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MORSE DECOMPOSITION AND INTRINSIC SHAPE IN
TOPOLOGICAL SPACES

NIKITA SHEKUTKOVSKI AND MARTIN SHOPTRAJANOV

Abstract. In this paper for the first time the shape of the chain recurrent set in a
topological space is investigated. Given a compact Hausdorff space X and a continuous
flow \varphi t evolving on X we use intrinsic shape theory tools which combine continuity up
to a covering and the corresponding homotopies of first order to formulate a theorem
about the shape of members of a Morse decomposition and the shape of the chain
recurrent set in topological spaces.

У цiй роботi вперше вивчено форма ланцюгової рекурентної множини в
топологiчному просторi. Для заданого компактного хаусдорфого простору X
i неперервного потiка \varphi t, що ружається на X, ми використовуємо iнструменти
теорiї внутрiшнiх форм, якi поєднують неперервнiсть до покриття та вiдповiднi
гомотопiї першого порядку для формулювання теореми про форму членiв в
розкладi Морса i форму ланцюгової рекурентної множини в топологiчному
просторi.

1. Introduction

When studying the behavior of dynamical systems, the tools range from traditional
techniques of classical analysis to various branches of topology born in the twentieth
century at least partially in response to some dynamical systems questions. Shape theory
surely fits in this description. This point of view is becoming a valuable asset in the study
of topological dynamics. Namely, this theory turns out to be an appropriate tool for
studying spaces with local pathologies which appear for example in dynamical settings.

One particular goal when studying dynamical systems is to find and isolate periodic
solutions and equilibria. They are subsets of a chain recurrent set. Some significant
results concerning this set, e.g., chain recurrence and Morse decomposition in compact
metric spaces were established by Conley in [2].

The purpose of this paper is to shed a different light on the chain recurrent set in
the realm of topological spaces. The main aim is to study the local shape properties
of a Morse decomposition of flows on topological spaces. Namely, we consider a very
general situation of a continuous flow \varphi t evolving on a compact Hausdorff space X which
need not be a metric space. Let us mention that this general context is not vacuous,
since semi-flows appear naturally in practice, while abstract topological spaces arise, for
instance, in compactifications of dynamical systems. We shall investigate the dynamical
concept of the Morse decomposition in a shape theoretical framework and apply this
result to a study of local shape properties of the chain transitive components for flows on
compact Haudorff spaces which extends some previous results on compact metric spaces.
For our shape theoretical insight of the Morse decomposition in compact Hausdorff spaces
we shall use the intrinsic approach to shape for paracompact spaces given in [16]. We shall
use a concept of chain and chain recurrence of a semi-flow developed in [10] by allowing
jumps within open sets of families of open coverings of X. This extends the usual concept
of chains for flows in metric spaces as well as the original definition of Conley [2] that
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takes the family of all open coverings of X. This concept of chain recurrence yields a
Morse decomposition of the semi-flow as stated in [9] so that it has dynamical significance.
The connection between Morse decompositions and chain recurrence is an extension to
semi-flows on compact Hausdorff spaces of a classical result in the Conley theory: the
finest Morse decomposition is given by the chain transitive components of the chain
recurrence set.

2. Preliminaries

Let X be a compact Hausdorff space. A flow on X is a continuous map \varphi : X\times \BbbT \rightarrow X,
where \BbbT stands for the set of integers \BbbZ or the set of real numbers \BbbR , such that

i) \varphi 0 = idX , and
ii) \varphi t+s = \varphi t \circ \varphi s for all s, t \in \BbbT .

As usual we write \varphi t for the map \varphi t : X \rightarrow X defined by \varphi t(x) = \varphi (x, t). If we
substitute \BbbT with the set of positive integers \BbbZ + or the set of positive real numbers \BbbR +

we obtain the corresponding notion of a semi-flow on X. We follow [9] in the sequel.
Given a subset Y \subseteq X and t \in \BbbT we write Y +

t =
\bigcup 

s\geq t \varphi s(Y ) and Y t
+ =

\bigcup 
0\leq s\leq t \varphi s(Y ).

We also write Y  - 
t =

\bigcup 
s\geq t \varphi 

 - 1
s (Y ) and Y t

 - =
\bigcup 

0\leq s\leq t \varphi 
 - 1
s (Y ). In particular, the forward

orbit of Y under the flow is Y +
0 while Y  - 

0 is the backward orbit.
The \alpha and \omega -limit set of a subset Y \subseteq X is defined in the usual way as

\alpha (Y ) =
\bigcap 

t\in T Y
 - 
t , \omega (Y ) =

\bigcap 
t\in T Y

+
t .

If x \in X we just write x+t = \{ x\} +t , x - t = \{ x\}  - t , xt+ = \{ x\} t+ and xt - = \{ x\} t - .
Consequently the semi-trajectories of x are denoted by \gamma +(x) = x+0 and \gamma  - (x) = x - 0 .

For a semi-flow \varphi , a subset Y \subseteq X is (forward) invariant if \varphi t(Y ) = Y for all t \in \BbbT +.
A subset Y is backward invariant if \varphi  - 1

t (Y ) = Y for all t \in \BbbT +. For a flow \varphi , a subset
Y \subseteq X is positively invariant if Y +

0 \subseteq Y and negatively invariant if Y  - 
0 \subseteq Y . A subset Y

is invariant if it is positively and negatively invariant.

