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THE EXISTENCE OF EIGENVALUES OF SCHRODINGER
OPERATOR ON THREE DIMENSIONAL LATTICE

J. I. ABDULLAEV, A. M. KHALKHUZHAEV, AND K. D. KULIEV

ABSTRACT. We consider a three-particle discrete Schrédinger operator H,, (K), K €
T3, associated to a system of three particles (two fermions and one another particle)
interacting through zero range pairwise potential ;x> 0 on the three-dimensional
lattice Z3. It is proved that the operator Hy ,(K), K| < &, for 0 < v < 7o
(0 = 4, 7655) has no eigenvalues and for v > 7o has exactly three eigenvalues lying
below the essential spectrum for sufficiently large p and small 0.

Mu posriisiaeMo TPHYACTUHKOBHN TucKpeTHuii oneparop pdainrepa H,, ~(K),
K € T3, sixuit acoIlIOEThCS 3 CHCTEMOIO 3 TPHOX YACTUHOK (mBox bepmioHiB i ogHA
iHIIa YacTHHKA), SKi [IONApHO B3aE€MOJIIOTH Yepe3 MOTEHIiaJ] HyJIbOBOIO PaJiyCcy
u > 0 ma TpuemMipHiit pemitmi Z3. losesero, mo omneparop Hy o (K), | K| < 6, ana
0 < v <7 (Y0 =~ 4,7655) He Ma€ BJIACHUX 3HAYEHb, a JJId 7y > 70 MAa€ PIBHO TpH
BJIACHI 3HAYEHHSI, 10 JIEXKATh HIPKYE CYTTEBOIO CIEKTPY MJIS JOCTATHBO BEJIHKHUX [i 1
Masux 9.

1. INTRODUCTION

In models of solid state physics [1, 2] and also in lattice quantum field theory |[3],
discrete operators are considered as lattice analogs of the three-particle Schrédinger
operator in the continuum.

Cold atoms loaded in an optical lattice provide a realization of a quantum lattice gas.
Periodicity of the potential gives rise to a band structure for the dynamics of the atoms.
The dynamics of the ultracold atoms loaded in the lower or upper band is well described
by the Bose-Hubbard Hamiltonian [4]; in Section 3, we give a corresponding Schrédinger
operator.

In the continuum case, due to rotational invariance, the Hamiltonian separates into a
free Hamiltonian for the center of mass and a Hamiltonian H,e for the relative motion.
Bound states are eigenstates of H.e.

Kinematics of quantum particles on a lattice is rather exotic [5]. The discrete Laplacian
is mot rotationally invariant and, therefore, one cannot separate the motion of the center
of mass.

In this work we consider a Hamiltonian H,, ,, for a system of three quantum particles,
two fermions with mass 1 and another particle with mass m = 1/ > 0 with zero range pair
potentials 1 > 0 on the three dimensional lattice Z3. In the momentum representation,
the total three-body Hamiltonian appears to be decomposable (see, e.g. [6])

H,~= /@HWY(K)dK.
’H‘3
The fiber Hamiltonian H,, ,(K) = Hy(K) — uV depends parametrically on the total
quasimomentum K € T? = R3/(2rZ3). 1t is the sum of a free part Hy ,(K) and an inter-
action term —uV, both bounded and the dependence on K of the free part is continuous.
Eigenfunctions of H,, ,(K) are interpreted as the bound states of the Hamiltonian H,,

2020 Mathematics Subject Classification. 81Q10, 35P20, 47N50.
Keywords. Schrédinger operator, three-particle, Hamiltonian, zero-range, fermion, lattice, eigenvalue,
quasimomentum.

189


https://doi.org/10.31392/MFAT-npu26_3.2022.01

190 J. I. ABDULLAEV, A. M. KHALKHUZHAEV, AND K. D. KULIEV

and the corresponding eigenvalues, as the bound state energy. The main results of this
paper are given for sufficiently large values p > 0 of the energy of the interaction of
two particles (fermion and another particle), that is, for the case where two-particle
subsystems have bound states with negative energy there is a threshold value of the
particle mass ratio o such that, if v > 7o, then the fiber Hamiltonian H, ,(K) with a
fixed total quasimomentum K has three eigenvalues below the essential spectrum (for
sufficiently large values of the interaction energy p and sufficiently small modulus of
values of the total quasimomentum K), and if v < - then it has no eigenvalues lying
below the essential spectrum (with the same assumption on the interaction energy and
total quasimomentum).

The existence of the bound states of the three particle systems has been studied in
many works, see e.g. [7]-[23]. Efimov [7] discovered the existence of an infinite number of
eigenvalues (Efimov’s effect). Since then this problem has been studied in many physics
journals and books [8, 9, 10]. A rigorous mathematical proof of the existence of Efimov’s
effect was originally carried out in [11] by Yafaev and then this theory has been rapidly
developed see, e.g. [12]-[15]. Gridnev [16] proved the existence of the so-called super
Efimov effect for the system of 3 nonrelativistic spinless fermions in two dimensions,
which interact through spherically-symmetric pair interactions. In [17], the Hamiltonian
H for the system of three quantum particles (two fermions with mass 1 and another
particle with mass m > 0) with point-like interaction in Euclid space R? is considered.
For 0 < m < m; any selfadjoint extension of Tj—; of thr auxiliary operator T' = @©;2,T;
involving the construction of the resolvent for the operator H has a sequence of eigenvalues
{An < 0,n > ng} diverging to —oco generate negative eigenvalues (Efimov’s effect) of
the corresponding extension of H. that are equal to — (¢/ )\n)z. Three particle quantum
system in dimension three composed of two identical fermions (of mass one and another
particle of mass m) with two-body short range potentials was considered in [18]. Under
some assumptions, the Hamiltonian of all two-particle subsystems do not have bound
states with negative energy and the two subsystems made of a fermion and another
particle have a zero-energy resonance, for m < m* = (13.607) ! there were proved the
existence of the Efimov effect and m > m* the number of negative eigenvalues of H is
finite. In [19] the Hamiltonian H of the system consisting of three point-like particles,
two identical fermions and another particle of mass ratio m with respect two fermions
was considered. It was shown that a self-adjoint extension H, of H has some critical
values m* and M* of m such that for mass m € (m*, M*) it admits eigenvalues and for
m > M™* has no eigenvalues below the essential spectrum of the operator H,.

