Methods of Functional Analysis and Topology METHODS
Vol. 28 (2022), no. 3, pp. 228-241 M FA I OF FUNCTIONAL ANALYSIS

https://doi.org/10.31392/MFAT-npu26 _3.2022.03 AND TOPOLOGY

EXISTENCE OF CLASSICAL SOLUTIONS FOR INITIAL BOUNDARY
VALUE PROBLEMS FOR NONLINEAR DISPERSIVE EQUATIONS
OF ODD-ORDERS

SVETLIN GEORGIEV GEORGIEV, AREZKI KHELOUFI, AND KARIMA MEBARKI

ABSTRACT. In this paper we investigate a class of initial boundary value problems
for a class of nonlinear dispersive equations of odd orders. We prove existence of at
least one solution and existence of at least one nonnegative solution. Our method is
based on a use of a fixed point theory for the sum of two operators.

Y crarTi KOCIiI2KEHO KJIaC MOYaTKOBUX IPAHUYHUX 3aJa4 [ KJIacy HeJiHIMHuX
JUCIEPCIHUX PiBHSHHS HeNapHUX NMOPsAKiB. /loBeneHo icHyBaHHSI NpUHANMHI OZHOTO
PO3B’s130KY 1 icHyBaHHs x04a 6 OZHOrO HeBi'eMHOro po3B’si3Ky. Hair meTos 6a3yerncs
Ha BUKOPHUCTAHHI Teopil Ipo HEPYyXOMi TOYKHU JIjIsl CyMH JIBOX OIEPATOPIB.

1. INTRODUCTION

In this paper, we investigate the following initial boundary value problem (IBVP)

l
vt ovg + 3 (=1)7T19% ey = 0, t>0, x€]l0,1],
j=1
’U(O,.I) = 'Uo(.’[), U [Oa 1]7 (11)
div(t,0) =0iv(t,1) = 0, t>0,i=0,1,..,01—1,
olv(t,1) = 0, t>0,

where, [ belongs to the set of all nonzero natural numbers N* and

(H1): vy € CH+L([0,1]), 0 < vo(z) < B, x € [0, 1], for some constant B > 1.
The first equation of IBVP (1.1) includes well-known classical Korteweg-de Vries and
Kawahara equations (I = 1 and [ = 2, respectively) which model the dynamics of long
small-amplitude waves in various media, see for example, [1, 4, 11, 13].

Well-posedness of such kind of problems was studied in [22] in the linear case. In [25],
general mixed problems for linear multi-dimensional (2b 4+ 1)—hyperbolic equations were
studied by means of functional analysis methods. Boundary value problems in bounded
domains for dispersive equations can be found in [3, 25]. Cauchy problem for dispersive
equations of high orders was studied in [5, 9, 15, 19, 2, 20, 24]. The nonhomogeneous
initial-boundary value problems for quasilinear one-dimensional odd-order equations posed
on a bounded interval was studied in [10]. The authors prove existence and uniqueness
of global weak and regular solutions for reasonable initial and boundary conditions.
Solvability of initial-boundary value problems for one-dimensional generalized dispersive
equations of higher orders posed on a bounded interval was studied in [17]. The article
[18] was concerned by general mixed problems for nonlinear dispersive equations of any
odd-orders posed on bounded intervals, in which results on existence, uniqueness and
exponential decay of solutions were presented. Some other works on initial-boundary
value problems for odd-order dispersive equations are [7, 8, 10, 14, 16].

The aim of this paper is to investigate the IBVP (1.1) for existence of global in time
classical solutions. Here, by a classical solution u to the first equation of (1.1) we mean
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a solution at least (20 4+ 1) times continuously differentiable in  and once in ¢ for any
t > 0. In other words, u belongs to the space C!([0,00),C?*1([0,1])) of continuously
differentiable functions on [0, 00) with values in the Banach space C?'*1(]0, 1]). So, suppose
that

(H2): there exist a constant A > 0 and a positive function g € C((0, 00)) such that

2+ 1)1+ 1) /tg(tl)dtl <A, telo,o0).
0

In the last section, we will give an example for a function g that satisfies (H2). Assume
that the constants B and A which appear in the conditions (H1) and (H2), respectively,

satisfy the following inequalities:

(H3): AB; < B, where B; = (I+ 1)B + B2,
and

(H4): AB; < £, where By = (I + 1)B + B? and L is a positive constant that
satisfies the following conditions:

A 1
r<L< R <B, R1+Bl>(+1>L,
m 5m
with r and R; being positive constants and m > 0 is large enough.

Our main results are as follows.

