless, is then the complexification $A+i A$ of A also projectionless?

Despite the fact that the set of all projections of $A+i A$ is larger than the set of all projections of A, the answer to the question is positive. Namely, the following result holds.

Theorem 3.4. A real C^{*}-algebra A is projectionless if and only if its enveloping C^{*} algebra $A+i A=A^{c}$ (i.e. its complexification) is projectionless.

Proof. Sufficiency is obvious. Let us show the necessity. Let α be an involutive $*$-antiautomorphism of A^{c}, generating A, i.e., $A=\left(A^{c}, \alpha\right)$ (see [11, Proposition 5.1.3.] and [1]). Let $e=a+i b$ be a nonzero projection of A^{c}, where $a, b \in A$. Since

$$
e=\frac{1}{2}(e+\alpha(e))+i \cdot \frac{e-\alpha(e)}{2 i}
$$

for $f=e+\alpha(e)$ and $q=\frac{e-\alpha(e)}{2 i}$ we have $a=\frac{1}{2} f, b=q \in A$ and $f^{*}=f, q^{*}=-q$. Put $p=e \wedge \alpha(e)$. Since $f, f^{2} \in A$, we have $p \in A$. If $p \neq 0$, then the real C^{*}-algebra A contains a nonzero projection and if $p=0$, then $e \perp \alpha(e)$, i.e., $e \alpha(e)=0$. Then $f=e+\alpha(e)$ is a nonzero projection of A.

Remark 3.5. A slightly more general notion of real C^{*}-algebras was given also by Berberian [3, p. 26, Exercise 14A]. We define a real C^{*}-algebra (in the sense of Berberian) as a Banach *-algebra over the field of real numbers such that $\left\|x^{*} x\right\|=\|x\|^{2}$ for all $x \in A$, i.e., here the condition of invertibility of $\mathbb{I}+x^{*} x$ (for any $x \in A$) is not required. In this case, the theorem 3.4 is not true, i.e., the condition of invertibility of $\mathbb{I}+x^{*} x(\forall x \in A)$ is essential as the following example shows.

Example 3.6. Let $A=\mathbb{C}$ be the field of complex numbers. Then A with the identical involution $z^{*}=z$ becomes a real Banach ${ }^{*}$-algebra. Since $\left\|z z^{*}\right\|^{2}=\left|z^{2}\right|^{2}=\left(a^{2}+b^{2}\right)^{2}=|z|^{4}$ (where $\forall z=a+i b \in \mathbb{C}$), we have $\left\|z z^{*}\right\|=\|z\|^{2}$. Moreover, for $z=i$ the element $\mathbb{I}+z z^{*}=1+i^{2}=0$ is not invertible. Thus A is not a real C^{*}-algebra, because it is not a symmetric ${ }^{*}$-algebra, which means that $\mathbb{I}+x^{*} x$ is invertible for any $x \in A$. But A is a real C^{*}-algebra in the sense of Berberian. And also A contains no nonzero projections and it is simple.

Now we consider the complexification $A+i A=\mathbb{C}+i \mathbb{C}$ of $A=\mathbb{C}$. In order to give an explicit form of the complexification, note that we can not put formally $M=A+i A=$ $\{x+i y: x, y \in A\}$, because $A \cap i A=\mathbb{C} \neq\{0\}$. Therefore let us consider the representation of A in the form

$$
A \cong A_{0}:=\{(\lambda, \bar{\lambda}): \lambda \in \mathbb{C}\},
$$

where \cong means a real isometric ${ }^{*}$-isomorphism. Now it is clear that $A_{0} \cap i A_{0}=\{0\}$ and therefore

$$
A+i A \cong A_{0}+i A_{0}=\{(\lambda, \bar{\lambda})+i(\mu, \bar{\mu}): \lambda, \mu \in A\}=\{(\lambda+i \mu, \bar{\lambda}+i \bar{\mu}): \lambda, \mu \in A\} .
$$

Let us show that the algebra $M \cong A_{0}+i A_{0}$ has nontrivial projections. For this, we describe projections of M. Let $p=(\lambda+i \mu, \bar{\lambda}+i \bar{\mu})$ be a projection, i.e., $p^{*}=p=p^{2}$. From the last equalities we get

$$
\lambda^{2}-\mu^{2}=\lambda \quad \text { and } \quad 2 \lambda \mu=\mu
$$

If $\mu=0$ we get $\lambda=0$ or $\lambda=1$ and if $\mu \neq 0$ we get $\lambda=1 / 2, \mu= \pm i / 2$. Then

$$
p=\left(\frac{1}{2}+i \frac{ \pm i}{2}, \frac{1}{2}-i \frac{ \pm i}{2}\right)=\left(\frac{1}{2} \mp \frac{1}{2}, \frac{1}{2} \pm \frac{1}{2}\right)=(0,1) \text { or }(1,0) .
$$

Since $p_{1}=(0,1)$ and $p_{2}=(1,0)$ are non-trivial projections of M, the (complex) C^{*} algebra $M=A+i A$ has non-trivial projections, therefore, it is not a projectionless C^{*}-algebra. Moreover, the C^{*}-algebra

$$
M=A+i A \cong A_{0}+i A_{0}=\left\{a+i b: \mid a=(\lambda, \bar{\lambda}), b=(\mu, \bar{\mu}) \in A_{0}\right\}
$$

is not simple, because M has nonzero proper ideals $\left\{(0, b): b \in A_{0}\right\}$ and $\left\{(a, 0): a \in A_{0}\right\}$. Thus A is a projectionless simple real C^{*}-algebra (in the sense of Berberian), for which the enveloping C^{*}-algebra $A+i A$ is not simple and has non-trivial projections.