Now we give some results concerning the three-particle systems on the lattice. The
existence of at least one eigenvalues of the three particle discrete Schrédinger operator
H,(K) = Hyo(K) — uV (p is arbitrary) for dimensions d = 1,2 is shown in [6] and [20].
The proofs are based on unboundedness of the norm of the Faddeev type operator T(K, z)
for the spectral parameter z close to the lower bound of the essential spectrum. If d > 3
then the operator T'(K, z) is bounded at the bottom of the essential spectrum, i.e., in
this case the methods for d = 1,2 are not applicable.

In [21] the authors studied a model operator H, associated with the three-particle
discrete Schrédinger operator on the three-dimensional cubical lattice, with zero-range pair
potentials, where the role of the two-particle discrete Schrédinger operators is taken by a
family of the Friedreich models with parameters h,(k),a = 1,2,k € T3. It was proved
that there is a critical value +* of the parameter such that only for v < v* the Efimov
effect is absent for the Hilbert space of antisymmetric functions with respect to the two
identical particles. In addition, if the two-particle subsystems have a zero-energy resonance
without having negative energy bound states, then it is shown that ., has an infinite
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number of eigenvalues (Efimov’s effect). This result is also preserved for the operator

H,(0):= HYS* we are considering for every v > ~* and fixed po = (1 + ) (f'ﬂ‘3 m) _

In this paper, we first prove that, for the upper and the lower values of + of the
critical value vy & 4, 7655, the operator H,, ,(0) has exactly three eigenvalues and has no
eigenvalues lying below the bottom of the essential spectrum for large p > 0, respectively.
Then applying the perturbation theory we show that the obtained results are preserved
for small values of K. The problem of finding the number of eigenvalues of the operator
H, ~(K) less than z (2 < Tmin,y (1, K)) reduces to the problem of finding the number of
eigenvalues of a Faddeev-type operator A, (K, z) greater than 1 (see Section 5). The
sensitivity of the kernel of the integral operator A, (K, z) with respect to a change in K
leads to a change in the number of eigenvalues of the operator H,, ,(K). For example,
it can be shown that for v sufficiently close to g, the operator H,, (=), (7 = (7, m, 7))
has no eigenvalues lying below the bottom of the essential spectrum for large g > 0. The
"two-particle branch" (see Section 4) of the essential spectrum of the operator H,, - (K)
moves to —oo with the order p as p — 4+o00. However, for v > 7o and sufficiently large
values of p, there are three eigenvalues of H,, ~(K) that are not absorbed by the essential
spectrum.

The paper is organized as follows. Section 1 is an introduction. In Section 2 we describe
the Hamiltonians of the two-body and three-body case in the Schrédinger representation
and give main results. In Section 3 we study spectral properties of a two-particle operator.
The essential spectrum of the three-particle Shrédinger operator is described in Section 4.
In Section 5 we prove the absence of eigenvalues of the three-particle operator on the right
of the essential spectrum and obtained the Faddeev type compact equation. In the last
section we prove a result on existence or absence of eigenvalues of the operator H, (0)
lying below the essential spectrum for sufficiently large p. At the end of the section we
give proofs of the main results.

2. REPRESENTATIONS OF HAMILTONIANS AND MAIN RESULTS

Let ¢2[(Z3)%], (d = 2,3) be the Hilbert space of square-summable functions defined on
the Cartesian product (Z*)?, and ¢29[(Z3)?] C ¢2[(Z?)?] be a subspace of antisymmetric
functions with respect to the first two coordinates.

We consider the Hamiltonian of the system of three quantum particles (two fermions
with mass 1 and another particle with mass m = 1/+) interacting via zero-range attractive
pair potentials on Z3. Since the Hamiltonian corresponding to a system of fermions
acts in £2%%[(Z*)?], the first two particles in our system have no zero-range two-particle
interaction (see, 6, 22]).

In coordinate representation, the Hamiltonian of a system of two free arbitrary particles
(fermion and another particle) on Z? is associated with a bounded self-adjoint operator
ho, in €2[(2%)?],

. 1
hoﬁz—ﬁA@I—%I@A,

where A is the lattice Laplacian, I is the identity operator in ¢2[Z%] and v = *.
The total Hamiltonian BMKY of a system of two arbitrary particles with zero-range
interaction acts in ¢2[(Z3)?] and is a bounded perturbation of the free Hamiltonian hg ,

b, =ho, — po.
Here p > 0 is the energy of interaction of two particles (a fermion and another particle),
and the operator v describes their zero-range interaction:

(fﬂj}) (X7 y) = §Xy¢(x7 y),
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and dxy is the Kronecker delta.

Similarly, the free Hamiltonian IiIO,,Y of the system of the three particles on Z2 is defined
on (245[(Z3)%] by

. | 1
Ho,=—3A@I01—-sI0A®I- 1910 A.

The total Hamiltonian I:Iu,,y of the system of the three-particles with the pairwise zero-
range interaction is a bounded perturbation of the free Hamiltonian Hg .,

Hyy = I:IM - N(vl + VZ)v
where

(V1t))(x1, X2, X3) = Oxyxs (%1, X2, X3)
and

(Vaub)(x1,X2,X3) = Oxax, ¥ (X1, X2, X3).

Let T3 be a three-dimensional torus, L§*[(T?)3] C Ly[(T?)3] be the Hilbert space
of square-integrable functions, defined on (T?)? and antisymmetric with respect to the
first two coordinates. In the momentum representation, the two-and three-particle
Hamiltonians act accordingly on the Hilbert spaces Lo[(T?)?] and L$*[(T?)3]. Assume
that dp is a unit measure on the torus T?, i.e., f'Jl‘S dp=1.

The study of spectra of the operators h, , and H,, . is reduced to the study of the
spectra of families of the operators hy, ,(k),k € T%, and H, ,(K),K € T3, respectively
(see [6, 23, 24]).

The two-particle discrete Schrédinger operator
Ry (k) = ho (k) — po (2.1)

acts on Lo(T?), where

(hoyX))(P) = Er(P)(P), Exry(P) =2(p) +7e(k—p), ()= (1 —cosp)

eHe) = [ 1)
T3
The corresponding three-particle Schrédinger operator
H, (K) = Ho(K) — p(Vi + V2)
acts on L$*[(T3)?], where

(Ho(K)f)(p,q) = Ex (P, a)f(P.q), Fx~(p,q) =¢(p)+e(q)+7e(K—-p—aq),

Vi) = [ o) (40 (m.a / f(s )

.2 —1
yo = (/ S 51 ds) ~ 4, 7655.
s €(S)

The main results of the paper are the following theorems:

Let

Theorem 2.1. Let vy > ~o. Then there exist iy > 0 and § > 0 such that, for any p > .
and K satisfying ||K|| < 0, the operator H, (K) has exactly three eigenvalues, counted
with multiplicities, that lay below the essential spectrum.