Theorem 1.1. Assume that the hypotheses (H1), (H2), and (H
the IBVP (1.1) has at least one solution u € C*([0,00),C?*1([0, 1]

3
)
Theorem 1.2. Assume that the hypotheses (H1), (H2), and (H4) are satisfied. Then
the IBVP (1.1) has at least one nonnegative solution u € C*([0, 00),C?*+1([0,1])).

are satisfied. Then

)
)-
)

The plan of this paper is as follows. In the next section, we give some auxiliary results
used for the proof of our main results. Then in Section 3, we give some properties of
solutions of problem (1.1), which include an integral representation and some estimates.
In Section 4, we prove Theorem 1.1 and Theorem 1.2. Finally, in Section 5, two illustrative
examples of our main results are given.

2. FIXED POINTS AND NONNEGATIVE FIXED POINTS FOR THE SUM OF TWO OPERATORS

In this section, we will recall two results which concern the existence of fixed points
and nonnegative fixed points for the sum of two operators. The proof of the following
theorem can be found in [12].

Theorem 2.1. Let E be a Banach space and
E,={xz€ E:|z| <R},
with R > 0. Consider two operators T and S, where
Tr = —ex, x € Eq,
with € > 0 and S : B4 — E be continuous and such that
(1): (I —S)(E1) resides in a compact subset of E and
(ii): {z€ E:x=AI—8)z, ||z]| =R} =0, forany A€ (0,1).
Then there exists x* € E1 such that
Tx* 4+ Sa* = z*.
Let X be a real Banach space.

Definition 2.2. A mapping K : X — X is said to be completely continuous if it is
continuous and maps bounded sets into relatively compact sets.
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Definition 2.3. Let X and Y be real Banach spaces. A mapping K : X — Y is said to
be expansive if there exists a constant A > 1 such that

Kz — Kylly = hllz —ylx
for any z,y € X.

Definition 2.4. A closed, convex set P in X is said to be cone if
(1) Bz € P for any 8 > 0 and for any x € P,
(2) x,—x € P implies z = 0.
Denote P* = P\{0}.

Proposition 2.5. Let U be a bounded open subset of P with 0 € U. Assume that
T:Q CP — E is an expansive mapping, S : U — E is a completely continuous one and

S(U) c (I-T)(%Q).
If T 4+ S has no fized point on OU N2 and there exists € > 0 small enough such that

Sz # (I —-T)Ax) forall A\>1+¢, €U and Ix € Q,
then the fized point index i, (T + S,UNQ,P) = 1.

Proof. The mapping (I —T)~1S : U — P is completely continuous without fixed point
in the boundary OU and it is readily seen that the following condition is satisfied

(I-T)'Sx#Xx forall x €U and A>1+e.

Our claim then follows from the definition of 4. given in [6] and from |23, Lemma 2.3] O

The following result will be used to prove our main result.

Theorem 2.6. Let P be a cone of a Banach space E; Q a subset of P and Uy,Us and Us
three open bounded subsets of P such that Uy C Us C Us and 0 € U;. Assume that
T :Q — P is an expansive mapping, S : Us — E is completely continuous and S(Us) C
(I —T)(Q). Suppose that (U \ U1) NQ £ 0, (Us\ Uz) NQ £ 0, and there exists ug € P*
such that the following conditions hold:

(1): Sx# (I —T)(x — Aug), forall A >0 and x € OU; N (Q + Aug),

(ii): there exists € > 0 such that Sz # (I — T)(Az), forall X>1+¢e, x € OU,y

and \x € (Q,
(iii): Sz # (I = T)(z — Aug), for all A >0 and xz € dUs N (2 + Aug).

Then T + S has at least two non-zero fized points x1,x9 € P such that
1 EaUgﬂQ and .Z‘QE(Ug\UQ)ﬂQ
or

1 € (U2 \ Ul) nQ and x9 € (Ug \Ug) N Q.

Proof. It Sz = (I — T)x for x € 90Uy N Q, then we get a fixed point z; € dUs N Q of
the operator T'+ S. Suppose that Sz # (I — T)x for any z € 90U N Q. Without loss of
generality, assume that Tx 4+ Sz # x on OU; NQ and Tx + Sz # x on U3 NS, otherwise
the conclusion is obvious. By [6, Proposition 2.16] and Proposition 2.5, we have
i (T+S,UNQP)=i,, (T+S,UsNQP)=0and i, (T+5,UzNQ,P)=1.
The additivity property of the index yields
s (T+S, (Uz \U1> ﬂQ,P) =1 and i, (T+S, (U3 \Ug) NnQ,P)=-1.

