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ON STOCHASTIC COSURFACES AND TOPOLOGICAL QUANTUM
FIELD THEORIES

JEAN-PIERRE MAGNOT

Abstract. We analyze the notion of a stochastic cosurface and show the following:
the obstructions to the construction of non-abelian stochastic cosurfaces previously
highlighted can be overcome by an ordering choice; the presence of an underlying
manifold is not mandatory and stochastic cosurfaces can be defined in more general
CW-complexes. We also describe a dimension extension procedure, in which any
d - stochastic cosurface can be extended to a (d + k)-stochastic cosurface if the
underlying CW-complex has (d+ k)-faces.

We finish with a link of stochastic cosurfaces with topological quantum field
theories and with an analog of deformation algebra indexed by a non-linear set of
formal variables.

Аналiзується поняття стохастичної коповерхнi та доводиться наступне: пере-
шкоди для побудови неабелевих стохастичниз коповерхонь, про якi йшлось ранiше,
можуть бути подоланi за разунок вибору порядку; наявнiсть базового многовиду
не є обов’язковим i стохастичним коповерхнi можуть бути визначенi в бiльш
загальних CW-комплексах. Також описано процедуру розширення розмiрностi,
де будь-яку d - стохастичну поверхню можна продовжити до (d+ k)-стохастичнiй
поверхнi, якщо базовий CW-комплекс має (d+ k)-граней.

Також розглядається зв’язок мiж стохастичними коповерхонями та топологiч-
ною квантовою теорiєю поля i з аналогом деформованою алгебра, що iндексована
нелiнiйним набором формальних змiнних.

Introduction

Topological quantum field theories rely on the so called “cobordism hypothesis” formu-
lated by Baez and Dolan in [6]. This hypothesis, formally worked out in the long preprint
[11], remains a long-standing idea for a classification of topological quantum field theories
(see e.g. [7]) and has ramifications in algebra, topology and representation theory. A good
review on the subject is [8]. In this reference, one can see that a topological quantum
field theory is a morphism from cobordisms to abelian categories. Several examples and
constructions are sketched.

The present work develops, in a constructive way, a class of series indexed by manifolds
with boundary, carrying so called “cut-and paste” properties of composition in the spirit
of cobordism composition, that are derived from stochastic models in quantum and
statistical physics. Such series can be understood as topological quantum field theories in
a large sense. Our main starting point is a quite old series of works on so-called stochastic
cosurfaces [1, 2, 3, 4, 5] where, in a heuristic way, time is considered as taking values in
a non-linear manifold of dimension d \geq 2, and where time slices act through piecewise
smooth hypersurfaces, in other words, (d  - 1) - dimensional skeletons with particular
properties in a more general way than in topological quantum field theories but in the
same spirit. Such models have applications in fields of mathematical physics such as
lattice models and Higgs fields among others, including 2D Yang-Mills theories, in the
fully developed work [10].
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Analyzing the conditions that are technically necessary to develop cobordism-like
composition that fit with these works, it appears that the key elements are very weak:
one only needs associativity of the composition law (which needs not totality as in the
case of cobordism examples) and a \BbbN \ast  - grading on the required set of indexes, that is,
our pieces of smooth hypersurfaces.

From these preliminary considerations, we review existing results on stochastic cosur-
faces and extend them, reaching some topological quantum field theory-like developments.

More precisely, we start from works [1, 2, 3, 4, 5] that introduced a so-called stochastic
cosurface. We enlarge the settings of the previous references, and adapt them to build
families of measures indexed by cobordism, such that, if \gamma and \gamma \prime are two morphisms of
cobordism that can be composed into \gamma \gamma \prime , then for the corresponding measures, we get
\mu (\gamma \gamma \prime ) = \mu (\gamma )\mu (\gamma \prime ) (convolution product). By the way, the mapping \gamma \mapsto \rightarrow \mu (\gamma ) can be
understood as a formal series over a family \Gamma of morphisms for cobordisms.

These results show that the initial investigations of [1, 2, 3, 4, 5], carried out for d = 2
stochastic cosurfaces with an arbitrary Lie group, or abelian cosurfaces of any dimension
carry, with mild considerations, some possible generalizations for not necessarily abelian
stochastic cosurfaces at any dimension. Even if the cut-and-paste formulas require more
attention, the effects due to the presence of non-abelian groups required the introduction
of an order in the slice of the non-linear time, the series of measures that we produce
offer more usual expressions, in terms of series of measures, of the complex effects of
non-abelian theories. Heuristically speaking, series of measures furnish classical treatise
and expression of non-abelian (non-linear?) effects that seem to have been ignored in
previous works.