Theorem 2.2. Let 0 < v < 9. Then there exist py > 0 and 6 > 0 such that, for any
> py and K satisfying | K|| < §, the operator H, ,(K) has no eigenvalues below the
essential spectrum.
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3. THE SPECTRUM OF A TWO-PARTICLE OPERATOR h,, - (k)

By the Weyl theorem [25], the essential spectrum oegs(hy,(k)) of the operator hy, ~ (k)
coincides with the spectrum o(hg (k)) of the unperturbed operator hg (k), i.e.,

Uess(hu,'y(k)) = [gmin,v(k); gmaw,'y(k)]a

where

3
. — mi — _ 2
Eminy(k) = iy Ex~(q) =3(1+7) ; V14 2ycosk; +

and
3

— — . 2
Emary (K) = max i (@) = 3(1+9) + ; V1+ 2vycosk; +2.

Note that the functions Emin (k) and Enaq,~(k) are symmetric with respect to any two
variables k; and k;, are even in each k; € [—m,7],7 = 1,2,3. The function & (k) is
increasing, and &y,445, (k) is decreasing in each k; € [0, 7]. Therefore,

11(2111‘% Emin,y (k) = Emin,y(0) =0, E?% Emaz,y(K) = Emaz,(0) = 6(1 + 7).

Let z € C\ [Emin,y(Kk), Emaz,~(k)] and A, ,(k, z) be the Fredholm determinant of the
operator I — pvrg ~(k; z), where 7, (k; z) is the resolvent of hg,(k), v is an integral
operator with the kernel v(q,q’) = 1. Then A, ,(k; z) has the form

dq

A, (k,z)=1—puD.,(k,2), Dyk2)= [ — 0+
palo2) = 1= Dy 2), Dylko2) = [ o

(3.2)
Lemma 3.1. A number z € C\ [Emin,(K), Emaz,~ (k)] is an eigenvalue of the operator
hy~ (k) tf and only if A, (k, z) = 0.

Lemma 3.1 is proved analogously to Lemma 2.1 in [15].

The function D, (k, Eyin (k) is symmetric with respect to any two variables k; and
k;, is even in each k; € [—m, 7] and increases in k; € [0,7],i = 1,2, 3. For any z <0, the
function D, (-, z2) is decreasing in each k; € [0, 7], while the other coordinates of k are
fixed. Moreover, the following relations hold:

. 1
11 D (. Ein () = s Dy (,0) = D3 (0,0) =

o= (L)

is the harmonic mean value of the kinetic energy of the fermion and the other particle.
The proofs of these statements follow from the cosine function properties and mono-
tonicity of the Lebesgue integral.

where

Theorem 3.2. Let i > pg. Then for any k € T2 the operator hy~(k) has a unique
simple eigenvalue z,, (k) below the essential spectrum.

Proof. The function D, (k, ) is continuous and increasing in each interval (—o0, Epin, (k))
and (Emaz ~(k), 00). The continuity of the function D, (k,-) follows from the continuity
0D, (k, z2)
0z
Dy (k,-) in (—00, Emin,~(k)) implies the existence of the limit
lim )Dw(k, z) = D~(k, Emin o (k).

Zi—)gminy.\{(

of the integrand, and the monotonicity follows from > 0. The monotonicity of
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By definition of p1p we have 1 < puD.,(k, Emin,(k)). Thus, we conclude that the function
A, (k, z) has a unique zero in the interval (—o0, Emin,~(k)). From Lemma 3.1 it follows
that the operator h, (k) has a unique simple eigenvalue z, (k) < Epin, (k).

The theorem is proved. g

Lemma 3.3. The eigenvalue z, (k) = 2, ~(k1, ko, k3) is symmetric and even in each
k; € [—m, 7], and increases in each k; € [0,7],i = 1,2,3. Moreover, z,,~(0) = 0.

Proof. By virtue of Lemma 3.1 an eigenvalue z, ,(k1, k2, k3) of the operator h, ~(k) is
a solution of the equation pD. (k, z) = 1. Since the function D, (-, z) is symmetric and
even, the eigenvalue z, ~ (k) is also symmetric and even in each k; € [-m,7],i =1,2,3.

Now we prove that the function z, (K1, k2, ks) is increasing in k; that ranges in [0, 7].
Let k} < kY € [0, 7] be arbitrary and

,LLD’Y(k/’Z/) = ND’Y(kH’ZH) =1,

where k' = (K, k2, k3), k" = (k{, ko, k3). For any z < 0 the function D, (-, z) is decreasing
in ky € [0, 7], therefore D, (k”,2") < D, (k’,2") = D,(k”,2"). Since the function D.,(k, )
is increasing we have 2’ < 2", i.e., 2, (k') < 2, ,(k”). From this and the definition of g
we have 1?%1%% Zo .~ (K) = 20 4(0) = 0. O

Lemma 3.4. For any v > 0 and u > 3(1 4+ ) the following estimates hold true:

9(1 +~)?

—u+31+7)— <zZpy(0) < —p+3(1+7).

Proof. If we show the existence of 2/, 2" < 0 such that
Apy(0,2") <0=1A,,(0,2,,(0)) < Auy(0,27)
then? since the function A, ,(0,-) is monotone on (—oo,0), we obtain that
!

2" < z,4(0) < 2.

Denoting by £(s) = Z?:l cos s; we have

4 o ds
Aﬂy’Y(O?Z)*l 3(14_7)_2/11,31_(1"'7)5(5)

3(1+v)—=
I (L+7)¢(s) (1+7)E(s) \° .
-1 3(1—|—’y)—z/11-3 [1+3(1+7)_Z+<3(1+7)_2> +...|d
=1- EEINORNECEEINORN
- 3(1+7)—z/1rs [1+<3(1+7)_Z> +<3(1+v)_2> +...|ds
(3.3)

for z < 0. Here we used the identity

/ £ 1(s)ds = 0, n=12,....
T3

Let 2/ = —pu+ 3(1 + 7). Then from (3.3) we get

A, (0,2 <1—$/ ds=1--——F 9
nir(0,2) 3(1+7) — 2" Jps s 31+7v)—2
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Taking into account that |£(s)| < 3 in (3.3) we have

Busl®9 > 1 g3 [” () (:’W)w *

3+ -z ( 3(1+7) )2'
314+7)—=
1 2
Now choosing 2" = —pp + 3(1 + ) — o +7)7 we obtain
(9(1+7)2>2
A, (0,27 > K > 0.
o , L L (91 +79)%)’
PO )+ (S

The proof is complete. O

Lemma 3.5. For any vy >0 and u > 3(1 + ), we have

9(1 —7)?