Proposition 2.1. Let Y \subseteq X. Then \omega (Y ) and \alpha (Y ) are closed invariant sets.

The concept of Morse decomposition for flows on compact Hausdorff spaces is analogous
to that for flows in compact metric spaces. Recall that a collection \{ M1,M2, . . . ,Mn\} of
non-void, pairwise disjoint and compact invariant subsets of X is a Morse decomposition
if the following holds.

i) For all x \in X one has that \omega (x) and \alpha (x) belong to
\bigcup n

i=1Mi.
ii) If \omega (x) and \alpha (x) belong to Mi, for some x \in X, then x \in Mi.
iii) The relation \preccurlyeq is a partial order,

where the relation \preccurlyeq is defined on \{ M1,M2, . . . ,Mn\} as follows: Mi \preccurlyeq Mj if and only
if there are a chain of sets \{ Mi =Mm1

, . . . ,Mml+1
=Mj\} and points \{ x1, . . . , xl\} , such

that for all k \in \{ 1, . . . , l\} we have \alpha (xk) \subseteq Mmk
and \omega (xk) \subseteq Mmk+1

.
Each element of Mi is called a Morse set. We can order the Morse sets in such way that

Mi \preccurlyeq Mj implies that i \leq j. Note that i < j does not imply Mi \preccurlyeq Mj and that it does not
imply the existence of x \in X with \alpha (x) \subseteq Mi and \omega (x) \subseteq Mj . A Morse decomposition
\{ M1,M2, . . . ,Mn\} is called finer then a Morse decomposition \{ M\ast 

1 ,M
\ast 
2 , . . . ,M

\ast 
m\} if for

all j \in \{ 1, 2, . . . ,m\} there is i \in \{ 1, 2, . . . , n\} with Mi \subseteq M\ast 
j . A Morse decomposition

describe the flow via its movement from Morse sets with lower indices toward those with
higher ones.

3. Intrinsic shape for paracompact spaces

The classical homotopy theory studies the equivalence relation of homotopy for maps.
The equivalence relation of homotopy for maps leads to a useful and rich theory only when
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we restrict to spaces with nice local properties like polyhedra and absolute neighborhood
retracts. The problem arise when the target space Y is such that there are not many
maps from X \times I into Y so that the properties of Y prevent identifying maps that ought
to be identified. In other words the definition of homotopy is too rigid because the map
H : X \times I \rightarrow Y must be continuous and single-valued and because it must take values in
the space Y .

Shape theory was introduced by Borsuk [1] in order to study geometric properties of
compact metric spaces with not necessarily good local properties. Namely, homotopy
theory turns out to be an inappropriate tool for studying spaces with local pathology
which appear in the mathematical formulation of many natural phenomena, for example
solenoids, attractors etc. Hence, it is natural to look for another adequate tool for handling
these problems. Shape theory takes the role in this context because it manages to smooth
out local pathologies while preserving global properties. Besides, shape theory does not
modify homotopy theory in the good framework.

The modification of Borsuk relies on the idea to relinquish the insistence in the definition
of homotopy that the map H goes precisely into the space Y . The obvious alternative
method which was undertaken by Sanjurjo in [13] and [14] and further followed in the
paper [19] is to give up with the requirement that the function H is continuous and (or)
single-valued while retaining the desirable condition that it takes values in the space Y .
The last one is known as the intrinsic approach to shape theory.

The first intrinsic approach to shape is given in the papers [4] and [12]. In the paper
[15] using the notion of a proximate sequence over cofinal sequences of finite coverings
intrinsic shape category is constructed for compact metric spaces. For paracompact spaces
the notion of a proximate sequence is replaced with a proximate net indexed by locally
finite coverings from the set of all coverings CovX.

We shall follow the construction given in [16] for paracompact spaces using the notion
of \scrV -continuity.

By a covering we understand a covering consisting of open sets and the set of all
coverings is denoted by CovX . For technical reasons a covering containing the empty set
will be considered the same as the covering without the empty set.

Let us start with some basic definitions.
For collections \scrU and \scrV of subsets of X, \scrU \prec \scrV means that \scrU refines \scrV , i.e., each

U \in \scrU is contained in some V \in \scrV .

Definition 3.1. Suppose \scrV is a covering of Y . A function f : X \rightarrow Y is \scrV -continuous at
a point x \in X, if there exists a neighborhood Ux of x and V \in \scrV , such that

f(Ux) \subseteq V.

A function f : X \rightarrow Y is \scrV -continuous, if it is \scrV -continuous at every point x \in X. In
this case, the family of all Ux forms a covering of X.

According to this f : X \rightarrow Y is \scrV -continuous if there exists a covering \scrU of X, such
that for any x \in X, there exists a neighborhood U of x and V \in \scrV such that f(U) \subseteq V .
We indicate this briefly as there exists \scrU such that f (\scrU ) \prec \scrV .

If f : X \rightarrow Y is \scrV -continuous, then f : X \rightarrow Y is \scrW -continuous for any \scrW such that
\scrV \prec \scrW .