Consequently, by the existence property of the index 4., T'+ S has at least two fixed
points z1 € (U2 \U1) N Q and 24 € (U3 \ Uz) N Q. O
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3. INTEGRAL REPRESENTATION AND SOME ESTIMATES
Let X = X; X ... x X1, where X1 = C*([0,00),C?*1([0,1])). For u = (u1,...,u43) €
N—————

(21+3) times
X, define the operators Si;, j =1,...,2l + 3 and S as follows:

l
Snu(t,x) = Owui(t,z) +uidzuq(t,x) + Z(—l)kH@ikHul(t, x),
k=1
Sipu(t,z) = u1(0,2) —vo(z),
Sl3u(t, x) = Ul (t, 0),
Spau(t,x) = 9dyuy(t,0),
Siugyult,z) = oLy (,0),
Siq4syu(t,r) = 8iu1(t, 1),
Sl(l+4)u(t, $) = Ul (t, 1),
Siaesyu(t,z) = Oyus(t, 1),
51(21+3)U(t, $) = 81_1u1(t, 1)

and
Sru(t,z) = (Stiu(t, x), Siou(t, ), ..., S1q42)ult, ), Siats)ult, ), ..., S1is)ult, ),
(t,z) € [0,00) x [0,1]. Note that if u = (uy,...,uyy3) € X is so that
Sju(t,x) =0, (t,x) € [0,00) x [0,1],

then u; satisfies the IBVP (1.1). In the sequel, the space X = X x ... x X1, where
—_———

(214-3) times
X1 =C([0,00),C%*1([0,1])), will be endowed with the norm

Jull = max  Jumlli, w=(u,... uag3),

mE{l,‘..,21+3}|
with [.]]1 is the norm of X7, defined by

[voli = max{ sup lu(t, )], sup |Opv(t, )],
(t,x)€[0,00)x[0,1] (t,x)€[0,00)x[0,1]

sup |8§;v(t,x)|, je{l,...; 20+ 1}},
(t,x)€[0,00)%x[0,1]

provided it exists. For a function u = (ug,...,ug+3) € X, we will write

lu(t,x)| = luj(t, )], (¢, x)€[0,00) x[0,1].

max
jef{1,...,21+3}

Lemma 3.1. Under hypothesis (H1) and for u € X with ||u|]| < B, the following estimates
hold:

[Siu(t,z)|, |Syu(t,z)] < By, (t,z)€[0,00)x[0,1], je{l,...,(20+3)},
where By = (1 +1)B + B2.

Proof. Suppose that (H1) is satisfied and let v € X with |Jul| < B.
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(i): The estimation of |Siiu(t, z)|, (¢, ) € [0,00) x [0,1] :
l
[Stiu(t,x)| = |Owur(t,x) + ui(t, 2)Opuq (t, +Z DI o2y (¢, 2)|
j=1
!

|0 (t2)| + [ua (8, 2) | O (£, 2) | + Y |03 (8, )]

Jj=1

IN

< (I+1)B+ B?
= B.

(ii): The estimation of [S1ou(t, x)|, (t,z) € [0,00) x [0,1] :
[S12u(t, @)| = |u1(0, ) — vo(@)| < [u1(0,2)| + [vo(x)| < 2B < Bi.
(iii): The estimation of |Sizu(t, x)|, (t,z) € [0,00) x [0,1] :
|S1su(t, z)| = Jui(t,0)] < B < Bj.
(iv): The estimation of |S1qu(t, x)|, (t,z) € [0,00) x [0,1] :
[S1au(t, z)| = |0zu1(t,0)| < B < Bj.

(v): The estimation of |Sy49)u(t, z)|, (t,x) € [0,00) x [0,1] :
|S1agoyult,x)| = |05 ui (t,0)] < B < By.
(vi): The estimation of |Sy43)u(t, z)|, (t,z) € [0,00) x [0,1] :
|S1a13yult, z)| = |0Lui (t,1)] < B < By.
(vii): The estimation of |y 44u(t,z)|, (t,x) € [0,00) x [0,1] :
IS104ayult, z)| = |ui(t,1)| < B < By.
(viii): The estimation of |Syysyu(t,z)|, (¢, z) € [0,00) x [0,1] :
|S1045)ult, z)| = |0zu1(t,1)] < B < By.

(ix): The estimation of |Sy(gq3yu(t, z)|, (t,z) € [0,00) x [0,1] :
|Sl(21+3)u(t,x)| = |8lz_1u1(t, 1)| S B S Bl.