—p+3(1+7) - < Zpy(m) < —p+3(1+7),

where ® = (7w, 7, m).

Proof. The lemma is proved analogously to Lemma 3.4. O
Lemmas 3.3 — 3.5 immediately give the following.

Lemma 3.6. For any v >0 and u > 3(1+7),

9(1 +v)2.

0 < 2u5(m) = 2,4(0) < m

4. ESSENTIAL SPECTRUM OF THE THREE-PARTICLE OPERATOR

In this section, we introduce so-called "channel operators" the spectrum of which
describes the essential spectrum of the Schrédinger operator H,, ., (K).

Since in the three-particle system we are considering, two particles are same (i.e., the
operators Vi and V5 are unitarily equivalent), there is only one channel operator H;hW(K),
and, in the momentum representation, it is defined as a self-adjoint operator acting on
the Hilbert space Lo[(T?3)?] according to the formula

H;CA{LW(K) = H07’Y(K) - /”"/1

The operator H ﬁh,Y(K) commutes with the group {Us, s € Z3} of the unitary operators

(Usf)(p,q) = exp{—i(s,p)} f(p,q), [ € L2[(T*)?].

The operator Hﬁh,y(K) decomposes into a direct operator integral (|25], Theorem
XII1.84)

ch o ch
H (K) = /@HMW(K,p)dp. (4.4)
T3

The space Lo[(T?)?] also expands into the corresponding direct integral

Ly[(T3)?] = | @Ly(T?)dp.
/
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From uniqueness of the decomposition (4.4) it follows that the fiber operator H ch »(K,p)
has the form
H (K, p) = hyuy (K = p) +£(p)I,
where I is the identity operator and h, (k) is the operator defined by (2.1) (see [25],
Theorem XIII.85).
From the definition of HS" (K,p) it follows that

o(H" (K, p)) = {24 (K = p) +£(P)} [ [Emin (K = D), Emaxy (K = P)],  (4.5)

where z, (k) is the eigenvalue of the operator h, (k) (see Theorem 3.2). For any
K € T3 we put
Eniny(K) = min Fi¢1(P,); Einaxy(K) = max, Fi,(p,a).

By the theorem on the spectrum of decomposable operators (see, e.g. [25]) and the
structure of the spectrum (4.5) of operator H5" (K, p), we have

o(H (K)) = | {207 =) +(P)} | [Bwmin 7 (K), Emax (K)].
peT?
Let

. = min / )_1
mmﬂ pETd Fx Y p7 - Emin,'y (K) ’
dq —1
max.~ (K) = max ,

s 77( ) peT? ([ EK,’y(pa q) - Emin,'y(K))

T
and

Tmin,v(/‘a K) = min{zﬂ,’Y(K - p) + 5(}))}, Tmax,'y(,ua K) = maX{ZH,’Y(K - p) + 5(p)}'
peT3 peT3

Lemma 4.1. The spectrum o(HS" (K)) satisfies
U(HE?W(K)) = [Tminﬁ (1, K), Tmaa:,v(,“v K)Ju [Eminﬁ(K)a Emaz~(K)].

The following theorem describes the structure and location of the essential spectrum
Oess(Hy~(K)) of the operator H, - (K).

Theorem 4.2. The essential spectrum oess(H, (K)) of the operator H,, ~(K) coincides
with the spectrum of the channel operator, i.e., 0ess(H, ,(K)) = o(HS" (K)). More
precisely,

a) if i < pmin~(K), then

UeSS(Hu,v(K)) = [Emin,W(K)vEmaw,“Y(K)]?
b) if tmin~(K) < o < pimax 4 (K), then
Oess (H[L7’Y(K)) = [Tmin,'y('uv K)7 Emax,v (K)]

and Tmin,'y(/‘a K) < Emzn(K)7
C) Zf/'L > Mmax,’y(K)v then

Oess(Hyuny(K)) = [Timin,y (1, K) s Tmax,y (1, K) U [Emin y (K), oz, (K)]
and Tmax,y (/1:, K) < Emin,'y (K)
Proof. We omit the proof, since it can be proved analogously to Theorem 1 in [22]. O

The intervals [Tyin,~ (16 K), Tmaz,~ (14, K)] and [Enin (K), Emas,,(K)] are called "two
particle branch" and "three particle branch" of the essential spectrum of the operator
H, ~(K), respectively.
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Corollary 4.3. Let K= 0. Then

dq
,umin,'y(o) = H0; ,Ufmax,’y(o) = <A

3 9+3w+(v—1)£(q)>

and
ecs(Hy 0) = 5 01, 20 61U 0, 6+
Jor 11> pimax,(0).
5. DISCRETE SPECTRUM OF THE THREE-PARTICLE OPERATOR

First we show that the operator H, ~(K) does not have eigenvalues on the right of
Epaz~(K).

Lemma 5.1. Operator V = V; + Va is a projection in the space L3*((T?)?).

Proof. Since the operators V; and V5 are orthogonal projections and V1 Vo = VoVy =0,
V1 + V4 is also a projection. O

Theorem 5.2. For any K € T3, y > 0,7 > 0, the operator H, (K) does not have
eigenvalues lying above Epqq (K).

Proof. Positivity of the operator V = V; + V5 and the minimax principle imply that

H;lnlpl( LK) ) = mgl[(Ho,w(K)f, )= n(V 1 f)
< ‘I?HIEI(HO,W(K)JC’ f) = Emaz(K)
and then o(H, (K)) N (B ~(K), 00) = 0. O

Now we find an equivalent equation for the eigenfunctions of the three-particle operator
H, ~(K). Let 2 < Tin (1, K) and define a self-adjoint operator A, - (K, z) as

_ —p (Bx., v(p, ) )*1 (s)ds
(o 2)9) () = \/AMKY(K -p,z—£(p /W \/A A ( 2 —€(s)) ’ (50)
which is defined on the subspace
) = 3\ g(s)ds B
Do 629 = {9 =) T3 \/A%’Y(K =8,z —£(s)) N O} .