If \scrV is a covering of Y and V \in \scrV , the open set \mathrm{s}\mathrm{t}(V ) (star of V ) is the union of all
W \in \scrV such that W \cap V \not = \emptyset . We form a new covering of Y , \mathrm{s}\mathrm{t}(\scrV ) = \{ \mathrm{s}\mathrm{t}(V )| V \in \scrV \} .

Definition 3.2. Functions f, g : X \rightarrow Y are \scrV -homotopic, if there exists a function
F : X \times I \rightarrow Y such that

i) F : X \times I \rightarrow Y is \mathrm{s}\mathrm{t}(\scrV )-continuous,
ii) F : X \times I \rightarrow Y is \scrV -continuous at all points of X \times \partial I,
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iii) F (x, 0) = f(x), F (x, 1) = g(x).

The relation of \scrV -homotopy is denoted by f
\scrV \simeq g. This is an equivalence relation.

Definition 3.3. A proximate net (f\scrV ) : X \rightarrow Y is a family f = (f\scrV | \scrV \in \itC \ito \itv \itY ) of
\scrV -continuous functions f\scrV : X \rightarrow Y such that if \scrV \succ \scrW then f\scrV and f\scrW are \scrV -homotopic.

Two proximate nets (f\scrV ) : X \rightarrow Y and (g\scrV ) : X \rightarrow Y are homotopic if f\scrV and g\scrV are
\scrV -homotopic for all \scrV \in \itC \ito \itv \itY which we denote by (f\scrV )\sim (g\scrV ). This is an equivalence
relation.

If (f\scrV ) : X \rightarrow Y and (g\scrW ) : Y \rightarrow Z are proximate nets then for a covering \scrW \in \itC \ito \itv \itZ ,
there exists a covering \scrV \in \itC \ito \itv \itY such that g\scrW (\scrV ) \prec \scrW . Then the composition of these
two proximate nets is a proximate net (h\scrW ) : X \rightarrow Z defined by (h\scrW ) = (g\scrW f\scrV ) : X \rightarrow Z.

Paracompact spaces and homotopy classes of proximate nets [(f\scrV )] form a category
whose isomorphisms induce classifications which coincide with the standard shape classifi-
cation, i.e., isomorphic spaces in this category have the same shape.

At the end of this section we give two lemmas that will be used in the sequel. The
proof is given in [17] and [16].

Definition 3.4. Let \scrV be a covering of Y . Two functions f, g : X \rightarrow Y are \scrV -near if for
any x \in X there exists V \in \scrV such that f(x), g(x) \in V .

Lemma 3.5. If \scrV is a covering of Y and f, g : X \rightarrow Y are \scrV -near and \scrV -continuous
then f and g are \scrV -homotopic.

Lemma 3.6. Suppose \scrV is a finite covering of Y , X = X1 \cup X2, Xi is closed, i = 1, 2,
and fi : Xi \rightarrow Y are \scrV -continuous functions, i = 1, 2, such that f1(x) = f2(x) for all
x \in X1 \cap X2. Define a function by

f(x) = fi(x)

for x \in Xi, i = 1, 2. Then we have the following.
1) If x \in IntX1 or x \in IntX2, then f : X \rightarrow Y is \scrV -continuous at x.
2) If x \in \partial X1 or x \in \partial X2, then f : X \rightarrow Y is \mathrm{s}\mathrm{t}(\scrV )-continuous at x.

4. Shape of Morse sets in topological spaces

In this paper we apply the theory of intrinsic shape in paracompact spaces to deduce a
result for Morse set properties compared with the properties of its neighborhood in terms
of shape theory.

In order to prove the main theorem we need the following.
A covering \scrV of M in X is called regular if it satisfies the following conditions.

1) If V \in \scrV then V \cap M \not = \emptyset 
2) If U, V \in \scrV and U \cap V \not = \emptyset , then U \cap V \in \scrV .

For a covering \scrV of M we introduce the notation | \scrV | =
\bigcup 

V \in \scrV V .
For a finite regular covering \scrV we define a function r\scrV : | \scrV | \rightarrow M in the following way:

- for points y \in M , we put r\scrV (y) = y;
- for points y \in | \scrV | \setminus M , by induction we can choose the smallest member V \in \scrV 

such that y \in V , then choose a fixed point yV \in V \cap M and put r\scrV (y) = yV .
The function r\scrV is \scrV -continuous.

Lemma 4.1 ([17]). If \scrV \succ \scrW then r\scrW : | \scrW | \rightarrow M and r\scrV : | \scrW | \rightarrow M (the restriction of
r\scrV : | \scrV | \rightarrow M to | \scrW | ) are \scrV -near and so \scrV -homotopic via a homotopy r\scrV \scrW : | \scrW | \times I \rightarrow M .

Lemma 4.2 ([18]). If \scrV is a finite regular covering of M in X then i\circ r\scrV : | \scrV | \rightarrow | \scrV | and
1\scrV : | \scrV | \rightarrow | \scrV | are \scrV -homotopic via a homotopy R\scrV : | \scrV | \times I \rightarrow | \scrV | such that R\scrV (x, t) = x
for x \in M .