Hence,
|S1u(t,x)| < By, (t,x) € [0,00) x [0,1].
This completes the proof. O

Lemma 3.2. Suppose that (H1) is satisfied and let h € C([0,00)) be a positive function
n (0,00). If u = (u1,...,uz+3) € X satisfies the following integral equation:

/t /w(t - tl)(l' — .’El)zH_lh(tl)Slu(tl,l'l)dil'ldtl = 0, (t,.’E) c [0, OO) X [0, 1], (32)
0 JoO

then uy satisfies the IBVP (1.1).
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Proof. We differentiate the equation (3.2) two times with respect to ¢ and (2] 4 2) times
with respect to x and we find

h(t)Siu(t,z) =0, (t,x) € [0,00) x [0,1].

Hence,
Syu(t,z) =0, (t,x) € (0,00) x [0,1].

Because Syu(-,-) is a continuous function on [0, 00) X [0, 1], we get

0 = }ir% Siu(t,z) = S1u(0,z), (t,x) €[0,00) x [0,1].
—
Thus,
Siu(t,z) =0, (t,z) €[0,00) x [0,1].
This completes the proof. O

For u € X, define the operator Sy as follows:

t T
Seutea) = [ [ (0= 1) — 00 g0 Srultr,m)dandn, - (12) € 0,00 x 0,1
o Jo
(3.3)
with ¢ being the function which appears in the condition (H2).

Lemma 3.3. Under hypothesis (H1) and (H2) and for v € X, with |ul| < B, the
following estimate holds:

|Sou|| < AB;.
where By is the constant defined in Lemma 3.1.

Proof. Suppose that (H1) and (H2) are satisfied and let u € X, with ||u|| < B.
(1): The estimation of |Sau(t, z)l, (t,x) € [0,00) x [0,1] :

t T
|Sgu(t,13)| == / / (tftl)(xf:171)21+lg(t1)51u(t1,a:l)dxldtl
0 Jo

t x
< //(t—tl)(x—xl)z”lg(tl)\&u(tl,ml)\dxldtl
0 0

IN

t
Blt/ g(tl)dtl
0
< AB,.

(ii): The estimation of }%Sgu(hx)’, (t,x) € [0,00) x [0,1] :

t T
‘552U(t,l‘) / / (JZ — 1‘1)21+1g(t1)51u(t1,1‘1)d5€1dt1
t 0o Jo

t x
/ / (@ — 202 g () |Srulty, 21)|dzadts
0 0

IN

¢

B, / g(t1)dtq
0

AB;.

IN
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(iii): The estimation of |- Syu(t, x)|, (t,2) € [0,00) x [0,1] :

(201+1)

a t x
’aSQU(t, IL‘) / / (t — tl)(ﬂi — $1)2lg(t1)51u(t1, $1)df£1dt1
€T 0 Jo

t T
S (2l+1)/ / (t—tl)(x—zl)zlg(t1)|51u(t1,x1)|dx1dt1
0 JO
t
< (21+1)B1t/ g(t1)dt
0
< AB;.

(iv): The estimation of ‘;—;Sgu(t, x)

» (t,z) €[0,00) x [0,1] :

82 t T
geseuttn) = e [ - gl siun.andndn
0 JO
t T
S (2l + ].) . 2[/ / (t - tl)(if — xl)Ql_lg(t1)|Slu(t1, (El)|d.’£1dt1
0 JO
t
< (2l + 1) . 2lB1t/ g(h)dtl
0
< AB.

(v): The estimation of ‘%Sgu(t,x) , (t,x) € 10,00) x [0,1] :

83

t x
’Szu(t,a:) / / (t — 1) (@ — 20)22g(t)Svu(ty, 21 )dz1 by
0 0

= (2+1)-20- (20— 1)

ox3

IN

(21+1).2l.(21—1)/0 /Oz(t—tl)(x—m1)21_2g(t1)|51u(t1,x1)|dt1

t
0
AB;.

IN

(vi): The estimation of ‘%Sgu(t,x)

, (t,z) € [0,00) x [0,1] :

82l
‘Sgu(t,a:) = (20+1)!

t x
a 21 / / (t—tl)(x—xl)g(tl)Slu(tl,xl)dxldtl
€T 0 Jo

t x
< (21+1)!/ / (t — 1) (@ — 21)g ()] Srults, 1)|dz1dty
0 0
t
< (21+1)!Blt/ g(t1)dt
0
< AB.
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62l+1

(vii): The estimation of ’WSgu(t,x) , (t,z) €[0,00) x [0,1] :

62l+1 t x
grarmrsta)| = @t [ [ - tae)si,mdnn
t T
S (2l+1)'/ / (t—t1>g(t1)|51u(t1,$1)‘d$1dt1
0o Jo
t
0
< AB;.
Consequently
[|Saul] < AB;.
This completes the proof. O

4. PROOF OF THE MAIN RESULTS
4.1. Proof of Theorem 1.1. Let X = X; x ... x Xy, where
X1 = €1 ([0, 00),C%+1 ([0, 1]).
Assume that the hypotheses (H1), (H2) and (H3) are satisfied. Choose ¢ € (0,1), such
that eB1(1 + A) < B. Let ):’ denote the set of all equi-continuous families in X with
respect to the norm || - ||. Let also, ¥ = ; be the closure of ?’,
Y ={ueY:|u|<B}.