Note that, for z < Twmin (1, K), the function A, (K — s,z — e(s)) is positive for all
K,s € T3.

Lemma 5.3. A number z < Tmin~ (i, K) is an eigenvalue of the operator H,, . (K) if
and only if 1 is an eigenvalue of A, (K, z).

Proof. (Sufficiency.) Let z < Tmin~(1t, K) be an eigenvalue of the operator H,, ,(K)
and f € Lg°[(T3)?] be the corresponding eigenfunction, i.e.,

K)f —uivaf = 2f. (5.7)
Introducing the notation -
o) = iN®) = [ )i (5.8)
from (5.7) we obtain
f(p,a) = NM (5.9)

Ex~(p,q)— 2
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Since the function f is antisymmetric, we see that the function ¢ belongs to the space
Lo(T3) and

/Ts ¢(p)dp = 0.

Substituting the expression (5.9) into (5.8) we get that the equation

cp(p)(l - 'u/TS EK,W(ICZZ)?S) - Z> - /’H‘S EKE/D((;?S -z

has a nonzero solution ¢ € Lo(T?). Using the notation (3.2) we have that

—p ©(s)ds
HW(K —b,z—= 5(p)) T3 EK,'y(py S) -z

o(p) = A

If we denote g(p) = /A, (K —p,z —e(p)) ¢(p), we have

_ —p / g(s)ds

VALK —pz—e(p)) S (Bicy(D:5) = 2) /Ay (K = 5,2 —<(5))

i.e. 1is an eigenvalue of the operator A, (K, z) and
g(s)ds

™ VB (K — 5,2 — 2(5)

(Necessity.) Let for some z < Tin, (¢, K) the number 1 be an eigenvalue of the
operator A, (K, z) corresponding to an eigenfunction g € D(A, (K, z)). Then the
function f defined by (5.9) belongs to L3*[(T?)?] and satisfies the equation (5.7). O

9(p)

)

=0.

Lemma 5.4. Let v > 0 and {1 > fmin(K). Then

i) the operator A, (K, 2) is continuous in z € (—00, Tmin, (1, K)];

it) there exists § > 0 such that the operator A, (K, Tmin (1, K)) is continuous in
K € Us(0).

Proof. i) Continuity of the operator A, (K, z) as an operator-valued function for z <
Tmin,~ (1, K) follows from (5.6).

Now we show that the operator A, (K, z) converges uniformly to the operator
A, (K, Timin,~ (¢, K)) in the uniform operator topology. Using the following notation

(Bx(pya) —2)7"
\/A/L,’Y(K —P,z—= E(p))\/A“ﬁ(K —q,z—£(q))

Au~(K,z;p,q) =

we have
1Ay (K. 2) = Ay (K, T (11, K)) |2

S/(3)2 (A (K, 29,0) — Ay (K, Tonin (11, K); P, @) dpdq
T

- / (2 dpdq + / (2 dpda,
(T3\V:(0))2 (T3)2\(T3\V:(0))?

where V.(0) is an € neighbourhood of the origin. For any ¢ > 0, the convergence of the
first integral of the right-hand side of the last equality to zero follows from the uniform
convergence of the integrand for z — Tyin (1, K).
The convergence of the second integral to zero follows directly from a modification of
Lemma 6.8, arbitrariness of € > 0, and absolute continuity of the Lebesgue integral.
Statement ii) is proved similarly to the proof of statement i). O
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6. EIGENVALUES OF THE OPERATOR H, ,(0) FOR LARGE j

Now we give Birman-Schwinger’s principle for the three-particle operator H,, ,(0).

For a bounded self-adjoint operator A given on a Hilbert space H and for some \ € R,
we define numbers n [\, A] and n_[A, A] as

i (A, A = max{dim H 3 (A) : HA(A) C H; (Ap,9) > X o € Hi(N), [loll =1},
n_[A Al == max{dim H () : H,(A) CH; (Ap, ) <A p € HL(A), el =1}

If some point of the essential spectrum of A is greater (resp., less) than A, then n [\, A]
(resp., n_[A, A]) is equal to infinity, and if ny [\, A] (resp., n_[\, A]) is finite, then it is
equal to the number of eigenvalues of the operator A, which is greater (resp., less) than A
(see., for example, Glazman’s lemma [26]).

The following lemma follows from the well-known Birman—Schwinger principle for the
operator H,, (0) (see [23]).

Lemma 6.1. Let j1 > po. Then, for any z < z,~(0),
n— [zv Hy (0)] = n+[17 AH,"/(O7 z)]

In this section we discuss eigenvalues z € (—o0, z,,~(0)) of the operator H,, ,(0) for
sufficiently large p. Without loss of generality we may suppose that z € (2, ,(0) — 3(1 +

), zl»h“/(o)]'

Theorem 6.2. Let v > ~y. Then there exists p, > 0 such that for any p > p., the
operator H, ,(0) has exactly three eigenvalues, counted with multiplicities, lying below the
essential spectrum z, (0).

Theorem 6.3. Let 0 < v < 9. Then there exist iy, > 0 such that for any p > p~ the
operator H,, ~(0) has no eigenvalues below the essential spectrum z, (0).

To make further statements more clear, we assume that the operator A, ,(0,z) is
defined on Lo(T?). If necessary, use the domain of A, (0, z).
It is known that the Hilbert space Lo(T?) is represented as

Ly(T?) = L5(T?) & L5(T*),
where
LY(T%) = {f € Lo(T*) : f(—=p) = f(P)}, L3(T°) ={[ € Lo(T*) : f(-p) = —f(P)}-
Lemma 6.4. The subspaces L§(T3) and L§(T?) are invariant with respect to the opera-
tor A, (0, 2).
Proof. From the definition of A, (—p, z —(p)) (see (3.2)) it follows that

Apqy (=P, 2 —2(p)) = Auy(p, 2 — €(=p)) = Ay (P, 2 — £(P)).

If g € L§(T?) then replacing the integrand g(s) with g(—s) and making the change of the
variables —s = q and also taking into account the equality Eo ~(—p, —q) = Eo~ (P, q),
we get

¢(=p) = (4.4(0,2)9)(~p)

/ g(s)ds

\/A,w,(p, z—¢e(-p)) (Eo,( \/Au 4(=s,2 —£(s))
_ / ( )dq _

VA (=P, 2 —£(P)) Jr3 (Boq(P,a) = 2)y/Apuy(—a, 2 — £())
Hence, the space L§(T?) is invariant under the operator 4, ~(0, z).