MORSE DECOMPOSITION AND INTRINSIC SHAPE IN TOPOLOGICAL SPACES 161

Recall that a subset A \subseteq X is called an attractor if there is a neighborhood W of A
such that \omega (W ) = A. Similarly, a set R \subseteq X is called a repeller if \alpha (V ) = R, for some
neighborhood V of R. The dual repeller of A is: R = \{ x \in X | \omega (x) \cap A = \emptyset \} . The pair
(A,R) is called an attractor-repeller pair decomposition of X. Also note that if W = X or
V = X (in compact spaces) then we obtain the corresponding notions of global attractor
and global repeller respectively.

There are two fundamental theorems associated with attractor-repeller pair decom-
positions. The first indicates that the recurrent dynamics in X is contained entirely in
A \cup R and that outside of these sets the dynamics is gradient-like (for a proof see [11]).

Theorem 4.3. Let (A,R) be an attractor-repeller pair decomposition of X. Then
X = A \cup R \cup C(R,A),

where C(R,A) = \{ x \in X | \omega (x) \subseteq A,\alpha (x) \subseteq R\} . Furthermore, there exists a continuous
function L : X \rightarrow [0, 1] such that

i) R = L - 1(1),
ii) A = L - 1(0).
iii) If x \in C(R,A) and t > 0 then L(x) > L(\varphi (x, t)).

Remark 4.4. From the previous theorem 4.3 it follows that every continuous flow on
a compact metric space admits a Lyapunov function which strictly decreases along the
nonrecurrent trajectories.The theorem holds true for compact Hausdorff spaces as well
(see [9]).

The second result concerns homotopy index theory in which the notion of continuation
plays a central role (for more details see [8]).

The generalization of an attractor-repeller decomposition is the already mentioned
Morse decomposition. As with attractor-repeller pairs, Morse decompositions admit
Lyapunov functions. Let us recall the definition of a Lyapunov function for a given family
of disjoint compact invariant subsets of X (see [5]).

Definition 4.5. Let \scrM = \{ Mj | j \in J\} be a family of disjoint compact invariant subsets
of the phase space X. A Lyapunov function for \scrM is a continuous function L\scrM : X \rightarrow \BbbR 
such that:

i) L\scrM (\varphi (x, t)) < L\scrM (x),\forall t > 0,\forall x /\in 
\bigcup 

j\in J Mj

ii) L\scrM (Mj) = cj ,\forall j \in J, (cj \not = ci for i \not = j).

The real numbers cj are called the critical values of L\scrM .

Theorem 4.6. Let \scrM = \{ M1,M2, . . . ,Mn\} be a Morse decomposition of a flow \varphi in a
compact Hausdorff space X. Then there exists a Lyapunov function for \scrM .

The proof is a simple extension of the argument used for attractor-repeller pairs (for
a proof for compact metric spaces, see for example [18] or [2]); for compact Hausdorff
spaces, see [9].

The existence of a Lyapunov function for a Morse decomposition collection on compact
Hausdorff spaces turns out to have an important role in proving our claim 4.23. We shall
be interested in a Lyapunov function for a Morse decomposition \scrM = \{ M1,M2, . . . ,Mn\} 
of a flow \varphi which satisfies the following condition.

- For each critical value ci, the set L - 1
\scrM (ci) is a Morse component, i.e., L - 1

\scrM (ci) =Mi.
Before employing topological techniques in proving our claim 4.23 let us make a few

comments. Notice that, generally speaking, a trajectory can come arbitrary close to
a given Morse component and then leave. The condition L - 1

\scrM (ci) = Mi ensures that
this cannot be the case. The following example illustrates that our imposed condition
L - 1
\scrM (ci) =Mi on the Lyapunov function may not be always satisfied.
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Example 4.7. Consider a dynamical system defined in the cylinder D\times I, where D stands
for the unit disk. The points in the Hawaiian earring H =

\bigcup \infty 
n=1 S((1/2n, 0, 1/2), 1/2n)

are stationary points. All the points in D \times \{ 0, 1\} are also stationary. The trajectories
of the rest of the points are vertical straight lines joining two stationary points. The
Hawaiian earring is a Morse set which does not satisfy our condition. Also notice that
there are trajectories that come arbitrary close to the Hawaiian earing and then leave.

Now let us discuss an arbitrary Morse decomposition \scrM = \{ M1,M2, . . . ,Mn\} of a
flow \varphi on a compact Hausdorff space X for which there exists a Lyapunov function L\scrM 
for \scrM which satisfies our condition L - 1

\scrM (ci) =Mi. For an arbitrary member Mi from \scrM 
we shall introduce the following neighborhood U = U+ \cup U - of Mi where

U+ = L - 1
\scrM ([ci, ci + \epsilon ]) and U - = L - 1

\scrM ([ci  - \epsilon , ci]),
for sufficiently small \epsilon such that U = U+ \cup U - is disjoint from the other members of \scrM .
Let us note that U+ and U - are positively and negatively invariant, respectively.

Remark 4.8. The latter claim follows from the existence of a Lyapunov function which
satisfies our imposed condition.

We shall prove that the semi-flow restricted to U+ admits a global attractor which
coincides with Mi. Similarly, the semi-flow restricted to U - admits a global repeller
which coincides with Mi.