Note that Y is a compact set in X. For u € X, define the operators

Tu(t,z) = —eu(t,z),

Su(t,z) = u(t)+ eu(t,z)+ eSau(t,z), (t,x) € [0,00) x [0,1],
where Sy is the operator given by formula (3.3). For u € Y, we have

(I = S)ul| = |lew — eSaul| < e||lu|| + €||Sau|| < eB; + €ABy = eB1(1+ A) < B.

Thus, S :Y — X is continuous and (I — S)(Y') resides in a compact subset of X. Now,
suppose that there is a v € X so that ||u|| = B and

u=AI-9S)u,
or

1
—u=(I—-S)u=—eu— eSyu,

A
14- = —€S
\ €| u=—eSsu,

for some A € (0,1). Hence, ||Squl| < AB; < B,

or

1 1
eB < ()\ + e) B= ()\ + e) lul| = €]|Saul| < €B,
which is a contradiction. Hence and Theorem 2.1, it follows that the operator T 4 S has
a fixed point u* = (uf,...,u3, 3) € Y. Therefore
u (t,x) = Tu*(t,z)+ Su*(t,x)
= —eu"(t,x) +u*(t,x) + eu™(t, x) + eSau™(t,x), (t,x) € [0,00) x [0, 1],
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whereupon
0 = Sou*(t,x), (t,z)€[0,00) x [0,1].
Consequently, from Lemma 3.2 and from the definition of S, given in formula (3.3), it
follows that u} is a solution to the IBVP (1.1). This completes the proof of Theorem 1.1.
4.2. Proof of Theorem 1.2. Assume that the hypotheses (H1), (H2) and (H4) are satis-
fied. Set X = X7 x ... x X1, where X; = C([0, 00),C?*+1(]0,1])). For u = (uy, ..., us+3) €
—_———
(214-3) times

X, we will write u > 0 whenever u; >0, j € {1,...,2l + 3}. Let

P={ueX:u>0 on [0,00)x[0,1]}.

With P we will denote the set of all equi-continuous families in P.ForveX , define the
operators

Tyo(t,z) = (1+mev(t,z)— e%,
Ssu(t,z) = —eSqv(t,x) —mev(t,z) — e£

10’
(t,z) € [0,00) x [0,1], where € is a positive constant, m > 0 is large enough and the
operator Sy is given by formula (3.3). Note that if v = (v1,...,v943) € X is a fixed
point of the operator T} + Ss, then vy is a solution to the IBVP(1.1). Let us define the
following sets:

Uy = P.={veP:|v|<r}
Uy = Pr={veP:|v| <L}
Us = PRI = {7} cpP: ||U|| < R1},
—_— A L
Q == PR2 :{UGPZ ||’U|| SRQ}, Wlth R2:R1+fBl+7.
m 5m

(1) For u,v € Q, we have
[Tvu = Thof| = (1 4 me)|lu = o],

whereupon 77 : 2 — X is an expansive operator with a constant h = 1 + me > 1.
(2) For v € Pg,, we get

L L
[1S3v]| < €||Sa2v]|| + mel|v|| + 0 < 6<A31 +mR; + 10).
Therefore S5(Pg,) is uniformly bounded. Since S5 : Pr, — X is continuous, we
have that S5(Pg,) is equi-continuous. Consequently S5 : Pr, — X is completely
continuous.
(3) Let u € Pg,. Set

1 L
v=u-+ —Sou-+ —.
m om

Note that Syu+ £ > 0 on [0,00) x [0,1]. We have v > 0 on [0, 00) x [0,1] and

[lo]] < [lull + 1 | Sau|| + L <R+ —ABl + L = Ry.
m 5m m 5m
Therefore v € ) and
—€muv = —emu — € gu—elo —610

or

L
(I —Ty)v=—emv+ 0= Ssu.
Consequently S3(Pgr,) C (I —T1)(5).
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(4) Assume that for any ug € P* = P\ {0} there exist A > 0 and v € OP, N (Q+ Aug)
or u € OPg, N (24 Aug) such that

Sgu = (I - Tl)(u - )\UO)-

Then
L L
—eSou — meu — €0 = —me(u — Aug) + 10
or
L
—Sou = Amug + 5
Hence,

L L
||52’u|| = H)\muo + 5H > g

This is a contradiction.
(5) Let &1 = 2 Assume that there exist w € 9P, and A\ > 1 + 1 such that