Remark 3.7. Unlike the C^{*}-algebras, the real and complex W^{*}-algebras always have nontrivial projections. Moreover, the set of all projections of real and complex W^{*}-algebras is rich enough.

Indeed, let $M \subset B(H)$ be a W^{*}-algebra. In the finite-dimensional case, the C^{*} - and W^{*} - algebras coincide, and in this case, all projectors are described, i.e., the explicit form of the projectors is known. Therefore, suppose that M is infinite-dimensional. We take an arbitrary nonzero vector $\xi \in H$ and consider the projection map $e_{\xi}: H \rightarrow \overline{M^{\prime} \xi}$. Let us show that the mapping e_{ξ} is a projection of M, i.e., $e_{\xi} \in M$. Let $\forall x, x^{\prime} \in M^{\prime}$ and $\forall \eta, \gamma \in H$. Let $\gamma=\gamma_{1}+\gamma_{2}$, where $\gamma_{1} \in \overline{M^{\prime} \xi}$ and $\gamma_{2} \in\left(\overline{M^{\prime} \xi}\right)^{\perp}$. Since $\left(x^{\prime}(\xi), x^{*}\left(\gamma_{2}\right)\right)=$ $\left(x x^{\prime}(\xi), \gamma_{2}\right)=0$, we have $x^{*} \gamma_{2} \in\left(\overline{M^{\prime} \xi}\right)^{\perp}$, therefore $e_{\xi}\left(x^{*}\left(\gamma_{2}\right)\right)=0$. Then we will get

$$
\begin{aligned}
\left(e_{\xi} x(\eta), \gamma\right) & =\left(e_{\xi} x(\eta), \gamma_{1}\right)+\left(e_{\xi} x(\eta), \gamma_{2}\right)=\left(x(\eta), e_{\xi}\left(\gamma_{1}\right)\right)+\left(x(\eta), e_{\xi}\left(\gamma_{2}\right)\right) \\
& =\left(x(\eta), e_{\xi}\left(\gamma_{1}\right)\right)=\left(x(\eta), \gamma_{1}\right)=\left(\eta, x^{*}\left(\gamma_{1}\right)\right)=\left(\eta, e_{\xi}\left(x^{*}\left(\gamma_{1}\right)\right)\right) \\
& =\left(\eta, e_{\xi}\left(x^{*}\left(\gamma_{1}\right)\right)\right)+\left(\eta, e_{\xi}\left(x^{*}\left(\gamma_{2}\right)\right)\right)=\left(\eta, e_{\xi}\left(x^{*}\left(\gamma_{1}+\gamma_{2}\right)\right)\right) \\
& =\left(\eta, e_{\xi}\left(x^{*}(\gamma)\right)\right)=\left(e_{\xi}(\eta), x^{*}(\gamma)\right)=\left(x e_{\xi}(\eta), \gamma\right),
\end{aligned}
$$

hence $e_{\xi} x=x e_{\xi}$. Then $e_{\xi} \in M^{\prime \prime}$. As mentioned above (see: Preliminaries), by the bicommutant theorem we have $M^{\prime \prime}=M$. Hence we get $e_{\xi} \in M$. Recall that the bicommutant theorem is also true for real W^{*}-algebras (see [11, Theorem 4.3.8]).

References

[1] Sh. A. Ayupov and A. A. Rakhimov, Real w^{*}-algebras, actions of groups and index theory for real factors, VDM Publishing House Ltd. Beau-Bassin, Mauritius, 2010.
[2] Sh. A. Ayupov, A. A. Rakhimov, and Sh. M. Usmanov, Jordan, real and lie structures in operator algebras, vol. 418, Kluw.Acad.Pub.,MAIA., 1997.
[3] S. Berberian, Baer *-rings, Springer-Verlag, Berlin Heidelberg N.Y., 1972.
[4] B. Blackadar, A simple c^{*}-algebra with no nontrivial projections, Proceedings of the American Mathematical Society 78 (1980), no. 4, 504-508.
[5] B. Blackadar, Traces on simple af c^{*}-algebras, Journal of Functional Analysis 38 (1980), 156-168.
[6] B. Blackadar, A simple unital projectionless c^{*}-algebra, Journal of Operator Theory 5 (1981), no. 1, 63-71.
[7] B. Blackadar and D. Handelman, Dimension functions and traces on c^{*}-algebras, Journal of Functional Analysis 45 (1982), no. 3, 297-340.
[8] K. Davidson, Blackadar's simple unital projectionless c^{*}-algebra, c^{*}-algebras by example, Fields Institute Monographs, American Mathematical Society 6 (1981), 124-129.
[9] J. Glimm, On a certain class of operator algebras, Transactions of the American Mathematical Society 95 (1960), no. 2, 318-318.
[10] L. Kaonga, Projectionless c^{*}-algebras, Proceedings of the American Mathematical Society 130 (2001), no. 1, 33-38.
[11] B. R. Li, Real operator algebras, vol. 1, World Sci. Pub. Co. Pte. Ltd., 2003.
[12] A. Rakhimov and M. Nurillaev, On property of injectivity for real w^{*}-algebras and jw- algebras, Positivity 22 (2018), 1345-1354, doi:10.1007/s11117-018-0579-0.
A. A. Rakhimov: rakhimov@ktu.edu.tr

Department of Mathematics M. Ulugbek National University of Uzbekistan, Tashkent, Uzbekistan
F.F.Rashidova: rashidova-feruza@inbox.ru

Department of Mathematics, Samarkand State University, Samarkand, Uzbekistan

[^0]: 2020 Mathematics Subject Classification. 46L05, 46L10, 46L35.
 Keywords. real C^{*}-algebra, projection, simple algebra.