Lemma 4.9. The semi-flow \varphi restricted to U+ admits a global attractor that coincides
with Mi.

Proof. We shall use Lemma 3.7 in [9] for X\scrM = L - 1
\scrM ([ci,+\infty )), K = U+ = L - 1

\scrM ([ci, ci+\epsilon ])
and A =Mi. Note that A \subset intK and that A is a maximal (forward) invariant set in K
for the semi-flow \varphi restricted to X\scrM = L - 1

\scrM ([ci,+\infty )). Also note that for all x \in K \setminus A
the backward orbit of x is not contained in K. On the contrary, from the fact that the
backward orbit of the semi-flow on X\scrM coincides with the negative orbit \gamma (x) - = x - 0 we
have that x - 0 \subset K which yields that x \in \omega (K). But \omega (K) is an invariant set according
to Proposition 2.1 which contains A. Hence from the maximality of A we conclude that
\omega (K) = A. But this implies that x \in A which is a contradiction. Hence, according to
Lemma 3.7 in [9], A = Mi is an attractor. This implies that \omega (U+) = A = Mi which
yields that A =Mi is a global attractor for the semi-flow on (U+, \varphi | U+). \square 

Remark 4.10. Similarly, it follows that the semi-flow \varphi restricted to U - admits a global
repeller which coincides with Mi, i.e., \alpha (U - ) = R =Mi.

Definition 4.11. A set M is said to be positively admissible, if for any sequences xn \in M
and tn \rightarrow \infty with \varphi (xn, [0, tn]) \subset M for all n, the sequence \varphi (xn, tn) has a convergent
subsequence. Similarly, a set M is said to be negatively admissible, if for any sequences
xn \in M and tn \rightarrow  - \infty with \varphi (xn, [tn, 0]) \subset M for all n, the sequence \varphi (xn, tn) has a
convergent subsequence.

We proceed by showing how the semi-flow (\varphi t : U
+ \rightarrow U+) with a global attractor Mi

and the semi-flow (\varphi t : U
 - \rightarrow U - ) with a global repeller Mi, both defined on compact

Hausdorff spaces U+ and U - , respectively, induce a shape morphism \psi : U = U+\cup U - \rightarrow 
Mi in a natural way, assuming that the sets U+ and U - are positively and negatively
admissible, respectively. We shall also assume that the points in the Morse member Mi

are all stationary.

Remark 4.12. Let X be a normal Hausdorff topological space and M \subset X a closed
subset of X. We denote the set of all finite regular coverings of the compact X in X by
\itC \ito \itv \itr \itX . Similarly, we denote the set of all finite regular coverings of the compact M in
X by \itC \ito \itv \itr \itM . For \scrV \in \itC \ito \itv \itr \itX we consider the covering \scrV M = \{ V \in \scrV | V \cap M \not = \emptyset \} . Let
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\itC \ito \itv \itM 
\itr \itX = \{ \scrV \in \itC \ito \itv \itr \itX | \scrV M \in \itC \ito \itv \itr \itM \} . Then \itC \ito \itv \itM 

\itr \itX is cofinal in the set \itC \ito \itv \itf \itX of all
finite coverings of X ([3, p. 262] and [3, p .249]).

Remark 4.13. Let us also note that every compact Hausdorff space is normal. Hence
instead of working on the set \itC \ito \itv \itf \itX of all finite coverings of X we can work on the set
CovMr X.

Let \scrV \in CovMi
r U be an arbitrary open covering of the neighborhood U = U+ \cup U - .

Remark 4.14. The map h : CovMi
r U \rightarrow \itC \ito \itv \itr \itM \iti given by h(\scrV ) = \scrV Mi

is order preserving.

Definition 4.15. An open cover \scrU of X is normal iff there exists a sequence of open
covers \scrV n such that \scrV 0 = \scrU and \scrV n is a star refinement of \scrV n - 1.

We will also need the following important theorem from [6] in the discussion that
follows.

Theorem 4.16. A topological space X is normal if and only if each finite open covering
is normal.

Remark 4.17. According to Remark 4.13, compact Hausdorff spaces are normal hence
we are working with normal coverings.

Let h(\scrV ) = \scrV Mi
\prec \scrV . We consider the neighborhood | \scrV Mi

| =
\bigcup 

V \in \scrV Mi
V of Mi. Now

using Lemma 4.9, Remark 4.10 and admissibility of U+ and U - , respectively, we see that
there exists a net of positive reals t\scrV such that

\varphi (U+, [t\scrV ,\infty )) \subseteq | \scrV Mi
| and \varphi (U - , ( - \infty , - t\scrV ]) \subseteq | \scrV Mi

| .
Hence, we have defined a net of positive real numbers (t\scrV | \scrV \in CovMi

r U) .

Construction of a proximate net. We choose an arbitrary covering \scrV \in CovMi
r U .

Let h(\scrV ) = \scrV Mi
.

We define f\scrV : U+ \cup U - \rightarrow U+ \cup U - by

f\scrV (x) = r\scrV Mi
\varphi (x, t\scrV ) for x \in U+, and f\scrV (x) = r\scrV Mi

\varphi (x, - t\scrV ) for x \in U - .

