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THE INNER STRUCTURE OF THE BLOCK JACOBI TYPE MATRIX
RELATED TO THE COMPLEX MOMENT PROBLEM WITH THE
MEASURE SUPPORTED ON THE SECOND ORDER CURVE

MYKOLA DUDKIN, OLGA DYUZHENKOVA, AND VALENTYNA KOZAK

ABsTRACT. We present an exact inner structure of the block Jacobi type matrix
related to the complex moment problem with the corresponding measure supported
on an arbitrary second order curve in the complex plane. For completeness of the
study we also present a solution of the direct and inverse spectral problems for such
matrices. In this the way, we give a necessary and sufficient condition under which a
matrix in the CMV-form generates a (pre)normal operator, namely, not obligatory a
unitary one.

Hanmano ToyHy BHYTpINIHIO CTPYKTYPY GJIOYHOT SIKOIOI€EBOI MaTpHIli, siKa MOB’s3aHa
3 KOMILJIEKCHOIO IIPOOJIEMOI0 MOMEHTIB 1 Miporo, 110 Mi€ HOCi#t Ha JIOBiIbHIM KpuUBiit
JIpYTOro MOPsIAKY B KOMILJIEKCHIM muiomuHi. JIjIs MOBHOTH MOCJIiJZKEHHSI IIOTAaEMO
TAKOXK PO3B’SI30K HPsIMOI Ta OOEPHEHOI CIIEKTPAJIbHUX 3aJadi /I TaKUX MaTPUIlb.
Mu TakoxXK JaeMO HeoOXiJHYy 1 JocTaTHIO yMOBY 3B sikol CMV-MaTpuils nmopojzKye
(npe)HOpMaJsIbHUIL onepaTop, a caMe He 0OOB’SI3KOBO yHITApHHA.

1. INTRODUCTION

By solving the classical Hamburger moment problem we obtain a usual three-diagonal
matrix called a Jacobi matrix [1]. A construction of such a matrix poses no problem. But
if we solve a trigonometric moment problem we get a three-diagonal block matrix (usually
a five-diagonal matrix in the spacial form, a CMV-matrix [2, 3]). Necessary and sufficient
conditions on elements of a matrix under which the matrix in the CMV-form generates a
unitary operator are not simple but known [2, 3] (see also [4]) due to the fact that the
inner structure of matrix elements are known. By the concept of the inner structure or a
description, we mean a set of some given parameters and rules that are used to construct
a matrix with the corresponding properties.

If we solve, for example, a strong Hamburger moment problem we meet two commuting
three-diagonal block matrices called Jacobi-Laurent matrices (usually they are five-
diagonal of a spacial form [5, 6]). Necessary and sufficient condition for elements of the
matrix under which such matrices generate symmetric commuting operators are known
[5, 6] since the inner structure of matrix elements is described.

The situation is much more complicated with the complex moment problem. By
solving the complex moment problem we obtain a block three-diagonal Jacobi-type matrix
corresponding to a (pre)normal operator (prenormal is a densely defined operator that
has a normal extension in the same space) [7, 8]. In this case, the blocks of the matrix are
growing. A description of the inner structure of such a matrix is, perhaps, a non-realistic
task. We don’t known conditions for elements of such a matrix under which the matrices
would generate a (pre)normal operator. Only simple examples are known.

In this article we describe a particular case, namely an exact inner structure of a block
Jacobi-type matrix related to the complex moment problem but with the correspondence
measure supported only on an arbitrary second order curve in the complex plane. The

2020 Mathematics Subject Classification. 44A60, 47A57, 47TA70.
Keywords. Trigonometric, complex, Hamburger, classic, strong moment problem, Jacobi type three-
diagonal matrix, CMV-matrix.

209


https://doi.org/10.31392/MFAT-npu26_3.2022.02

210 MYKOLA DUDKIN, OLGA DYUZHENKOVA, AND VALENTYNA KOZAK

description is given in form of a necessary and sufficient condition for elements of
correspondence matrix. Such a matrix does not have growing blocks and has a form
of a CMV-matrix. In this connection we answer an additional question, — under what
conditions on the elements of the CMV-matrix it will generate a (pre)normal operator.

For completeness of the study we also present a solution of the direct and inverse
spectral problems for such matrices. The inverse spectral problem is a construction of
block three-diagonal Jacobi-type matrix using a given measure, and the direct spectral
problem consists in recovering the measure using a given block three-diagonal Jacobi-type
matrix.

We remark that, actually, the trigonometric and the strong Hamburger moment
problems are two particular cases. In general, we do not have any description of elements
of matrices that would correspond to the usual, the strong, the half-strong two-dimensional
moment problems [9, 10, 11], the complex moment problem in the exponential form [13, 12].
These problems are still open.

A collection of the cited above results is also contained in the monograph [14].

2. PRELIMINARIES

The complex moment problem consists in finding a condition on a given sequence
of complex numbers {spy.n}, m,n € Ny, s € C, that would imply existence of a
nonnegative Borel measure dp(z) on the complex plane C such that

S = / 2™z dp(2), m,n € Ny. (2.1)
C

For existence of representation (2.1) it is necessary that a condition of positive defi-
niteness would be fulfilled [7, 8],

Z fj7kfm,n5j+n,lc+m >0 (2.2)

7,k,m,n=0

for all finite sequences of complex numbers (fj’k)szo, fir €C.
For a given sequence of complex numbers {s,, n } oy o there exists a representation (2.1)
and is unique if it is positive definite and

= 1
L. 23)
o1 V/52p.2p

In this paper, we suppose that the measure dp(z) is supported on an order two curve

ID={z|22=0022 +012+0:2+03, 0,€C, i=0,1,2,3}.

3. CONSTRUCTION OF A THREE-DIAGONAL BLOCK MATRIX

Consider a Borel probability measure dp(z) on I' and the space L? = L*(T',dp(z)) of
square integrable complex valued functions defined on I". We suppose that the support of
this measure is an infinite set and the functions 2™, 2" n € Ny := {0, 1,2, ...}, are linearly
independent on L2.

Let us consider the sequence of functions

1, =2,z 2%2% ... 2z ... (3.4)

and apply the Schmidt orthogonalization procedure (see, for example, [18] Ch. 7). As a
result we obtain an orthonormal system of polynomials (each one ia a polynomial of z
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which we denote in the following way

d z)

PO(Z)

Pr.1(2) :/ﬁ 12+, Pau(2) :762;122 +ooey ey Poa(2) =kpa2" 4o, -0 (3.5)

Pl’g( ) k‘1 22:+ © PQ;Q(Z) =k2;252+"' ; Pn;Q(Z):kn;Qezn‘F"' ;
where k.1 > 0, kp2 > 0 and 7 + ---” denotes the next part of the corresponding
polynomial. In such a way P, is a linear combination of {1, z, z, ..., il gnmll gl
and P,.5 is a linear combination of {1, z, z, ..., z"~1 zn=1 zn zn}

Let us denote P,,1 and P2 two spaces spanned by {1, z, Z, ..., 2=l zn=l 2y and
{1, 2,2, ..., 2", zn71 2" 2"} respectively, n € N. Hence, one can say that P,.1(z)

(Pn;2(2)) is orthogonal to P,_1.2 (Pp.1). It is clear that for all n € N we have

Po Cpl;l CPl;Q (@R C’Pn;l C”Pn;QC~-~ R

Pra ={Po(2)} ®{P11(2)} @+ & {Pa1:1(2)} & {Pa122(2)} @ {Pnn(2)}, (3.6)

Priz = Pna @ {Pa2(2)} = {Po(2)} & {P11(2)} & - - @ {Paa(2)} & {Pni2(2)},
where {P,.o(2)}, n € Nya = 1,2, denotes a one dimensional space spanned by P, (2);
Py =C.