5m”

AMw € Pgr, and

Sg’w = (I - Tl)(>\1u))

Since w € 0Py, and Ajw € Pg,, it follows that

2 A L
(+1>L<)\1L:)\1|w|| SRl-‘raBl"f'i.

5m 5m
Moreover,
L L
—eSew — mew — EE = —\imew + el—o,
or
L
Sow + = (A — Dmaw.
From here,
L L
23 > ‘ Sow + 5H = (A1 — Dmfw|| = (A = 1)mL
and
2
— 4+ 1>,
om

which is a contradiction.

Hence and Theorem 2.6, it follows that the operator 77 + S3 has at least two fixed points

*

u* = (u,...,u3 ) and v* = (v{,...,v3 ) so that

[w*]| = L < [lo*]| < R
or
r< 'l < L< '] < Ru.

We have u} and v} are solutions of the IBVP (1.1). Not that, ||u*|| # ||[v*], but we can
get ui = vi. Consequently, the IBVP (1.1) has at least one nonnegative solution. This
completes the proof of Theorem 1.2.
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5. TWO ILLUSTRATIVE EXAMPLES

Let
1+ s1V/24 522 s11y/2
h(s) = log FESTIo I I(s) = arctan T2 S€ R, s# *£1.
Then
, 221/2510(1 — 5%2)
h (S) = ’
(1-— s11y/2 + 522)(1 + s114/2 + 522)
11v/2519(1 + 5%2)
!
I'(s) = pper , seR, s#=xl.
Therefore

—00 < lim (1+s452+5+s*+5° +5%)h(s) < oo,

s—too
—00 < lim (1+s+s2+83+s514+5°+5%)I(s) < 0.

s—Foo

Hence, there exists a positive constant C; so that

(14 s+ 52+ 53+ 5"+ 55 + 59

y 1 | 1+ s11/2 4 22 N 1 st1y/2
o SV
442 & 1— 51124522 224/2 1—s22

s € [0,00). Note that lim,_,+; {(s) = § and by [21] (pp. 707, Integral 79), we have

/ dz 1 o 1+Z\@—|—z2+ 1 arctan 2V2
1424 42 gl_zﬂ+zz 22 1_ .2
Let
10
= ) E 07 )
QW) = Trsmursrae €0
and

gl(t) = Q(t)v te [07 OO)
Then there exists a constant Cy > 0 such that

t
(2l+1)!(1+t)/ gi(t)dt < Gy, £ € [0,00),
0

where [ belongs to the set of all nonzero natural numbers N*. Let

A

= Goot), 1€ 000)

g9(t)

Then
@+ 1)1 +1) /tg(tl)dtl <A, telo,o0),

0

i.e., (H2) holds.
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5.1. Example 1. Take { =3 in (1.1) and consider the following initial boundary value
problem

vt + Vo, + Z?Zl(—l)jﬂéﬁj*lv = 0, t>0, z€][0,1],
Is xr— 6
‘ v(0,2) = HIag(%i)m, z € [0,1], (5.4)
Biu(t,0)=div(t,1) = 0, t>0,i=0,1,2,
olv(t,1) = 0,
so that (H1) holds, with B = 10, for example. Take
1

leo, andA:W.

Then )
ABy = A((l+1)B+ B?) = o1 (4 10 +10%) < B.
So, Condition (H3) is fulfilled. Thus, the conditions (H1), (H2) and (H3) are satisfied.
Hence, by Theorem 1.1, it follows that Problem (5.4) has at least one solution u €
([0, 00),C7([0,1])).
In the sequel, take

Ri=B=10, L=5 r=4, m=10", A=e=—
Clearly,
A 1 L
r<L<Ri<B, €¢>0, Ri+—DB1>|—+1 L, ABl<*,
m om 5

i.e., (H4) holds. Hence, by Theorem 1.2, it follows that the initial-boundary value problem
(5.4) has at least one nonnegative solution u € C'([0,00),C7([0,1])).

5.2. Example 2. Take I =5 in (1.1) and consider the following initial boundary value
problem

v + VU + Z?:l(—l)jﬂagjﬂv = 0, t>0, ze€][0,1],
2% (z—1)*°
. 47’(();55) = W, z € [0,1], (5.5)
Du(t,0)=div(t,1) = 0, t>0,i=0,1,234,
olv(t,1) = 0,
so that (H1) holds, with B = 10, for example. Take
1

B =10, andA:W.