Note that for any x \in Mi, f\scrV (x) = x in either case, so f\scrV : U+ \cup U - \rightarrow U+ \cup U - is well
defined.

Also note that the function is \scrV Mi
\cap Mi-continuous and hence \scrV -continuous.

In this way we have defined a collection of \scrV -continuous functions f\scrV : U \rightarrow U for
arbitrary \scrV \in CovMi

r U such that f\scrV (U) \subseteq Mi.

Lemma 4.18. The net of functions \psi U = (f\scrV | \scrV \in CovMi
r U) : U \rightarrow U is a proximate

net.

Proof. For two coverings \scrW \prec \scrV we have the following.
If t\scrV < t\scrW we define a \scrV -homotopy R\scrV \scrW : U+ \times I \rightarrow U+ by

R\scrV \scrW (x, t) = r\scrV Mi
\varphi (x, (1 - t)t\scrV + tt\scrW )

that connects f\scrV (x) and r\scrV Mi
\varphi (x, t\scrW ). Now r\scrV Mi

\varphi (x, t\scrW ) and r\scrW Mi
\varphi (x, t\scrW ) = f\scrW (x)

are \scrV -near and hence \scrV -homotopic.
If t\scrV > t\scrW we define a \scrW -homotopy R\scrV \scrW : U+ \times I \rightarrow U+ by

R\scrV \scrW (x, t) = r\scrW Mi
\varphi (x, (1 - t)t\scrW + tt\scrV )

that connects f\scrW (x) and r\scrW Mi
\varphi (x, t\scrV ). Since \scrW \prec \scrV this is also a \scrV -homotopy. Now

r\scrW Mi
\varphi (x, t\scrV ) and r\scrV Mi

\varphi (x, t\scrV ) = f\scrV (x) are \scrV -near and hence \scrV -homotopic.
This yields a \scrV -homotopy r+\scrV \scrW : U+ \times I \rightarrow U+ connecting f\scrV (x) and f\scrW (x) for

x \in U+.
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In the same way we define a \scrV -homotopy r - \scrV \scrW : U - \times I \rightarrow U - connecting f\scrV (x)
and f\scrW (x) for x \in U - . Since both homotopies coincide for x \in Mi by Lemma 3.6 we
conclude that there is a \scrV -homotopy r\scrV \scrW : (U+ \cup U - ) \times I \rightarrow U+ \cup U - connecting
f\scrV : U+ \cup U - \rightarrow U+ \cup U - and f\scrW : U+ \cup U - \rightarrow U+ \cup U - . \square 

Remark 4.19. Note that the homotopies between the functions f\scrV and f\scrW , where
\scrW \prec \scrV are all in Mi, i.e., r\scrV \scrW (U \times I) \subseteq Mi.

Remark 4.20. If \scrV is a covering of Y and M \subseteq Y then by \scrV \cap M we denote the following
covering of M :

\scrV \cap M = \{ V \cap M | V \in \scrV \} .
If a proximate net (f\scrV ) : X \rightarrow Y satisfies f\scrV (X) \subseteq M and if for \scrV \succ \scrW , f\scrV and f\scrW 

are \scrV -homotopic in M , then we can define a proximate net (f\scrW ) : X \rightarrow M as follows.
For a covering \scrW of M we choose a covering \scrV of Y such that \scrV \cap M = \scrW . Note that

the existence of \scrV easily follows from the relative topology of M .
Then the function f\scrW : X \rightarrow M is defined by

f\scrW (x) = f\scrV (x), x \in X.

Then (f\scrW ) : X \rightarrow M is a proximate net.
We say that the proximate net (f\scrW ) : X \rightarrow M is inherited from (f\scrV ) : X \rightarrow Y and the

inherited proximate net we denote by (f\scrV \cap M | \scrV \in \itC \ito \itv \itY ).

Remark 4.21. Let us note that the inclusion i : M \rightarrow X induces a proximate net by
setting i\scrV (x) = x for every x \in M . It is easy to prove that the collection (i\scrV | \scrV \in \itC \ito \itv \itX )
is a proximate net.

Lemma 4.22. Let X be a compact Hausdorff space and M a compact subset of X.
Suppose there is a proximate net (f\scrV ) : X \rightarrow X such that f\scrV (X) \subseteq M for all coverings \scrV ,
and for \scrV \succ \scrW , the functions f\scrV and f\scrW are \scrV -homotopic in M and there is a homotopy
H\scrV : X \times I \rightarrow X such that

1) H\scrV (x, 0) = x,H\scrV (x, 1) = f\scrV (x),
2) H\scrV (M \times I) \subseteq M .

Then the inherited proximate net (f\scrV \cap M ) : X \rightarrow M induces a shape equivalence with the
inclusion i :M \rightarrow X as a shape inverse.

Proof. We consider the proximate net (i\scrV ) :M \rightarrow X induced by the inclusion i :M \rightarrow X.
First i\scrV \circ f\scrV \cap M (x) = f\scrV (x) and by 1), H\scrV connects i\scrV \circ f\scrV \cap M and the identity map 1X .
On the other hand, f\scrV \cap M \circ i\scrV (x) = f\scrV \cap M (x) and by 2), H\scrV | M connects f\scrV \cap M \circ i\scrV and
the identity map 1M . \square 

Theorem 4.23. The shape morphism [\psi ] = [(f\scrV \cap Mi)] : U
+ \cup U - \rightarrow Mi is a shape

equivalence. Consequently Sh(Mi) = Sh(U).