In the sequel, we need the Hilbert space

L=HooH i ®@Hs& -+, Hoy=C, Hi=Hy=---=C (3.7)

Each vector f € 1y has the form f = (f,)5%, fn € Hn, and consequently for all
f)g S 127

||f||122 = Z ||fn||%—tn < 00, (fv 9)12 = Z(fnagn)ﬂn'
n=0 n=0

For n € N, coordinates of a vector f,, € H, with respect to the standard orthonormal
basis {en;1,€en;2} in the space C?, are denoted by (fni1, fny2) and, hence, we have f,, =
(fn;lafn;Q)'
Using the orthonormal system (3.5) one can define a mapping from ly into L?. We put
P, (z) = (Pna(2), Pr2(2)) € Hy,, then
R o0
lo 3 f = (fu)olo — f(2) = D (fus Pu(2)2, € L*. (3.8)
n=0
Since fOI' n c N (fnvpn(z))’}-[n = fn;lpn;l(z) + fn;QPn;2(z) and ||fH122 = ||(f07f1;13f1;27
fa1,- - )lIf,, we see that (3.8) is a mapping of the usual space I3 into L? via the orthonormal
system (3.5) and, hence, this mapping is isometric. The image of 1o under the mapping
(3.8) is equal to the space L?. This is indeed so, since linear combinations of (3.4)
uniformly approximate an arbitrary continuous function on I' and such a set of functions
is dense in L?; hence, the system (3.5) is total in L?. Therefore the mapping (3.8) is a
unitary transformation (denoted by I) that maps 1y onto L?.
Let A be a bounded linear operator defined on the space 1. It is possible to construct
an operator matrix (aj,k)fk:m where, for each j, k € Ny, the element a;  is an operator
from Hj, into H;, so that for all f, g € 1o we have

Af); =Y ajufr: 5 E€ENo, (Af.9, = Y (ajkfis95)n,- (3.9)
k=0 J,k=0

To prove (3.9) we only need to write the usual matrix of the operator A in the space
l using the basis (eg = 1,€1.1,€1,2,€2.1,...). Then a; for each j,k € N is an operator
Hi — H; that has a matrix representation (a‘j7k§0¢7ﬂ)i,ﬁ:17 so that

aj. ;0,8 = (A€k;g, €5:0)1- (3.10)
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Ifj=0k=1,2,..., then (ao’k;g)%zl is a 1 x 2-matrix operator Hy — Hg, where
aok:p = (Aegg,€0)1,; if k=0,7=1,2,..., then (a;0.)%—; is a 2 x l-matrix operator
Ho —> H;, where a0, = (A€o, €j.a)i,- And app is a 1 x 1-matrix operator (scalar)
Ho — Ho, where ago = (Aeo, €o)i, -

Let us consider the image A = TAI"! : L2 — L? of the above operator A defined
by the mapping (3.8). Its matrix in the basis (3.5), (Po(2), Pi;1(2), Pi;2(2), P21 (2),...),
is equal to the usual matrix of the operator A: I — Is in the corresponding basis (e,
1.1, €1;2, €21, - --). Using (3.10) and the above mentioned procedure, we get an operator
matrix (ajk)5%—o of A : lo — lo. By the definition this matriz is also the operator matriz
ofA (L2 — L2

It is clear that A can be an arbitrary linear bounded operator in L2.

Lemma 3.1. Let A be the bounded normal operator of multiplication on z in the space
L?,

L2 3 p(2) ¥ (Ap)(2) = 2p(2) € L2
The operator matriz (a;jk)55.—o of A (i.e. of A=T1"YAI) has a three-diagonal structure:
ajr =0 for|j—k| > 1.

Proof. Using (3.10) for e, = I7'P,.,(2), n € N, v = 1,2, we have, in the case j, k € N,

@jkia,8 = (Aekig, €50, :/sz 8(2)Pja(2)dp(z),  o,f=12. (3.11)
r
From (3.5) we have zPy.1(2) € Prt+1,1 and zPr.2(2) € Pri1.1. According to (3.6) the
integral in (3.11) is equal to zero for j > k + 1 and for each a =1, 2.
On the other hand, the integral in (3.11) has the form

05 ks /FP )P (2) dp(2).

From (3.5) we have now that ZP;.1(z) € Pj;.2 and ZP;.2(z) € Pj41,2. According to (3.6)
the last integral is equal to zero for £ > j 4+ 1 and each § =1, 2.

As a result, the integral in (3.11), i.e., the elements a;i.q.3, j,k € N, are equal to
zero for |[j — k| > 1, a, =1,2. Thecases j =1,2,...,k=0and j=0,k=1,2,...
are considered analogously (it is necessary to take into account that eq = I~1Py(2),
Py(z) =1). O

In such a way the matrix (ajyk);?,okzo of the operator A has a three diagonal block
structure

0o 1 2 4

ap,0|@0,1 0 0

aipolari|aiz] 0 0

0

3

3
0

0 a2,1(02,2(02,3 (312)

0 0 as 2 (13,304)4‘...

wWw N = O

A further detailed analysis of the expressions in (3.11) gives a possibility to know
about the zero and non zero elements of the matrices (a; a,5)5 3—; in each case for
|7 — k| < 1. We describe the permutation properties of the matrix indexes j, k, and «, 3.
Let us remark that from (3.11) it follows that the norms ||la; x| are uniformly bounded
with respect to j,k € Np.
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Lemma 3.2. For the polynomials Py..(z) and the subspaces P, g, n,m € No, a, 5 = 1,2,
the following relations hold:

2Pp1(2) € Pt ZPn.1(2) € Ppio;
2Pp:2(2) € Pry1i1s ZPp.o(2) € Pri2; (3.13)
ZPO(Z) S Pl;l; EPO(z) & 7)1;2,

Proof. According to (3.5) the polynomial P,.1(2), n € N, is equal to some linear combi-
nation of {1, 2, z, ..., 2”71, z2°=1 2"}, Hence, by the multiplication on z we obtain a
linear combination of {z, 22, 2%, ..., 2", 2" "'z, 2"*1} and such a linear combination
belongs to Py,41.1. Similarly, by multiplication on Z we obtain a linear combination of {Z,
2z, Z%, ..., 2" 1z, z", 2"z}, and such a linear combination belongs to Py.o.

According to (3.5), the polynomial P,.2(z), n € N, is equal to some linear combination
of {1, z, z, ..., 2"~ 1, zn71 2" z"}. Hence, by multiplication on z we obtain a linear
combination of {z, 22, 2%, ..., 2", 2" 1z, 2"*1 2"z} and such a linear combination
belongs to Pp41;1. In the same way, by multiplication on z we obtain a linear combination
of {z, 2z, 22, ..., 2™z, z" "'}, and this linear combination belongs to Py 41.2.

Thus the relations (3.13) are proved since the case n = 0 is obvious. O

Let us denote ((a");)5%—o the operator matrix of the operator (A)* adjoint to A.