Since the operator A, (0, ) is self-adjoint, the orthogonal complement L§(T?) of the
subspace L§(T?) is also invariant under the operator A, (0, z). O
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Using the equality -~ =14z + %, (z # 1) we have

1 _ 1 <1+€(p)+£(q)+7£(p+<:1) N C(v;p,q)>

Eo~(p,aq) — 2 6+3y—=2 6+3y—=2 6+3y—=2
where )
C(rip.q) = (€(p) +&(a) +1¢€(p+4a))”

Eo(P,q) — 2
From this we get

(444(0,2)g)(p) = (A[P1(0,2)9)(p) + (4]} (0, 2)g) (p),
)

where the self-adjoint operators AEL (0,z) and AEL 27(0 z) are given as

(A (0,2)g)(p)
_ uB+3y—2)? / (6437 —2+&(p) +&(s) +7E(P +5))g(s)ds
\/Au,v(pv z—e(p)) Jrs \/AMW(S, z—e(s))

L,y

and
(6 + 3y — )72 C(v:ip,s)g(s)ds

VAP z—e(P)) J13 /A (5,2 —e(s))
Let us note that, for g € D(A4, (0, 2)), the operator AL%(O, z) takes the form
(A1) (0, 2)g)(p) = — (6 +3y —2)~° / (£(s) +1€(P +5))g(s)ds.
\/Au,'y(pa z—e(p)) Jrs \/Au,’y(sv z —¢e(s))
Lemma 6.5. The subspaces L§(T?) and L3(T?) are invariant with respect to the operators
AL%(O,Z) and AE},)V(O,Z), respectively.

(A1 (0,2)9)(p) = —

Proof. The lemma is proved analogously to Lemma 6.4. O

Denote by A&%)(O, z) and AEB;)(O, z) restrictions of the operator AE% (0, 2) to the
subspaces L3(T?) and L§(T?), respectively, i.e.,
uy(6 4+ 3y — 2) 2 Zle sin p; sin s;1(s)ds
\/AH»’Y(pv Z— s(p)) T3 A/L,’Y(Sv zZ = 6(5))

A0, 2)3(p)

)

and
_ 3
AEB;)(Ov Dolp) = — (6 + 3y —2)72 > i1 (cos s; + v cosp; cos s;)1)(s)ds
VAP, 2 —e(p)) Jrs Ay (s, 2 —e(s))
Lemma 6.6. The operator ALOJ)(O, z) is positive on L§(T3) and
.2
Auy(2) = i o ds

(6437~ 2% Jo By (5.2 — 2(5)
18 the only nonzero eigenvalue, which has multiplicity three, with the corresponding

eigenfunctions
sin p;

VAP, 2 —e(p))

Proof. Note, that D(4,, ,(0,z)) N L3(T?) = L3(T?) and g1, g2, g3 are orthogonal elements
of LY(T?). In terms of g;, i = 1,2, 3, the operator A(O+)(0 z) is written in the form

9i(p) = i=1,2,3.

)

(AP0, 2)9)(p) = (e 37 E Z ¥, 9:)9i (P
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where (-, -) is the inner product in La(T?). Then for any 1 € L§(T?) we get

3
(0+) B S . S 2
(AL 29, %) = e ;(w,g»(gz,w) (6+37_ZQZ| ¥ g)l* 2 0,

which proves positivity of A( +)( 0,z).

The number A € R is an eigenvalue of the operator A,(gi )(072) if and only if the
equation

(6+37 QZw,gz )9:(P) = M(p)

has a nonzero solution v € L§(T?). If we denote C; = (1, g;), i = 1,2,3, in the last
equation, we get

Xp(p) = 6+37 22 19;(p

Multiplying both sides of the equality by the function g; and integrating over T? we
obtain

3

1wy ‘
AC; = 726'-(9- gi), 1=1,2,3.
3 — 2 i\945,9i), 3 4y
(6+3y—2) =

By orthogonality of g1, g2, g3 we have that the system of homogeneous equations has a
nonzero solution if and only if

H(A - Tt

Since A, (P, z — €(p)) is symmetric with respect to permutation of the variables p; and
pj (1,5 =1,2,3) we get (g1,91) = (92, 92) = (93, 93). Therefore,

__m(g1,91)
(64 3y —2)?

is a multlphmty three eigenvalue of A(0+)(0 z) corresponding to the eigenfunctions
P(p) = 23:1 C;g;(p), where C; are arbitrary constants. O

The following lemma will be used in the proof of Theorem 2.1.
Lemma 6.7. For any z < z, ,(0), the operator ALO;)(O, z) is negative, i.e.,
(AL2(0,2), ¥) <0 for all ) € D(A,4(0,2)) N LS(T?).

Proof. Using direct calculations and that 1 € D(A,, ,(0,2)) N L§(T?) we have

/ zi” szw )0 (p)dsdp
)13 /Dy (P P))V/Aus(s 2 —(s))

cos s;9(s)ds Y(p)dp _
<Z/Ts m) < T3 \/A,u,'y(pvze(p))> -0
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which implies that

(ALD(0,2)¢, ) = —

1y / <Z§:1 COS p; COS sz) Y(s)y(p)dsdp
(6437 =2)? Jirsy2 /By (P2 = €(P)) /By (5,2 = €(8))

cos p;¢(p)dp
T3 \/Auv P,z —£(p))

The lemma is proved. O

2
<0.