Proof. We choose an arbitrary covering \scrV of U = U+ \cup U - . Let h(\scrV ) = \scrV Mi
\prec \scrV be

the finite regular covering adjoined to \scrV by the map h. Notice that since r\scrV Mi
, R\scrV Mi

are \scrV Mi
-continuous they will be \scrV -continuous as well. We will define a homotopy

H+
\scrV : U+ \times I \rightarrow U+ \cup U - as concatenation of three homotopies. The first is a continuous

map F : U+ \times I \rightarrow U+ \cup U - , defined by

F (x, s) = \varphi (x, st\scrV 
L\scrM (x)

ci
).

This map satisfies

F (x, 0) = x, F (x, 1) = \varphi (x, t\scrV 
L\scrM (x)

ci
).
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The third is a function G : U+ \times I \rightarrow U+ \cup U - defined by

G(x, s) = r\scrV Mi
\varphi (x, (1 - s)t\scrV 

L\scrM (x)

ci
+ st\scrV ).

The composition is well defined since

(1 - s)t\scrV 
L\scrM (x)

ci
+ st\scrV \geq t\scrV ,

and it follows that \varphi (x, (1 - s)t\scrV 
L\scrM (x)

ci
+ st\scrV ) \in | \scrV Mi

| .
The composition r\scrV Mi

\varphi is \scrV -continuous and this map satisfies

G(x, 0) = r\scrV Mi
\varphi (x, t\scrV 

L\scrM (x)

ci
), G(x, 1) = r\scrV Mi

\varphi (x, t\scrV ) = f\scrV \cap Mi(x).

The middle homotopy Q : U+ \times I \rightarrow U+ \cup U - is defined by

Q(x, s) = R\scrV Mi
(\varphi (x, t\scrV 

L\scrM (x)

ci
), s),

where R\scrV Mi
is the homotopy in Lemma 4.2. This homotopy satisfies

Q(x, 0) = F (x, 1) = \varphi (x, t\scrV 
L\scrM (x)

ci
), Q(x, 1) = G(x, 0) = r\scrV Mi

\varphi (x, t\scrV 
L\scrM (x)

ci
).

Since
F (x, 1) = Q(x, 0), Q(x, 1) = G(x, 0),

we can define concatenation of the three defined homotopies and finally define the required
\scrV -homotopy H+

\scrV : U+ \times I \rightarrow U+ \cup U - by H+
\scrV = G \ast Q \ast F and

H+
\scrV (x, 0) = x, H+

\scrV (x, 1) = f\scrV (x).

Since F (x, s) = x for x \in Mi and the same holds for Q and G we deduce that the
same holds for the homotopy H+

\scrV , i.e. H+
\scrV (x, s) = x, for any x \in Mi.

In the same way starting with

F (x, s) = \varphi (x, - st\scrV 
ci

L\scrM (x)
)

and making the corresponding changes for Q and G, we define a \scrV -homotopy H - 
\scrV :

U - \times I \rightarrow U+ \cup U - . For this homotopy we have that H - 
\scrV (x, s) = x for any x \in Mi.

Since H+
\scrV : U+ \times I \rightarrow U+ \cup U - and H - 

\scrV : U - \times I \rightarrow U+ \cup U - coincide on Mi \times I, we
can define H\scrV : (U+ \cup U - )\times I \rightarrow U+ \cup U - . This is a \scrV -homotopy by Lemma 3.6. This
homotopy connects the identity map 1U and f\scrV and H\scrV (x, s) = x for any x \in Mi. \square 

5. Shape of the chain recurrent set in topological spaces

Now, in order to consider the shape of a chain recurrent set in topological spaces let
us recall the definition of chains for semi-flows based on admissible open coverings of the
state space X. We follow the abstract theory of chain transitivity and chain recurrence
developed in [10] for compact Hausdorff spaces.

Let \scrU and \scrV be open coverings of X. We write \scrV \prec 1
2\scrU if for every V, V \prime \in \scrV with

V \cap V \prime \not = \emptyset there exists U \in \scrU with V \cup V \prime \subseteq U . We define inductively the relation
\scrV \prec 1

2n\scrU if \scrV \prec \scrW and \scrW \prec 1
2n - 1\scrU . Note that \scrU \prec 1

2 \mathrm{s}\mathrm{t}(\scrU ). Also if \scrV \prec 1
2\scrU then

\scrV \prec \scrU \prec 1
2 \mathrm{s}\mathrm{t}(\scrU ).

Given an open covering \scrU of X and a compact subset M \subseteq X we write, as in the
previous section, that

\scrU M = \{ U \in \scrU | M \cap U \not = \emptyset \} .
If N \subseteq X is open with M \subseteq N we say that \scrU is M -subordinated to N if for each

U \prime \in \scrU M we have U \prime \subseteq N .
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Now we can introduce the conditions on families of open coverings of X, which will be
used in the concept of chains of a semi-flow.