Note that (A)* is an operator of multiplication by z. Taking into account the expression
(3.11) for j,k € N we have

(@) k0.8 2/ ZPy.5(2) Pj,a(2) dp(z):/ 2P0 (2) Prp(2) dp(2) = @ jigar o, B =1,2.
T

r
(3.14)
Incases j=0,keN, k=0,57€N,j=0, k=0, instead of (3.11), we have
ag kg = / zPy.a(2)dp(z), keN, p=12
r
aj 00 = / 2Pj.o(2)dp(z), j€EN, a=1,2 (3.15)
r

a0,0 Z/Zdﬂ(z)-
r

In these cases the equality (3.14) has the form
(@®)o,k;p = k0,8, (@")j,0,0 = Qojiar Qo0 =do0, J k=N, a,B=12  (3.16)
Lemma 3.3. Let (aj’k)‘szo be an operator matriz of multiplication by z in L?, where

. . — 2 — 2 _ 2
ajp: He — Hji aoo, aok = (@0k:6)5=1 450 = (@j00)a=15 @ik = (@jka,6)0,5=1 aT€
matrices of the operators a;j, with respect to the standard basis. Then

4,02 = Qjj+1;1,1 = Gjj+151,2 = Qj41552,1 = Qj41,522 =0, jEN (3.17)
Proof. According to (3.15), for j € N, we have
aj0:2 = / 2Pj5(2) dp(2). (3.18)
N

Due to (3.13) z = 2Py(2) € P1.1, but Pj;2(2) is orthogonal to Py.; for j € N (see (3.6)).
Hence, in this case, the integral in (3.18) is equal to zero.
According to (3.11) and (3.13), for j € N, we have

ajj+1;1,1 Z/ZP]'+1,1(Z)P]';1(Z) dp(z) =/5Pj,1(z)Pj+1;1(Z) dp(z),
I I

where ZP;.1(z) € Pj;2. But according to (3.6), Pjy1,1(2) is orthogonal to P;.» and, hence,
the last integral is equal to zero.
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Analogously, from (3.11), (3.13), and (3.6) for j € N we have

aj,j+1;1,2Z/ZP]‘+1,2(Z)P]';1(Z) dp(z) :/sz71(z)Pj+1;2(z) dp(z),
I I

where ZPj;1(z) € Pj,2. But according to (3.6) Pj41,2(2) is orthogonal to P;,» and, hence,
the last integral is equal to zero.
Also, from (3.11), (3.13), and (3.6) for j € N we have

aj41,5;2,1 Z/ZPj;l(Z)PjH;z(Z) dp(z),
N

Qi1 = / 2Pya(2)Pyra() dol2),
N

where 2Pj.1(z), 2Pj;2(%) € Pjt1.1. But according to (3.6) P;41.2(2) is orthogonal to Pj11.1,
and, hence, both latter integrals are also equal to zero. O

So, after the previous investigations we conclude that the line under the 2 x 1-matrix
a1,0 and the line over (resp., under) the 2 x 2-matrices a; j+1 (resp., aj41,;) consists of
zero elements. Taking into account (3.12) we can conclude that the normal matrix of the
multiplication operator by z is a five diagonal usual scalar matrix.

Lemma 3.4. The matriz (aj,k)?,ok:o from Lemma 3.3 has the following positive elements:
0,12, 01,015 @j,j+1;2,2, Gj1,5:1,1,  J €N (3.19)

Proof. Let us denote by Pj.;(2) the non-normalized vector Py,1(z), which is obtained from
the Schmidt orthogonalization procedure for the sequence (3.4): Pj;(z) =z — (2,1) 2.
Then, according to (3.15), we get

aro1 = [ Paldsz) = [Pl [ PLE ()
r r (3.20)
= 1P [ =G o) = 1P (1= | D).

Later we will show that
(1) o + (2 Pra (o) < 1. (3.21)

Hence, from (3.20) we get a1 9,1 > 0.

Let us consider ag 1;2. As before, we denote by Pj,;(2) the non-normalized vector
Py.5(z) obtained from the Schmidt orthogonalization procedure for the sequence (3.4),
Piy(2) =2 — (2, P1.1(2)) 2 P1;1(2) — (2, 1) 2. Then according to (3.15) and (3.21) we get

ao,1;2 :/Zpl;z(z)dﬂ(z)
r

= IIP{;Q(Z)HZ%/FZ(«?—(5»P1;1(Z))L2P1;1(2)—(2»1)L2)d,0(2)

= [Pl (2)lz2 (1= (2, Pra(2)) 2 = (2, 1) 2[*) > 0.

At the next step we consider a; j41,22 and a;41 51,1, j € N. By (3.11), we have

tiseraa= [ PG Palld) = [ Pa@Praade), (622
I T

ayerjan = [ PGP do(o). (3.29
r
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In the expression (3.22), for a; ;11,22 we have that ZPj2(z) € Pjy1,2 (see (3.13)) and
that the coefficient of this function at Pj;1,2(z) in decomposition (3.6) is positive. This
fact follows from (3.4) and (3.5), since

2Pjalz) = hyae U9 1 5() = UL Py 1o(a) +Qs(2), (3.24)
j+1;2
where we denote by dots the terms from the correspondence expression for Pj.2(2) in
(3.5). In (3.24) Q;(z) is a linear combination of the terms 2!, | = —j,—(j —1),...,(j + 1),
that are orthogonal to Pjy1,2(2). Substituting (3.24) into (3.22) we obtain the relation
aj 122 = kja(kji12) " > 0.

Positivity of a;41;1,1 is obtained from (3.23) analogously. There one can use that
according to (3.13) zPj;1(z) € Pji1.1; the coefficient of this function at Pji1,1(2) is
positive as it follows from relation similar to (3.24).

Let us prove estimate (3.21). Actually it follows from the Parseval equality by decom-
posing the function z with respect to the orthonormal basis (3.5),

(2, Po(2)) 2 * + (2, Pria(2)) 12 + (2, Priz(2)) g2l + - = || 2l[72 = 1. (3.25)
O

In what follows we will use the usual well known notations for the elements a; j of the
Jacobi matrix,
Gn = Ap4+1,n - Hn — Hn+17 bn = Qnn - Hn — an
Cn = Gpn+1 : Hn+1 — Hm n € Np. (326)
All the previous results are summarized in the following theorem.
Theorem 3.5. The bounded normal operator A of multiplication by z in the space L?,

with respect to the orthonormal basis (3.5) of polynomials, has the form of a three-diagonal
block Jacobi type unitary matrix J = (aj7k);?’ck:0 which acts on the space (3.7),

L=Hoc®PH1EH2P---, dimHo=1, dimH; =dimHy=---=2. (327)
The norms of all the operators a;y : Hi — H; are uniformly bounded with respect to

j,k € Ng. In notation (3.26), this matriz has the form

bo Co 0 0 0
ap b1 C1 0 0
J = 0 al bg Co 0
0 0 a bg C3

*bg|*  co
* 0 0
ao by 1 0 (3.28)
0 |*
*|0 0
- ax ba C2
0 0
0 0
0 as b3 C3
0 0= * | % *
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In (3.28), by is a 1 x 1-matriz (i.e., a scalar), ag is a 2x 1-matriz, ag = (ag.a)%_1, co is a
1 x 2-matriz, cg = (00;5)%21; for j € N the elements a; = (aj;a,B)i,ﬁzl; b = (bj;aﬁﬁﬁﬂ,
cj = (Cj;aﬁ)i”@:l are 2 x 2-matrices. The matrices a;, b;, and c; have elements either
equal to zero or positive,

ap;1 >0, ap2 =0; co2 > 0;

(3.29)
(p;2,1 = Gp;22 = 07 Gn;1,1 > 0; Cps1,1 = Cpj1,2 = 07 Cn;2,2 > O; n € N.

The matriz (3.28), in the scalar form, is five-diagonals of the indicated structure.
The adjoint operator (A)*, with respect to basis (3.5), has the form of a similar
three-diagonal block Jacobi type matriz JT,

(a*)n = (a*)n-&-l,n Hp — Hpga,
(b*)n = (a*)n,n s Hn — Ha, (3.30)

(C*)n = (a’*)n,n+1 : Hn+1 — Hn, n e No.
Also, the following equalities holds:

(a*)o;a = 60;(!5 (b*)o = Z_)Oa (C*)O;,B = a‘o;ﬁa «, ﬂ = 17 21
(a*)n;a,,ﬁ’ = Cn;B,a> (b*)n;a,ﬁ = Bn;ﬂ,a; (C*)n;a,,ﬁ’ = Gn;B,a> a,8=1,2, neN.
(3.31)
These matrices J, J* act as follows: Vf = (fn)02, € Lz
(Jf)n = an—lfn—l + bnfn + Cnfn—i—lv
(3.32)

(JJrf)n:C:Lflfnfl+b:1fn+a;fn+1v n € Ny, f*l =0
(here * denotes the usual adjoint matriz).