Then

1
AB; = A[(l+1)B + B?| = 701 (6% 10 +10%) < B.

So, condition (H3) is fulfilled. Thus, the conditions (H1), (H2) and (H3) are satisfied.
Hence, by Theorem 1.1, it follows that Problem (5.5) has at least one solution u €
([0, 00), ([0, 1])).

In the sequel, take
1
Ri=B=10, L=5 r=4, m=10%, A:e:m.
Clearly,

A 1 L
r<L<R;<B, €¢>0, Ri+—B1>|—+1]L, AB < —,
m 5m 5

i.e., (H4) holds. Hence, by Theorem 1.2, it follows that the initial-boundary value problem
(5.5) has at least one nonnegative solution u € C!([0,00),C*1([0,1])).



240

la

SVETLIN GEORGIEV GEORGIEV, AREZKI KHELOUFI, AND KARIMA MEBARKI

ACKNOWLEDGEMENTS

The second and the third authors acknowledge support of "Direction Générale de
Recherche Scientifique et du Développement Technologique (DGRSDT)", MESRS,

Algeria.

REFERENCES

[1] Y. Benia and B. K. Sadallah, Ezistence of solution to korteweg-de vries equation in domains

2]
(3]
(4]
(5]
(6]

(7]

(8]
[l
(10]

[11]

[12]
[13]
[14]
[15]
[16]

(17]

(18]

[19]
20]

[21]
[22]

23]

that can be transformed into rectangles, Math. Methods Appl. Sci. 41 (2018), no. 7, 2684-2698,
doi:10.1002/mma.4773.

G. P. C. E. Kenig and L. Vega, Higher-order nonlinear dispersive equations, Proc. Am. Math. Soc.
122 (1994), no. 1, 157-166, doi:10.1090/50002-9939-1994-1195480-8.

L. Cattabriga, Un problema al contorno per una equazione parabolica di ordine dispari, Ann. Sc.
Norm. Super. Pisa, Sci. Fis. Mat. 13 (1959), 163-203.

M. Cavalcante and C. Kwak, The initial-boundary value problem for the kawahara equation on the
half-line, Nonlinear Differ. Equ. Appl. 27 (2020), no. 5, 50 pages, doi:10.1007/s00030-020-00648-6.
S. Cui and S. Tao, Strichartz estimates for dispersive equations and solvability of the kawahara
equation, J. Math. Anal. Appl. 304 (2005), no. 2, 683-702, doi:10.1016/j.jmaa.2004.09.049.

S. Djebali and K. Mebarki, Fized point index theory for perturbation of expansive mappings by k-set
contractions, Topol. Methods Nonlinear Anal. 54 (2019), no. 2A, 613-640, doi:10.12775/TMNA.2019.
055.

G. G. Doronin and N. A. Larkin, Boundary value problems for the stationary kawahara equation,
Nonlinear Anal., Theory Methods Appl., Ser. A 69 (2008), no. (5-6), 1655-1665, doi:10.1016/j.na.
2007.07.005.

G. G. Doronin and N. A. Larkin, Kawahara equation in a bounded domain, Discrete Contin. Dyn.
Syst., Ser. B 10 (2008), no. 4, 783-799, doi:10.3934/dcdsb.2008.10.783.

A. V. Faminskii, The cauchy problem for quasilinear equations of odd order, Mat. Sb. 180 (1989),
no. 9, 1183-1210.

A. V. Faminskii and N. A. Larkin, Initial-boundary value problems for quasilinear dispersive equations
posed on a bounded interval, Electron. J. Differ. Equ. 2010 (2010), no. 1, 20 pages.

L. D. R. G. M. Coclite and M. Giuseppe, Well-posedness of the classical solutions for a
kawahara-korteweg-de vries-type equation, J. Evol. Equ. 21 (2021), no. 1, 625-651, doi:10.1007/
s00028-020-00594-x.

S. G. Georgiev and K. Zennir, Ezistence of solutions for a class of nonlinear impulsive wave
equations, Ric. Mat. 71 (2022), no. 1, 211-225, doi:10.1007/s11587-021-00649-2.

S. Grudsky and A. Rybkin, On classical solutions of the kdv equation, Proc. Lond. Math. Soc. 121
(2020), no. 2, 354-371, doi:10.1112/plms.12326.

J. Holmer, The initial-boundary value problem for the korteweg-de vries equation, Commun. Partial
Diff. Equations 31 (2006), no. 8, 1151-1190, doi:10.1080/03605300600718503.

Z. Huo and Y. Jia, Well-posedness for the fifth-order shallow water equations, J. Differ. Equations
246 (2009), no. 6, 2448-2467, doi:10.1016/7j . jde.2008.10.027.