Definition 5.1. Let \scrO be a family of open coverings of X. We say that \scrO is admissible
if

1) for each \scrU \in \scrO there exists \scrV \in \scrO such that \scrV \prec 1
2\scrU .

2) Let N \subseteq X be an open set and M \subseteq N be compact. Then there exists \scrU \in \scrO 
which is M -subordinated to N .

Let us note that in paracompact Hausdorff spaces the family of all coverings Cov(X)
is admissible. Furthermore in compact Hausdorff spaces the family of all finite coverings
Covf (X) is admissible as well.

Now we can start looking at chains for semi-flows, based on admissible open coverings
of the state space X.

Definition 5.2. Let \varphi be a semi-flow on X and \scrU an open covering of X. Given x, y \in X
and t \in \BbbT , a (\scrU , t)-chain from x to y means a sequence of points \{ x = x1, . . . , xn+1 = y\} \subset 
X, a sequence of times \{ t1, . . . , tn\} \subset \BbbT , and a sequence of open sets \{ U1, . . . , Un\} \subseteq \scrU 
such that ti \geq t and \varphi ti(xi), xi+1 \subset Ui for all i = 1, . . . , n.

Given a subset Y \subseteq X we write \Omega (Y,\scrU , t) for the set of all x such that there is a
(\scrU , t)-chain from a point y \in Y to x.

Now let \scrO be a family of open coverings of X. Then the \Omega \scrO -limit set of a subset
Y \subset X is defined by

\Omega \scrO (Y ) =
\bigcap 

\{ \Omega (Y,\scrU , t) | \scrU \in \scrO , t \in \BbbT \} .

For x \in X we write \Omega \scrO (x) = \Omega \scrO (\{ x\} ) and define the relation x \preccurlyeq \scrO y if y \in \Omega \scrO (x).
The following fact is from [10] as well.

Proposition 5.3. If a family \scrO is admissible then the relation \preccurlyeq \scrO is transitive, closed,
and invariant with respect to \varphi , i.e., we have that \varphi t(x) \preccurlyeq \scrO \varphi s(x) if x \preccurlyeq \scrO y for all
s, t \in \BbbT . Also, for every Y \subset X the set \Omega \scrO (Y ) is invariant.

Define a relation x \sim \scrO y if x \preccurlyeq \scrO y and y \preccurlyeq \scrO x. Then we say that x \in X is \scrO -chain
recurrent if it is self-related under \sim \scrO , that is, x \sim \scrO x. The set \scrR \scrO of all \scrO -chain
recurrent points is called a \scrO -chain recurrent set. It is easy to see that the restriction of
\sim \scrO to \scrR \scrO is an equivalence relation.

An equivalence class of \sim \scrO is called an \scrO -chain transitive component. A set Y \subseteq X is
called \scrO -chain recurrent if Y \subseteq \scrR \scrO and Y is called \scrO -chain transitive if any two points
of Y are equivalent. Finally a semi-flow \varphi is called \scrO -chain recurrent if X = \scrR \scrO , and \varphi 
is called \scrO -chain transitive if X is \scrO -chain transitive.

Let us note that if X is compact and Hausdorff, the set \Omega \scrO (Y ) is independent of the
particular admissible family \scrO . Hence we can drop the subscript \scrO and write simply
\Omega (Y ).

The following result from [10] relates connected chain recurrent sets to chain transitive
sets.

Proposition 5.4. If a set is connected and chain recurrent then it is chain transitive.
In particular, each chain transitive component is a union of connected components of a
chain recurrent set.

In order to state our final claim regarding the shape of the chain recurrent set \scrR in
topological spaces we shall need the following theorem from [10] as well.

Theorem 5.5. There exists the finest Morse decomposition if and only if the number of
chain transitive components is finite. In this case, the chain transitive components make
the finest Morse decomposition.
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Hence we have the following claim.

Corollary 5.6. An arbitrary chain recurrent set \scrR with finitely many connected compo-
nents satisfying the conditions of Theorem 4.23 admits a compact neighborhood U with
the same shape as \scrR ,i.e., Sh(U) = Sh(\scrR ).

Proof. According to Proposition 5.4 the number of chain transitive components is fi-
nite. Hence according to Theorem 5.5 there exists the finest Morse decomposition
\scrM = \{ M ct

1 , . . . ,M
ct
n \} and the chain transitive components are its members. Now using

Theorem 4.23 we conclude that each chain transitive component M ct
i admits a compact

neighborhood Ui with the same shape as M ct
i , i.e., Sh(M ct

i ) = Sh(Ui) and such that it
is disjoint from the others (have in mind that the space is normal). Now, if we choose
U =

\bigcup n
i=1 Ui we get that

Sh(U) = Sh(

n\bigcup 
i=1

Ui) = Sh(

n\bigcup 
i=1

M ct
i ) = Sh(\scrR ).

\square 

Remark 5.7. Let us note that the condition of no movement on the Morse sets is not
too restrictive. Actually, by slowing down the motion as we move towards the Morse sets,
or repel from them, (the measure of nearness can be for example a Lyapunov function)
we can obtain a new flow in which this is the case. For metric spaces one can use the
Keesling reformulation of Beck’s theorem [7].
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