The form of elements in the expression for J* follows from (3.14), (3.16), and (3.26).

4. THE CORRESPONDING DIRECT AND INVERSE SPECTRAL PROBLEMS

For this section we refer to [15], since a similar section is written in [15]. Although it
suffices to replace only the circle I with an arbitrary second order curve I', we decided to
include it here in full, since [15] is not available today.

In the previous section, we have actually given a solution of the inverse problem.

Now we will consider operators on the space 15 of the form (3.7). Additionally to the
space 1o we consider its rigging

(Isn) D la(p~") D 1o D Ia(p) D lgin, (4.33)
where 15(p) is the weighted 1, space with a weight p = (p,)%%, Pn > 1, (P71 = (p;1)%¢)-

In our case lo(p) is the Hilbert space of sequences f = (fn)5%, fn € Hn, which satisfy

||fH122(p) = Z ”fn”%—[npnv (fa g)l2(p) = Z(fn7gn)7-lnpn- (434)
n=0 n=0

The space lo(p~!) is defined analogously; lg, is the space of finite sequences, and (lg,)’
is the space conjugate to lg,. It is easy to show that the embedding lo(p) < Ly is
quasinuclear if > 0" p,;! < oo (see for example [16] Ch. 7; [18] Ch. 15).

Let A be a normal operator standardly connected with the chain (4.33). According to
the projection spectral theorem (see [17] Ch. 3, Theorem 2.7; [16] Ch. 5; [18], Ch. 15)
such an operator has a representation

Af:/rz@(z) do(2)f, f€ly, (4.35)

where ®(2) : la(p) — la(p~!) is the generalized projection operator, and do(z) is a
spectral measure. The operator A*, which is adjoint to A, has the same representation
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(3.13) where 2®(z) is replaced with z®(z). For every f € lg,, the projection ®(z)f €
lo(p~!) is a generalized eigenvector of the operators A and A* with corresponding
eigenvalues z and z. For all f, g € 15, we have the Parseval equality

(. = / (B(2) f, g)rado(2): (4.36)

being extended by continuity, the equality (4.36) holds for all for f, g € 1.

Let us denote by 7, the operator of orthogonal projection from 1, onto H,,, n € Np.
Hence, Vf = (fn)22, € 1o we have f,, = m,f. This operator acts analogously in the
spaces lo(p) and la(p~!) but possibly with the norm which is not equal to one.

Let us consider the operator matrix (®;x(2))3%—o, where

Dj1(2) = m®(2)mk : Lo — Hy, (or Hi — H;). (4.37)
The Parseval equality (4.36) can be rewritten as follows: Vf, g € 15

Z/ 7rkf,71']g lZdU Z / 7T_] 7ka, )lzda()

7,k=0 7,k=0

Z/ () s 9o (2).

7,k=0

(4.38)

We will now consider a more special bounded operator A acting on the space ls.
Namely, let it be generated by a matrix J which has a three-diagonal block structure
of the form (3.28), with uniformly bounded norms of the elements a,, b, and ¢, with
respect to n € Ny. So, this operator A is defined by the first expression in (3.32), the
adjoint operator is defined analogously by the second expression in (3.32).

In what follows we suppose that conditions (3.29) are fulfilled and, additionally, the
operator A given by (3.28) on 1y is normal. The conditions that imply that this operator
is normal will be given in the next section. Here we only note that the operator A is
normal if and only if its elements a,, b, and ¢, satisfy some simple recursion relation
obtained from the equality AA* = A*A.

In the next step we will rewrite the Parseval equality (4.38) in terms of generalized
eigenvectors of the operator A. At first we prove the following lemma.

Lemma 4.1. Let ¢(2) = (pn(2))520, ©n(2) € Hp, z € C, be a fized solution in (lg,) of
the following system with the initial condition po(z) = po € C:

(Jo(2))n = an—10n-1(2) + bun(2) + cnpnt1(2) = 2¢n(2),
(T 0(2))n = cro1Pn-1(2) + brpn(2) + a5 on41(2) = Zon(2), (4.39)
TLGNQ, go_l(z) =0.
Then this solution exist Voo and has the form: Vn € N

@n(z) = QH(Z)QOO = (Qn;h Qn;Q)QOO, (440)
where Qpn;1 and Qp.2 are polynomials in z and Z and these polynomials have the form
Qn;l(z) = ln;lgn + Qn;1(2)7 Qn;Q(Z) = ln;2zn + Qn;2(z)' (441)

Herelpq >0, ln2 > 0 and gn1(2), gni2(2) are linear combinations of 278 for0< j+k <
n—1; Qo(z) =1, z€ C.

Proof. For n =0, system (4.39) has the form

boo + cop1 = zpo, co;1P151 + Co2p1;2 = (2 — bo)wo,
—

) A - 4.42
bpo + age1 = Zpo, g P11 + aga132 = (2 = bo)o (4.42)
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Here and in what follows we denote ¢, (2) = (¥n;1(2), Pn:2(2)) € Hn, n € N. Using
the assumption (3.29) for the matrix (3.28) we rewrite the last two equalities in (4.42) in
the form

_ 7 Co: Co-
dop1(z) = ((z = bo)wo, (Z — bo)gpo); do = < azﬁ %’2 ) , co2 >0, agy >0.

. . . 1
Hence, there exists an inverse matrix d;, = and, consequently,

(p1:1(2), p1:2(2)) = @1(2) = dg ' ((z — bo) o, (2 — bo)0)-

Therefore

1 _
p1:1(2) = —(2 = bo)po = Qu;1(2)¥o,
() = 5o Yoo = Qualedeo (4.43)
p1:2(2) = (r1(z = bo) +r2(2 = bo) + 73) 00 = Qu2(2) %0,
where 71 > 0, 7o and 73 some constants. In another words the solution ¢, (z) of (4.39)
for n = 1 has a form of (4.40) and (4.41).
Using induction suppose that, for n € N, there exists ¢, (z) and it has the form (4.40)
and (4.41). Then it will follow that ¢,1(2) also has the form (4.40) and (4.41).
From (4.39) we get

Cnpni1(z) = (21 - bn)@n(z) —n-19n-1(2),
U Pnt1(2) = (21 = by )on(2) — ¢ _1on—1(2).

Summing the two last equalities and taking into account (3.29), (4.40), and (4.41) we
obtain

dnon+1(2) = (2 + 2)1 = (bn +b3))pn(2) — (an—1 + c_1)pn-1(2)
= ((z 4+ 2)1 = (bn + b,))ni1 2" + @51 (2) lnj22™ + Gns2(2)) o
—(@n-1+ ) ln122" 7+ Guo1(2), 122" 7 4 dnm1,2(2)) 0

= (Sn;l(z)a 371;2(2))%00;

Ap:1.1 0
d, = R ap.11 >0 Cp2.9 > 0.
Cn;2,1 + Gn;1,2 Cn;2,2 ’ ,7 ’ -

(4.44)

From (4.44) it follows that the matrix d;; ! exists. In such a way one can recover expressions
for pp+1.1(2) and pp41,2(2) using the right-hand size of (4.44), which we have denoted
by (Sn;l(z)y 3n;2(z))§00a i-e-7

(Pn+1,1(2), Pny12(2)) = d’r_Ll (8n;1(2), 8n;2(2)) w0,
1

An;1,1
Prt1:2(2) = (dy 218001 (2) + (d, ) 2,280:2(2).

From (4.44) and (4.45) we find the growth of the powers of z and z in the right-hand
sides of these expressions. This is so since we have in each step a multiplication by the
matrix (z — z)1. It gives that s,;1(2) and sp.2(2) have the form l,,41.12" ™ + ¢y41.1(2)
and ;1 1.22" "1 + ¢ y1.2(2), correspondingly.