Lemma 6.8. Let v > 0 and u > 3(1 4+ ~). Then the identity
1 _ B+37=2u,(P)(6+3y—2) 1
Auqy(p,z —e(p)) w(zuy(P) +e(P) —2) 14+ Q7,2 p)

holds for all p € T3, where Zu~(P) is the eigenvalue of the two-particle operator h, (p)
and

R £(s) +7€(p +) £(s) +7€(p +8) +£(p)
QU7 5p) = / [ds) T 72D +5) — 2 (B) | 2(s) + (D +5) + (D) -
(€(6) +9E(P +)(E() 16 +9) HE@)
(e(s) +7e(p +8) — 2u4(P))(e(s) +7e(P+5) +e(p) —2)]
Proof. From Lemma 3.1 we obtain
ds
e e e (6:10)
Using this equality we get
AM,W(P»Z - E(p))
_M/Tgs()—l—vs(p—l—s ) — Zu~(P #/TSE(S)-F’YEP—FS )+e(p)— =

(Z/wy() (p) z
”/T3[<>+ve<p+s>—zw< ) [E(s) + 76(p+8)+€() 2

Then taking into account the equalities
1 S S (P R S
e(s) +7e(P+s) = 2uy(P) 3437 — 2u4(P) £(s) +ve(P+s) — 2u4(P)

and

! __ 1 (1+ §(s) +¢(p +s) +¢(p) )
e(s) +ye(p+s)+e(p)—2 6+3y—2 e(s) +ye(p+s) +e(p) — 2

we have
_ (zuy(P) +e(P) — 2)
Au~(p,z—e(p)) = N[3 37— 2,,(P)][6+ 37 — 2]
£(s) +v€(p +s) £(s) +7€(p +5s) +&(p)
x {1 + /Ts e(s) +ve(p+s) — zu4(P) ds+ /Ts e(s)+ve(p+s)+e(p) —
+/ (€(s) +7¥€(p +5))(&(s) + (P +5) +£(P)) d]
s (€(8) +7e(P +8) — 2,4(P))(e(s) +7e(P +5) +£(P) — 2)
u 'y(p) +¢(p)

TG 20 P) 6+ 3y~ 2) [1 +Q<Mz;p>]7

whence the required equality follows.
The lemma is proved. O

ds+
z




THE EXISTENCE OF EIGENVALUES OF SCHRODINGER OPERATOR 203

Lemma 6.9. Lety > 0. Then there exists j1y > 0 such that, for any p > p.,, the estimates

Ep) C £(p)

<Qu,v,z;p) < =+
pooop? ( ) I

+ C
u2

hold for all p € T3, where C is a positive constant depending only on .

Proof. We write Q(u,~, z;p) = I1 + I + I3, where

B £(s) +v¢(p +s) < _ ) +7€p+s) +&(P)
Il N /EAE() d, IQ/EJE(S"F ( d’

s) +ye(P+s) — zuq(P ) p+s)+e(p) —
I - / (&(s) +7E(p +8))(&(s) +E(p +5) +£(p)) s
s (e(8) +7e(P +8) — 2,4 (P))(e(s) +7e(p +58) +e(p) —2)

Since [r4 [£(s) +7E(P + S tds=0, k=1,2,..., we have

B £(s) +~E(p +s) +7¢(p +s) s
Ilf/qrs B _&(s) +€p +s) /ﬂ‘3z{3+37_zuv(p) I
(3—’_37 ZH’Y(p)) 1 3+3’Y ZIL’Y(p)

_ + v¢(p + 8) . [€(s) +7€(p +5)]° <
B /1r3 Z [3+3v— zm(p)] = /TB [3 437 — 2uy(P)]? — [£(s) +7€(p+5)}2d

| \/

For the second integral I>, we get

_ £(s) +¢(p +5) ¢(p) 0
= /ﬂ‘3 e(s) +ve(p+s)+e(p) — st—i— /TS e(s) +7e(p +s) +e(p) — st =15 + 1.

Similarly to I; we obtain

oo / [£(s) ++€(p +9)) g >0
* e 343y +ep) - 22— [E(s) kP +s)]”

Taking into account (6.10) and positivity of (p) we have

£(p)

2= / 7S v g S oy L

£(p) £(p)
* /w [6(5) +re(p+s)+e(P)—z &(s)+7e(P+5) — 24 (D) s

_ &) +/ (P)(z — 2u7(P) — £(P)) ds
I s (e(s) +7e(p +8) +&(p) — 2)(e(s) +ve(P +8) — 244(P))
>@_/ 1€(P)(z — 2uy(P) — €(P))|ds
T ow s (e(s) +7e(p +8) +e(p) — 2)(e(s) +ve(P +8) — 24 (P))
- &) | €)=~ 245 () —£(p))] ds
K z 13 €(8) +ve(P +8) — 2u4(P)
) |, EP)(z— 244 (P) — £(P))]
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By similar reasoning we obtain

I / (6(5) +76(p +5) + P22
12 (£(s) +7€(P +8) — 2. (P))(e(s) +7e(P +8) + £(p) — 2)
B 62(p)/ ds
4 Jps (e(s) +7e(p +8) — 2u(P))(e(s) +7e(p +5) +(p) — 2)
. &) ds . &)

-4 /w (e(8) +7ve(P +8) = 244 (P))(e(s) +7e(p +5) +e(p) —2) — 4zp

Using the above estimates, and Lemmas 3.4 and 3.6, we get

£(p) N £(P) (2 — 2uy(P) — (P))] N £ (p)

Q(w,v;p) = 1
I Zp Zp
> £(p) . €(P)[|z — 247 (P)] n €(p)|e(p)] n £ (p)
L ZH Zl dzp
£(p) 3 18 9 &) _C

+ + > :
H 2uy () 20y (0)p 4z, 4 (0)p H p?

Now we prove the second part of the estimates. By Lemma 3.5 we obtain

I = / [£(s) +7€(p +5))” _ds
8 [3+ 37 — 244(P)]* — [€(8) +7vE(P + 8)]
- 9(1 +7)? 91 +9)?
T B3z, (@) 90 +9)? T 2= 9(1+)%
Analogously,
no- / [£(s) + €@ +9))° a5 < 0+
13 [34 37 +e(p) — 2% — [§(s) +7E(p +8)] p2 = 9(1 +7)?
and
2 < &P / 1€(P) (= — 24y (P) — £(P))|ds
Y s ((8) +7e(p +8) +e(p) — 2)(e(s) +ve(p +8) — 2.~ (P))
- &) n £(P)(2 — zuy(P) — (P))]
— ILL —Zu bl
91 +7)(2+) ds (1 +2+9)
s = —z /11‘3 e(s) +7e(p+s) — 2uy(p) —zp '

Taking into account the obtained above equalities and estimates, as well as the statements
of Lemmas 3.4 and 3.6, i.e., —z > —z, 4(0) > pr — 3(1 + ), we have

, 18(1+v)? &P, EP)(=—2uy@) =), 90 +9)(2+7)
Qu, 7,7 p) < Zooitrr .t o + o
< $p) + %
nop
The proof is complete. O

Lemma 6.10. Let v > 0. Then there exists u, > 0 such that for any p > p, and
z < z,,(0) the estimate