N. A. Larkin, Correct initial boundary value problems for dispersive equations, J. Math. Anal. Appl.
344 (2008), no. 2, 1079-1092, doi:10.1016/3 . jmaa.2008.03.055.

N. A. Larkin and J. Luchesi, Initial-boundary value problems for generalized dispersive equations
of higher orders posed on bounded intervals, Appl. Math. Optim. 83 (2021), no. 2, 1081-1102,
doi:10.1007/s00245-019-09579-w.

N. A. Larkin and J. Luchesi, Initial-boundary value problems for nonlinear dispersive equations of
higher orders posed on bounded intervals with general boundary conditions, Mathematics 9 (2021),
no. 2, 17 pages, doi:10.3390/math9020165.

Z. L. P. Isaza and G. Ponce, Decay properties for solutions of fifth order nonlinear dispersive
equations, J. Differ. Equations 258 (2015), no. 3, 764-795, doi:10.1016/j.jde.2014.10.004.

D. Pilod, On the cauchy problem for higher-order nonlinear dispersive equations, J. Differ. Equations
245 (2008), no. 8, 2055-2077, doi:10.1016/j.jde.2008.07.017.

A. Polyanin and A. Manzhirov, Handbook of integral equations, CRC Press, 1998.

M. D. Ramazanov, A boundary-value problem for a class of differential equations, Mat. Sb. 64(106)
(1964), no. 2, 234-261.

S. G. G. S. Benslimane and K. Mebarki, Multiple nonnegativesolutions for a class of fourth-order
bups via a new topological approach, Adv. Theory Nonlinear Anal. Appl. 6 (2022), no. 3, 390-404,
doi:10.31197/atnaa.977625.


http://dx.doi.org/10.1002/mma.4773
http://dx.doi.org/10.1090/S0002-9939-1994-1195480-8
http://dx.doi.org/10.1007/s00030-020-00648-6
http://dx.doi.org/10.1016/j.jmaa.2004.09.049
http://dx.doi.org/10.12775/TMNA.2019.055
http://dx.doi.org/10.12775/TMNA.2019.055
http://dx.doi.org/10.1016/j.na.2007.07.005
http://dx.doi.org/10.1016/j.na.2007.07.005
http://dx.doi.org/10.3934/dcdsb.2008.10.783
http://dx.doi.org/10.1007/s00028-020-00594-x
http://dx.doi.org/10.1007/s00028-020-00594-x
http://dx.doi.org/10.1007/s11587-021-00649-2
http://dx.doi.org/10.1112/plms.12326
http://dx.doi.org/10.1080/03605300600718503
http://dx.doi.org/10.1016/j.jde.2008.10.027
http://dx.doi.org/10.1016/j.jmaa.2008.03.055
http://dx.doi.org/10.1007/s00245-019-09579-w
http://dx.doi.org/10.3390/math9020165
http://dx.doi.org/10.1016/j.jde.2014.10.004
http://dx.doi.org/10.1016/j.jde.2008.07.017
http://dx.doi.org/10.31197/atnaa.977625

NONLINEAR DISPERSIVE EQUATIONS OF ODD-ORDERS 241

[24] S. P. Tao and S. B. Cui, The local and global existence of the solution of the cauchy problem for the
seven-order nonlinear equation, Acta Math. Sinica 25 A (2005), no. 4, 451-460.

[25] L. R. Volevich and S. G. Gindikin, Mized problem for (2b+ 1)—hyperbolic equations, Tr. Mosk. Mat.
Obshch. 43 (1981), 197-259.

Svetlin Georgiev Georgiev: svetlingeorgievi@gmail.com
Department of Differential Equations, Faculty of Mathematics and Informatics, University of Sofia,
Sofia, Bulgaria

Arezki Kheloufi: arezki.kheloufi@univ-bejaia.dz; arezkinet2000@yahoo.fr
Laboratory of Applied Mathematics, Bejaia University, 06000 Bejaia, Algeria

Karima Mebarki: karima.mebarki@univ-bejaia.dz; mebarqi_karima@hotmail.fr
Laboratory of Applied Mathematics, Faculty of Exact Sciences, Bejaia University, 06000 Bejaia,
Algeria

Received 30/03/2022; Revised 06/08,/2022


mailto:john-email@address
mailto:stefan-email@address
mailto:stefan-email@address

	1. Introduction
	2. Fixed points and nonnegative fixed points for the sum of two operators
	3. Integral representation and some estimates
	4. Proof of the main results
	4.1. Proof of Theorem 1.1
	4.2. Proof of Theorem 1.2

	5. Two illustrative examples 
	5.1. Example 1
	5.2. Example 2

	Acknowledgements
	References