It is not difficult to also see that the new higher terms /41,1 and 41,2 are also
positive. For [,,11 1 this fact follows from the second expression of (4.45) and for [, 412
it follows from the last expression of (4.45), i.e, from positivity of diagonal elements of
the matrix d,, and the location of the term [,,.22" in the second coordinate of the vector
(In1Z" + qni1(2), ln22™ + gn:2(2)). Hence, we complete the induction and a use of (4.43)
finishes the proof. O

Ont1;1(2) = Sn;10, (4.45)



THE INNER STRUCTURE OF THE BLOCK JACOBI TYPE MATRIX ... 219

Next we will consider @,,(z) for fixed z as a linear operator that acts from Hg into H,,
ie., Ho 3 po — Qun(2)po € H,. We also regard @, (z) as an operator valued polynomial
of z,z € C; hence, for the adjoint operator we have Q% (z) = (Qn(2))* : Hn — Ho.
Using the polynomials @),,(z) we construct the following representation for ®; 5 (z).

Lemma 4.2. The operator ®; (2), has the following representation for all z € T':
D p(2) = Qj(2)P0,0(2)Qs(2) : Hi — Hj, J, k € N, (4.46)
where ®g o(z) > 0 is a scalar.
Proof. For a fixed k € Ny the vector ¢ = p(z) = (¢;(2))52,, where
0;j(2) = O, k(2) =m;Q(2)m, € Hy, z€T, (4.47)

is a generalized solution in (lg,)" of the equation Jo(z) = zp(z), since ®(z) is a projector
acting on generalized eigenvectors of the operator A with the corresponding generalized
eigenvalues z. Therefore Vg € lg, we have (¢, Jtg)1, = 2(¢, g)1,. Transfer here of the
finite difference expression J* on ¢, we get (Jp, ), = z(p, g)1,- Hence, it follows that
© = p(z) € la(p™!) is a usual solution of the equation J¢ = zp with the initial condition
o = 7r0<I>(z)7rk € Hp.

Since Vf € lg,, the vector ®(2)f € lo(p~!) is also a generalized eigenvector of the
operator A* with the corresponding eigenvalue z (because A is a unitary operator), the
same ¢ = (z) in (4.47) is also a solution of the equation J+¢ = Zp with the same initial
condition, ¢o = mo®(2) 7.

Using Lemma 4.1 and due to (4.40) we obtain

P k(2) = Qj(2)(Pok(2)), Jj € No. (4.48)

The operator ®(z) : lo(p) — la(p~!) is formally selfadjoint in 1, (as a derivation with
respect to the corresponding resolution of identity in 1 of the operator A on the spectral
measure). Hence, according to (4.46) we get

(P k(2)" = (mj®(2)m)" = mP(2)m; = Prj(2), J,k € No. (4.49)
For a fixed j € Ny from (4.49) and previous considerations it follows that the vector
¥ =1(2) = (Vr(2)iZo,  Yr(2) = Prj(2) = (®;k(2)"
is a usual solution of the equations Jv = z¢) and J v = z1) with the initial condition

Yo = P ;(2) = (®j0(2))"
Using again Lemma 4.1 we obtain a representation of type (4.48),

D (2) = Qr(2)(®o,;(2)), k€ No. (4.50)
Taking into account (4.49) and (4.50) we get
Dok(2) = (Pr0(2))" = (Qk(2)P0,0(2))" = Po,0(2)(Qr(2))"s  keNg (4.51)

(here we used that ®¢ o(z) > 0, which follows from (4.36) and (4.37)). Substituting (4.51)
into (4.48) we obtain (4.46). O

Now we obtain the possibility to rewrite the Parseval equality (4.38) in a more concrete
form. To this end we substitute the expression (4.46) for ®;,(z) into (4.38) to get
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Vf, ge lﬁn

Z/ 3 (2) o o (2 Z/QJ )B0.0(2)Q}(2) i ;1o (2)

J k=0 4 k=0
J;O/ Q1(2) fr, @5 (2)gj 1, dp(z) /(i}@ >(§%Q§(z)gj)dp(2),

dp(z) = Po,0(2) do ().
(4.52)
Introduce the Fourier transform ~ which is generated by the unitary operator A in
the space 15, Vf € lg,

2 O liin 3 f = (fa)iZo — f(2) Z}? (2)fn € L*(T,dp(2).  (4.53)
Hence, (4.52) gives the Parseval equality in a ﬁnal form: Vf,g € lg,

b= / F(2)3(2) do(). (4.54)

After extending by continuity we see that (4.54) holds for all f, g € L.

Orthogonality of polynomials @} (z) follows from (4.53) and (4.54). This follows from
(4.53) and (4.54) by taking f = (0,...,0, f¢,0,...), fx € Hi, g = (0,...,0,9;,0,...),
g; € Hj. Then Vk,j € Ny

/F QL) @ @97) (=) = 654(F52 95, (4.55)

Using representation (4.40) for these polynomials we can rewrite (4.55) in a more
classical scalar form. For this reason we remark that Qj(z) = Qo(z) and for n € N,
according to (4.40), Qn(2) = (Qn;1(2), Qn2(2)) : Ho — H,. Hence, for the adjoint
operator Q% (z) : H,, — Ho we have: Yz € Ho, vy = (y1,y2) € Hn,

(Qn(2)7,Y)2, = (Qni(2)z, Qni2(2)T), (Y1,Y2))41,, = Qni1 (2)2Y1 + Qni2(2)TY2
= x(Qn;l(z)yl + Qn;2(2)y2) = (1‘7 QZ(Z)?J)HW

that iS, Q:L(Z)y = Qn;l(z)yl + Qn;Q(Z)QQ
Due to the last equality for n € N and f,, = (fn,1, fn,) € Hn, 2 € I’ we obtain

Q:L(Z)fn - Qn;l(z)fn;l + Qn;2(z)fn;Za QS(Z) =1 (456)
Therefore (4.55) takes the form: Vfo, go, fr:1, fr:2,95:1, 952 € C, j,k € N
/F(Qk;l(z)fk;l + Qr2(2) fis2) (Qj;1(2) fi1 + Qji2(2) fi2) dp(2) = 6,k (fi1950 + [5:2G5:2)-

This equality is equivalent to the following relation of orthogonality in the usual classical
form: Vj, k € Ny, Vo, 3 =1,2

[ @10s00l2) = oy Qo = Qul2)) (4.57)

Let us remark that due to (4.56) the Fourier transform (4.53) can be rewritten in the
form: Vf = (fn)3Zo € 12

f(2) m+ZQm(m+mxmm,mn (4.58)

n=1

Using the above stated results of this section, we can formulate the following spectral
theorem for our unitary operator A.



THE INNER STRUCTURE OF THE BLOCK JACOBI TYPE MATRIX ... 221

Theorem 4.3. Consider the space (3.7)
L=HoDH1 DHa®, -, Ho=C, Hi=Ho=-=C? (4.59)

and the linear operator A which is defined on finite vectors lg, by a block three-diagonal
Jacobi type matriz J of the form (3.28) via the first expression in (3.32). We suppose that
all its elements a,, b, and ¢, are uniformly bounded, some elements of these matrices
are equal to zero or positive according to (3.29) and the extension of A by continuity is a
normal operator on this space.

The eigenfunction expansion of the operator A has the following form. According to
Lemma 4.1 we construct from @o € C a solution p(z) = (on(2))52g, on(2) € Hp, of
equations (4.89) for z € T : @, (2) = Qn(2)vo = (Qn:1(2), Qn:2(2))po, where Qp.a(z) and
Qn;2(2) are polynomials of z and Z. Then the Fourier transform has the form

12 D lﬁn > f = (fn)zozo — f(Z) = fO + Z(Qn;l(z)fn;l + Qn;2(z)fn;2) S L2(F,dp(2))

n=1
(4.60)
Here Qf(z) : Hy — Ho is adjoint to the operator Qn(z) : Ho — Hny, dp(z) is the
probability spectral measure of A.
The Parseval equality has the form: Vf, g € lgy

(f. 90 = / F@i@ dpl2), (Tf. 0, = / F()3() dp(2); (4.61)

after extending by continuity, formulas (4.60) and (4.61) hold for all f,g € 15. The
operator (4.60) is unitary that maps ly onto the whole L*(T',dp(z)).