C
145220, 2)|| < m

holds, where C is a positive constant depending only on .
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Proof. Without loss of generality we further denote various variables by C. Let g €
D(A,.~(0,2)) be a normalized element. Then from Lemmas 6.8, 6.9 and 3.4 we obtain

|(A5(0,2)9,9)] <

/ )+f( ) +7€(p +9))9(s)|[g(p) |dsdp

(6—1—37—2 13 J13 (Eo (P, S) — 2) /Ay (8, 2 — () /Ay (P, 2 — £(P))
11(6 + 37)* / lg(s)[lg(p)|dsdp

(6+37—Z 18 J13 /DA (8,2 —2(8))/Au~ (P, 2 — 2(p))

2

S Ch 1)l 3+%—@w»m+w—a e
(6437 —2)%( </T3\/ 1z e(s) —2)(1 +Q(M,7,z;s))|g( )l )

14(3 + 37 — 2,,(0))(6 + 37 — 2)(6 + 37)* lg(s)|ds

(6 +3y = 2)*(=2) A3¢d@(1+“?cﬁ

o 2000 (6 4 34)2 s

( ) — [ lapPas | e
(64 3y —2)(—=) T3 ™ e(s)(1+ 27 — 5)
(,u+9(Lﬂ”)2) (6 + 37)? ,
§w+37—@ﬁwme@ﬂm»ﬂﬁﬂﬁ“hﬁéd@u+§?_cg

o+ 200 (6 1 34)2 .

o 227) (o) s | T
B+ =31+7) Js me(s) 1+ — ) M

Lemma 6.11. Let v > 0. Then there exists u, > 0 such that, for any p > p the
eigenvalue A, ~(2,.~(0)) of the operator A,(L%)(Q 2u,~(0)) satisfies
v C v C

— — — < Ay (2y(0) £ — 4 —,
Yo o TR Yo o op

where C' is a positive constant depending only on .

Proof. Without loss of generality we further denote various variables by C. Using Lemmas
6.8, 6.9, and 3.4 we get

sin? p1dp _
8 Dy (P, 217(0) — £(P))
=Aﬁﬁﬂwﬁﬁi$@ﬁB%Z%?mhp
.2
> (34 3y — ZM,W(W)L(G +37 — Zu,’v(oz)) /T3 5] (1511@12;’ — dp
w(6+ 3’7/: 2u,~(0)) /TS . (18—1;5(?) - %) dp

z@+ﬁv—%ﬂw»[43fi§dp—i}.




206 J. I. ABDULLAEV, A. M. KHALKHUZHAEV, AND K. D. KULIEV

From this and Lemma 3.4 we have

.9
Mo (zun(0)) > il [ [Py C}
’]TB

6+ 37 — 2,,,(0) e(p) w
> M9'7(1+ )2 |:1_C:| Zl_g
f 3 g Yo oM Yo oM
1
The upper estimate is proved analogously. The proof is complete. O

Lemma 6.12. Let v > 7. Then there ewists 1, > 0 such that for any u > p, the
following identity holds true:

n (1, A4 5(0,2,4(0))] = 3.
Proof. Let € € (0,1). Then Weyl’s inequality (see [13]) and Lemma 6.7 yield

e[l = e, AL (0,2,5(0))] = ni[l—e AP0, 2,,(0)) + AT(0, 2,,(0))]
n L= &, AL (0, 2 (0))] + 1[0, AL5)(0, 2, (0))]
- n+[1 -5 A/J, ¥ (07 2#77(0))]'

From this and Weyl’s inequality we get

IN

ni[l,A,4(0,2,4(0))] = nifl—e+e, A/(LO’Y(O7ZI"7'Y( ) JFA/W(O 21,v(0))]
€ all = A 0 O]+ AL 0 O

< il =2 ACD(0, 2, (0))] + s [, AL (0, 2, (0))].
By Lemma 6.10 we conclude that for any € > 0 there exists u, > 0 such that
nle A (0,2, (0))] = 0
for all & > 1. Hence Lemma 6.11 implies that
1 1L Ay (0,20 (0)] < 11— £, ALD(0, 2,0, (0))] = 1 [1 AL (0, 2, (0))] = 3.

Now we show that ny[1,A, ,(0,2,~(0))] > 3. Let Hs = {91, 92,93} be a three-
dimensional subspace of L3(T?) spanned by the eigenfunctions g,g2 and g3 of the

operator Aft 7)(0 2u,~(0)). Then for an arbitrary normalized element g € H3 we have

(AH17(072M>’Y(0))979) = (A(O) (0 Z# ’Y(O))gag) (A(l) (Oazu,’y(o))gvg)
= (A/(I. ’y)(O Zp, ’Y(O))gmg) (A/(L 7(07Z/L,’y(0))gag)
Hence, from Lemmas 6.11 and 6.10 we get

vy C
A 0,z,~(0 > — — —.
( urr( u,v( ))9 g) 0

We choose the parameter ji, such that for any @ > p, the right-hand side of the last
inequality is greater than one. Then by the definition of n,[1,A, (0, 2z, ~(0))] we get

ny(l,A,~(0,2,,(0))] > dimHs = 3.

The lemma is proved. O

Proof of Theorem 6.2. The proof follows directly from Lemmas 6.1 and 6.12. O
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Proof of Theorem 6.3. Let 0 < v < 9. Then by Lemmas 6.10 and 6.11 we have the
existence of u, > 0 such that for any p > u, the following estimates hold true:

sup (Alh’Y (0, Zu,’y(o))% ®)
llell=1

< ”81H1p1 (Aft?)w(()?Zuw(O))% ‘P) + I\Sllllpl (A,(}),(O, 2u,7(0))e, 90)
pl= wll=

_ 1 v ,C C
= Ay (20,4(0)) + ||AEL,2)/(07 Zu~(0))]] < -~ + m + W

Choosing ji, sufficiently large we get that

SU.p (AM,’Y(Oazugy(O))(pa(p) S 17

llell=1
ie.,
n (1, A4 4(0,2,4(0))] = 0.
Then the proof of the theorem follows from Lemma 6.1. d

Proof of Theorem 2.1. By Lemma 5.4 we get that

Iyglo A~ (K, Tmin,y (14, K)) — Ap4(0, 2,,,4(0))) ]| = 0.

From this and Lemma 6.12 we have

n+[1, A#’y (K7 Tmin,'y(,u’v K))] =3

for all K € V5(0).
The proof is complete. d

Proof of Theorem 2.2. The proof follows from Theorem 6.3 and repeating the same
procedure as in the proof of Theorem 2.1. O
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