The polynomials Qn.o(2), n € N, a = 1,2, and Qo,o(z) = 1, form an orthonormal
system in L?(T',dp(z)) in the sense of (4.57) and it is total in this space.

Proof. 1t is only necessary to show that the orthogonal polynomials Q.o (%), n € N,
a=1,2, and Qg (z) =1 form a total set in the space L?(I",dp(z)). For this reason we
remark at first that, due to the choice of the measure dp(z) on I, the elements 27, 2",
4,k € Np, form a total set in L?(T, dp(z)).

Let us suppose the contrary, i.e., that our system of polynomials is not total. Then there
exist non zero function h(z) € L3(T',dp(z)) that is orthogonal to all of these polynomials

and hence according to (4.41) to all 27, 2%, j,k € Ny. But then h(z) = 0. O

The latter theorem solves the direct problem for a unitary operator A which is generated
on the space 1y by a matrix J of the form (3.28).

The inverse problem consists in constructing, from a given measure dp(z) on T,
a normal matrix J of the form (3.28) that has its spectral measure equal to dp(z).
This construction is carried out according to Theorem 3.5 with a use of the Schmidt
orthogonalization procedure applied to system (3.4). For the constructed, from dp(z), the
matriz J of the form (3.28) has the spectral measure of the corresponding unitary operator
A that coincides with the initial measure.

Proof. This is true, since the system of orthogonal polynomials, corresponding to A,
Qn.1(2) and Qn2(2), n € N, and Qo(z), are orthonormal in L?(T',dp(z)) and according
to Lemma 4.1 are constructed from z7,zF, z € T', in th same way as system (3.5) is
constructed from 27, Z¢, j, k € Ny. In such a way, Vn € N

Qo(2) =1=Po(2), Qni(2) = Pop2(2), Qn2(2)= Pni(2). (4.62)

Since both systems of polynomials form a total set in L*(T, dp(z)), (4.62) establishes
equality of the spectral measure constructed from the operator and the given one. O
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Let us remark that the expressions (3.11) and (3.15) (as it was known in the classical
theory of Jacobi matrices) reestablish the initial matrix (3.28) from the spectral measure
dp(z) of the operator constructed from J in 1.

5. THE INNER STRUCTURE OF THE CORRESPONDING MATRICES

To present our result in a convenient form, we redefine elements of matrix (3.28) in
the following unusual form:

ap;00 G1;,00 a1;01
ap;10  Ar;10  A1;11
J = a2:00 a2;10 G3;00 a3;01 (5.63)
a2:01 a2;11 G3;10 a3;11
a4;00 G4;10
a4;01  G4;11

Takin into account real (positive) elements J, the adjoint matrix has a form

ap:00  Q0;10
ai,00 Q1;10 @200 G201
a1,01 G111 G210 G211
Jt = ;0 ; “2;10 02 ~ ~ (5.64)
asz.00 a3;10 G4;00 a4;01
asz.o1 0311 Q4:10 Q4:11

Now we find conditions that would guarantee the equality JJ+ = J*J.
Using the unusual form of the matrix elements we can formulate the theorem in a
concise manner.

Theorem 5.1. The matriz (5.65) is normal, i.e., satisfies the equality JJ* = JJ (and
hence, generates pre(normal operator)) if and only if its elements satisfy the following
conditions. Some of elements are arbitrary (basic parameters) and other are calculated by

recurrence:
— 2
Val;oo S C,al.m > 0, ap;10 1= 4/ |a1;00|2 + 41,015 (565)

1

ai;11 = [@1,00(@0;00 — @1:10) — @1,01(G0s00 — @1:10)]; (5.66)

3

and, forn € N:={1,2,...}, we take an arbitrary element a,41,00 € C satisfying

2 2, 2
lant1;00]" < lan;11|” + ap01, (5.67)
hence the technical parameter
k= 1 2 2 2
n = |an;11] + .01 — [Ant1;00(%5 (5.68)
Gn;01
gives
Ant1;11 = —KnGn00,  Ant1;01 = knGno1 = ar,01k1ko. kp, (5.69)
and
1 _ _
nt1510 1= [@n—1:1001:00 + Gn—1:11Gn;11 — Gn:00Gn+1;00)- (5.70)
n;01

Proof. We will denote elements of th matrices JJT and J*J by (j : k), j,k € N. We
also use such symbols for separate equalities of the matrix equation JJ* = J*J. Due to
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the symmetry of JJ* and JTJ it is sufficient to consider only the cases (j : k), j < k,
J,k € N. Hence we have:

(1:1) ao,00@0;00 + a1;0041;00 + @1;0141;01 = @0:0040;00 + @0:1040;10,

[
[\

@0;0000;10 + @1,0001;10 + @1;01G1;11 = @0;0041;00 + @0;1041;10,

w

a1;0002;00 + @1,0102;10 = G0;0001;01 + G0;1001;11,

S

)
)
) @1,00a2;01 + a1;01G2;11 = 0,
)

[\
[\

@0;1000;10 + @1;1001;10 + G1;1101;11 (5.71)
= @1,0001;00 + @1;1001;10 + @2;0002;00 + @2;0102;01,
(2:3)  a1;10G2;00 + 01;,1102;10 = G1,0001;01 + G1;1001;11 + G2;0002;10 + G2;0102;01,
(2:4) a1,1002;01 + a1;11G2;11 = @2:0063;00 + @2:0163;10,
(2:5) 0= ag00a3;01 + a2,01a3;11;
and so on for n > 2:
(2n—1:2n—1) a2,-2,0002n—2,00 + G2n—2;1002n—2;10 + A2n—1;00G2n—1;00
+ A2n—1;0102n—1;01 = G2n—3;0102n—3;01 + A2n—3;1102n—3;11
+ G2n—2;1002n—-2;10 + G2n—3;1102n—3;11,
(2n —1:2n)  a2,-2,0002n—2:01 + A2n—2;1002n—2;11 + G2p—1;0102n—1;11
= G2n—2;1002n—1;00 T 021 —2;11G2n—1;01,
(2n—1:2n+1) a2,-1,0002n;00 + @20 —1;01020;10 = G2n—2;1002n—1;,01 + 2n—2;1102n—1;11,
2n—1:2n42) a2,-1,0002n;01 + G2n—1,0182n:11 = 0,
(2n:2n)  a2n—2,0102n-2:01 + A2n—2:11G2n—2:11 + A2n—1:1082n—1;10
+ G2n—1;1102n—1;11 = G2,—1;0002n—1;00 T G2n—1;1002n—1;10
+ A2n;0002n;00 T G2n;0102n;015
(2n:2n+1) a2,-1,0002n:00 + G2n—1:11G2n;10
= Q21—1;0002n—1;01 T G2n—1;1002n—1;11 + G2n;0002n;10 T A2n;0102n;11,
(2n:2n42)  a2n—1;1002n:01 + A2n—1:1102n;11 = G2n;0002n+1;00 + A2n;0102n+1;10;

(2n:2n+3) 0= G2,;0002n+1;01 T G20;0102n+1;11-

(5.72)
Thus, we conclude that (1:1) (5.71) gives (5.65), (1:2) (5.71) gives (5.66) and (1 : 3)
(5.71) gives (5.70) for n = 1. Take some coefficient k1 > 0 and put ag.;11 := —k1d1,00,

a2,01 = kiai,01. So we obtain (5.69) for n = 1. The line (1 : 2) in (5.71) gives
lag,00* — lav11|* = (1 — kf)ai,g, ie., (5.67) for n = 1 and here we calculate (5.68) for
n =1

The most difficult is (2 : 3) (5.71). Let us show that (2 : 3) follows from (1 : 2), (1 : 3),
and (2:2) (5.71).

Using (2 : 2) in (5.71) we substitute

ator (ki — 1) = lay[* — |azo0l?
into (2:3) (5.71)
a2;;00(a1;10 — a2;10) — a1;11(G1;10 — G2;10) = G1;00a1;01(1 — kf)
Hence, multiplying the latter equality by a;,00 and aim we have

a1;00d2;;000?;o1(a1;10 — ag;10) — a1;11a1;00a%01(@1;10 — G2,10) (5.73)
= lar00/°a3 01 laz00* — lar00*ai o1 |ariia . '
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From (1:3) (5.71) we have

@2:00G1;00 = @0;1081;11 — @101 (2,10 — @0:00)5

_ _ _ (5.74)
a2:0041;00 = @0;1041;11 — a1;01(02;10 - ao;oo),
and from (1 :2) (5.71) we have
@1;0101;11 = G1,00(@0;00 — @1;00) — @0;10(@0;00 — @1;00)
’ (5.75)

a1,0181;11 = @1;00(@0;00 — @1,00) — @0;10(@0;00 — @1;00)-
Then we substitute (5.74) and (5.75) into (5.73) in several steps. Namely,
a?;[)l[aO;lOal;ll — a1,01(@2;10 — @0;00)](@1;10 — a2;10)
- a1;00a%;01[@1;00(a0;00 — a1,10) — @0;10(@0;00 — G1;10)](@1;10 — G2;10)
= aim [ao;10a1;11 — a1;01(G2;10 — G0500)][@0;1001;11 — @1;01(a2;10 — @o;00)]
— Ja1;00/%a1;00(@0s00 — G1;10) — @o0;10(@0;00 — a1;10)]
- [@1;00(a0;00 — a1;10) — @o;10(@0;00 — @1;10)]s
aim[ao;loahnal;m - a%;m(aQ;lO - 50;00)](01;10 - a2;10)
- al;ooaim [@1;00(@0;00 — @1;10) — @o;10(G0s00 — G1;10)](@1510 — G2;10)
= lag;10a1;1181;01 — aim(dz;lo — @0;00)][@0;10G1;11G1501 — aim(az;lo — a000)]
— |a1;00/*[@1:00(@o;00 — @1;10) — @o;10(a000 — @1;10)]
- [@1;00(a0;00 — a1510) — @o;10(@0;00 — @1;10)),
a%;m[ao;lo(al;oo(ao;oo — a1;10) — a0;10(@0;00 — G1;10)) — aim(aZ;lO — G0,00)](@1;10 — a2:10)
- a1;00aio1[@1;00(a0;00 — a1;10) — @0;10(@0:00 — G1;10)](@1,10 — G2:10)
= [a0,10(@1,00(@0;00 — @1;10) — @0;10(@0;00 — @1;10)) — aim(fm;lo — G0:00)]
“[ao;10 — (@1;00(@0;00 — @1;10) — @0;10(@0,00 — @1;10)) — aio1(a2;10 — ap,00)]
- |a1;00\2[al;00(50;00 — @1;10) — @0:10(@0;00 — a1;10)]
(@o
)

[aF.01a0;10(@1500 (@0500 — @1310) — @o;10(@0;00 — @1:10)) — @101 (@2:10 — os00)] (@110 — a2;10)

“[@1;00(a0;00 — @1;10) — @o;10(@0;00 — @1;10)],

— [|a1;00|2ai01(a0;00 —a1;10) — a1;ooa1;01ao;1o(a0;00 —@1,10)](G1;10 — G2;10)

= [@1.0000;10(@0:00 — G1;10) — ag;lo(do;oo —a1.10)) — aiol(@;m — G0:00)]

- [a1,00a0;10(@0;00 — G1;10) — ag;lo(ao;oo —ay;10)) — CLio1(a2;10 — @0,00)]

- |a1;00\2[a1;00(d0;00 —@1.10) — @0:10(@0;00 — @1:10)]

- [@1,00(a0;00 — a1;10) — @o;10(@0;00 — @1;10)]s

@1;0()&?;01@0;10(@0;00 - al;lo)(amo - a2;10) - aimaé;m(ao;oo - @1;10)((11;10 - a2;10)

- a£11;01((_12;10 — @o;00)(@1;10 — G2;10) — |a1;00|2ai01(a0;00 — a1;10)(@1;10 — @2;10)

+ a1;ooa%;01ao;10)(@0;00 — G1;10)(@1;10 — G2;10) = |5L1<00|2ag-10(a0;00 — a110)(@0;00 — @1:10)
- C_11;0061?);10(ao;oo - a1;10)2 — ay; 0001 :0140; 10(a0;00 — @1;10)(@2;10 — @0;00)

- G1;ooag;1o(@o;oo - @1;10) + ao 10(@0:00 — @1;10) (@o;00 — @1:10)

+ 0(2);1061%;01((10;00 — a1;10)(az;10 — @o;00)] — al;Oan;lOa%;Ol(aO;OO — a1;10)(@2;10 — @0;00)
- a1;00a0;10aio1(@0;00 — @1;10)(G2;10 — G0:00) — aim(az;w — @0,00)(G2;10 — G0:00)

+ |a1;00|4(ao;00 — a1:10)(@o;00 — G1;10) + a1;00|a1;00|2a0;10(6_lo;00 - 671;10)2

+ @1;00|al;00|2ao;10(a0;00 - Cl1;10)2 - |a1;oo|2a§;1o(ao;oo — @1;10)(@0;00 — @1;10);
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@1;ooaimao;1o[(ao;oo —a1,10)(a1;10 — az;10) + (@000 — @1;10)(@2;10 — @0;00)]

+ a1;00ai01ao;10[(@o;00 —@1,10)(@1;10 — @2;10) + (@0;00 — @1:10) (@2:10 — G000)]
- aimag;lo[(ao;oo — a1;10)(a1;10 — az;10) + (@000 — @1;10)(@2;10 — @o;00)

+ (0,00 — @1;10)(@2;10 — G0;00)]

- aio1[(d2;1o — G0,00)(a1;10 — a2;10) + (a2;10 — @0;00)(@2:10 — Go;00)

+ (0,00 — @1,10)(@0;00 — G1;10)]

- \a1;00|2ai01[(a0;00 — 01,10)(@1;10 — @2:10) + 2(a0.00 — @1;10)(@0;00 — @1:10)]
= —|@1;00|208;10(ao;00 - a1;10)2 - (_11;00118;10(@0;00 - @1;10)2

+ a1;00\a1;00|2[(@0;00 - @1;10)2 + (@000 — a1;10)2]

+ \a1;00|4(ao;00 — a1:10)(@o;00 — @1;10) + 2|a1;00\2a1;012(ao;00 — a1,10)(@0;00 — @1;10)
+ aim(ao;oo — a1,10)(@0,00 — @1:10) — \a1;00|4(a0;00 — a1,10)(@0;00 — @1.10)

+ \a1;00|2a1;ooao;10(50;00 - 1_11;10)2 + |a1;00|2a1;00(11;01(a0;00 - a1;10)2,

- C_11:,00@?;01610;10(ao;oo — a1;10)° — al;Ooa%;maO;lO(aO;OO — a1;10)°

- aimaioo[(@o;oo — a1;10)(a1;10 — az;10) + (@000 — @1;10)(@2;10 — @o;00)

+ (@p;00 — a1;10)(@2;10 — Go;00) + (a0;00 — @1;10)(G1;10 — G2;10)

+ 2(a0;00 — @1;10)(@0;00 — G1;10)]

— a1 [(@o;00 — G1;10)(a1;10 — az;10) + (Gos00 — G1;10) (@210 — A0:00)

+ (@o,00 — @1,10)(@2;10 — Go;00) + (@210 — @0;00)(@1;10 — @2:10)

+ (a2;10 — @0,00)(@2;10 — @o:00) + (@0;00 — @1;10)(@0;00 — @1;10)

= —Cfl1;ooao;1o(\a1;00|2 + a%;m)(ao;oo - a1;10)2 - a1;00a0;10(|a1;00\2 + aim)(@o;oo - ZL1;10)2

+ a1;00|a1;00|201;01(@0;00 - @1;10)2 + al;oo|a1;00|2a1;01(a0;00 - a1;10)2,

where we used (5.65).

— 2 2 2 — — 2 2 2 4
— @1;00071,0190;10(@0;00 — @1;10)” — @1,0047;0140;10(@0;00 — @1;10)" — @1;01a7,00 * 0 — @1,01 - 0

= —0a1,0000;10 01;00|2(a0;00 - Cl1;1o)2 - &1;00&0;10a?;o1(ao;00 - a1;10)2

- a1;10\a1;00|2a0,10(@0;00 - @1;10)2 - a1;00a0;10a%401(d0;00 - 511;10)2

+ a1;00\6l1;00|2a0,10(5l0;00 - al;lO)Q + 51;00|a1;00|2¢10,10(a0;00 — a1;10)2~

And we obtain the identity.

In such a long way we proved the first step of induction, i.e., using the result for k = 1
we complete the proof for £ = 2. A transition from the step kK =n to kK =n + 1 is the
same as described above, with substitutions a,—1.4y, Gn.ey and an.gy, (z,y = 0,1) for
A0;zys 01y a0d A2.4y (2,y =0, 1), correspondingly. Such substitution is valid due to the
special form of indices of the elements in (3.28). O

Remark 5.2. It is obvious that we can choose anther elements of matrix (5.65) as basic
parameters and calculate the rest.
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Example 5.3. As a simple example we propose the normal matrix

ao;00 @1;00 a1;01
ap;10  A1;10 ai;11

J— a1;11 ai;10  —a1;00 a1;01
a1;01  —0a1;00 ai;10 —a1;11

—a1;11 ai1;10

a1;01 a1;00

that we obtain by taking k; =1, i € N.

Remark 5.4. In our opinion such kind of matrices with periodic numbers can be of a
special interest.

Also it is of interest to look at spectral properties of the operators generated by such
matrices with regard to their dependences on its elements.

(1]
(2]

(3]

4]

[5]

[6]

7]

(8]
(9]

(10]

(11]

(12]

[13]
[14]
[15]

[16]

REFERENCES

N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Hafner,
New York, 1965. (Russian edition: Fizmatgiz, Moscow, 1961).

M. J. Cantero, L. Moral, and L. Veldzquez, Five-diagonal matrices and zeros of orthogonal
polynomials on the unite circle, Linear Algebra Appl. 362 (2003), no. 1, 29-56, doi:10.1016/
50024-3795(02)00457-3.

M. J. Cantero, L. Moral, and L. Velazquez, Minimal representations of unitary operators and
orthogonal polynomsals on the unit circle, Linear Algebra Appl. 408 (2005), no. 1, 40-65, doi:
10.1016/j.1aa.2005.04.025.

M. E. Dudkin, The exact inner structure of the block Jacobi type unitary matrices connected with
the corresponding direct and inverse spectral problems matrices, Methods Funct. Anal. Topology.
14 (2008), no. 2, 168-176.

Yu. M. Berezansky, M. E. Dudkin, The strong Hamburger moment problem and related direct and
inverse spectral problems for block Jacobi-Laurent matrices, Methods Funct. Anal. Topology. 16
(2010), no. 3, 203-241.

M. E. Dudkin, The inner structure of the Jacobi-Laurent matriz related to the strong Hamburger
moment problem, Methods of Funct. Anal. and Topology. 19 (2013), no. 2, 97-107.

Yu. M. Berezansky, M. E. Dudkin, The complex moment problem and direct and inverse spectral
problems for the block Jacobi type bounded normal matrices, Methods Funct. Anal. Topology. 12
(2006), no. 1, 1-31.

Yu. M. Berezansky, M. E. Dudkin, On the complex moment problem, Math. Nachr. (2007), no. 1-2,
60—73, doi:10.1002/mana.200410464.

M. E. Dudkin, V .I. Kozak Direct and inverse spectral problems for block Jacobi type bounded
symmetric matrices related to the two dimensional real moment problem, Methods Funct. Anal.
Topology. 20 (2014), no. 3, 219-251.

M. E. Dudkin, O. Yu. Dyuzhenkova, Two-Dimensional Half-Strong Real Moment Problem and
the Corresponding Block Matrices. Part I, Ukrainian Math. J., 72 (2021), no. 8, 1212-1229,
doi:10.1007/s11253-020-01856-0.

M. E. Dudkin, O. Yu. Dyuzhenkova, Two-Dimensional Half-Strong Real Moment Problem and
the Corresponding Block Matrices. Part II, Ukrainian Math. J., 72 (2021), no. 10, 1536-1570,
d0i:10.1007/s11253-021-01871-9.

M. E. Dudkin, The complex moment problem in the exponential form with direct and inverse
spectral problems for the block Jacobi type correspondence matrices, Methods Funct. Anal. Topology.
18 (2012), no. 2, 111-139.

Yu. M. Berezansky, M. E. Dudkin, The complex moment problem in the exponential form, Methods
Funct. Anal. Topology. 10 (2004), no. 1, 1-10.

Yu. M. Berezansky, M. E. Dudkin, Jacobi matriz and moment problem, Proceedings of Institute
of Mathematics NAS of Ukraine, Vol. 105, Kyiv, 2019.

Yu. M. Berezansky, M. E. Dudkin, The direct and inverce spectral problems for the block Jacobi
type unitary matrices, Methods Funct. Anal. Topology. 11 (2005), no. 4, 327-345.

Yu. M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc.,
Providence, RI, 1968. (Russian edition: Naukova Dumka, Kiev, 1965).


https://doi.org/10.1016/S0024-3795(02)00457-3
https://doi.org/10.1016/S0024-3795(02)00457-3
https://doi.org/10.1016/j.laa.2005.04.025
https://doi.org/10.1016/j.laa.2005.04.025
https://doi.org/10.1002/mana.200410464
https://doi.org/10.1007/s11253-020-01856-0
https://doi.org/10.1007/s11253-021-01871-9

THE INNER STRUCTURE OF THE BLOCK JACOBI TYPE MATRIX ... 227

[17] Yu. M. Berezansky, Yu. G. Kondratiev, Spectral Methods in Infinite-Dimensional Analysis,
Vols. 1, 2, Kluwer Academic Publishers, Dordrecht—Boston-London, 1995. (Russian edition:
Naukova Dumka, Kiev, 1988).

[18] Yu. M. Berezansky, Z. G. Sheftel, and G. F. Us, Functional Analysis, Vols. 1, 2, Birkh&user Verlag,
Basel-Boston—Berlin, 1996. (Russian edition: Vyshcha shkola, Kiev, 1990).

Mykola Dudkin: dudkin@imath.kiev.ua

Department of Physic and Mathematics, I. Sikorsky Kyiv Polytechnic Institute, National Technical
University of Ukraine, Kyiv, Ukraine

Olga Dyuzhenkova: oduzen@ukr.net

Department of Physic and Mathematics, I. Sikorsky Kyiv Polytechnic Institute, National Technical
University of Ukraine, Kyiv, Ukraine

Valentyna Kozak: afina0706@gmail.com

Department of Physic and Mathematics, I. Sikorsky Kyiv Polytechnic Institute, National Technical
University of Ukraine, Kyiv, Ukraine

Received 25/08/2022; Revised 09/09,/2022


mailto:dudkin@imath.kiev.ua
mailto:oduzen@ukr.net
mailto:afina0706@gmail.com

	1. Introduction
	2. Preliminaries
	3. Construction of a three-diagonal block matrix
	4. The corresponding direct and inverse spectral problems
	5. The inner structure of the corresponding matrices
	References