1. Markov Cosurfaces in codimension 1

1.1. Settings. Let M be a d - dimensional connected oriented Riemannian manifold. Let
\scrH \vee be the set of embedded, oriented, smooth, closed, connected hypersurfaces (codimen-
sion 1 submanifolds) of M with piecewise smooth border. What we call hypersurface is
mostly smooth hypersurfaces on the manifold M, but since we need piecewise smooth
oriented hypersurfaces, we need to build them by induction, gluing together the smooth
components. What we get at the end is a space of oriented piecewise smooth hypersurfaces,
with piecewise smooth border.

Definition 1.1. We set \scrH (1)
\vee = \scrH \vee . For d \geq 2, we define by induction:

\bullet Let (s1, s2) \in \scrH \vee \times \scrH \vee . If
(1) s1 \cap s2 \subset \partial s1 \cap \partial s2 is a (d - 2) piecewise smooth manifold and
(2) the orientations induced on s1 \cap s2 by s1 and s2 are opposite,

then we define s1 \vee s2 to be the oriented piecewise smooth hypersurface of M obtained
by gluing s1 and s2 along their common border. The orientation of s1 \vee s2 is the one
induced by s1 and s2. The set of all such hypersurfaces is denoted by \scrH (2)

\vee .

\bullet Let (s1, s2) \in \scrH (n - 1)
\vee \times \scrH \vee . If

(1) s1 \cap s2 \subset \partial s1 \cap \partial s2 is a (d - 2) piecewise smooth manifold and
(2) the orientations induced on s1 \cap s2 by s1 and s2 are opposite,

then we define in the same way s1 \vee s2. The set of such hypersurfaces is denoted by \scrH (n)
\vee .

\bullet We set \Sigma \vee =
\bigcup 

n\in \BbbN \ast \scrH (n)
\vee .

In all the article, we shall also assume that the connected components of \partial s are in
\Sigma \vee ,n - 1 if s \in \Sigma \vee ,n, for n \in \BbbN \ast .

Remark 1.1. If M is 2 - dimensional, it might seem that definition 1.1 generalizes the
composition of non-parameterized piecewise smooth paths, setting \scrH to be the set of
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smooth paths and \vee the groupöid composition law of oriented piecewise smooth paths.
In fact, we need to reformulate the definition for d = 2 in order to fit with the usual
composition of paths. Let us look at the following example. Let M = \BbbR 2, and let s1 and
s2 the paths parameterized by s1(t) = (\mathrm{c}\mathrm{o}\mathrm{s}(\pi t), \mathrm{s}\mathrm{i}\mathrm{n}(\pi t)) and s2(t) = ( - \mathrm{c}\mathrm{o}\mathrm{s}(\pi t), - \mathrm{s}\mathrm{i}\mathrm{n}(\pi t))
for t \in [0, 1]. We have \partial s1 = \partial s2 = \{ ( - 1; 0); (1; 0)\} , with “opposite orientations” (i.e.
the endpoint of s1 (resp. s2) is the initial point of s2 (resp. s1)) so that paths s1 and
s2 can be composed. But in order to have a loop, one has to determine which point
among \{ ( - 1; 0); (1; 0)\} will be the initial point. The choice comes with the order in the
composition of paths: s1 \ast s2 or s2 \ast s1. Such a choice cannot be done with Definition 1.1
because the law \vee is obviously commutative in \scrH \vee \times \scrH \vee .

Now, we define \scrH \ast as the set of (non-parameterized, but oriented) smooth hypersurfaces
s on the oriented manifold M, equipped in addition with a prescribed orientation of
smooth components of \partial s. Initial parts of \partial s, denoted by \alpha (s), are those for which the
prescribed orientation is opposite to the one induced by s, and the final parts, denoted
by \beta (s), are the ones for which they coincide. For d = 2, the orientation of paths can
naturally prescribe the initial and final points. This is the (apparently natural) choice
that has been made in [2] but we remark here that this choice is not necessary. The
picture of the following definition will merely be the same as the one of definition 1.1, but
each smooth component of the border of the hypersurface is assigned to be either initial
or final. In order to keep the coherence with the loop composition,

- we can glue together a final part with an initial part,
- and the final parts and the initial parts can be the same set-theoretically, just as in

the case of a loop starting and finishing at the same point.
Here is the construction:

Definition 1.2. We set \scrH (1)
\ast = \scrH \ast . By induction:

\bullet Let (s1, s2) \in \scrH \ast \times \scrH \ast . Let a = \alpha (s1) \cap \beta (s2). We define s1 \ast s2 as the oriented
piecewise smooth hypersurface of M obtained by gluing s1 and s2 on a and denoted
by s1 \cup a s2. The orientation of s1 \ast s2 is the one induced by s1 and s2 on s1 \cup a s2 By
the way, we have \alpha (s1 \ast s2) = \alpha (s2) \cup (\alpha (s1) - a), \beta (s1 \ast s2) = \beta (s1) \cup (\beta (s2) - a), and
\partial (s1 \ast s2) = \alpha (s1 \ast s2)

\coprod 
\beta (s1 \ast s2). The set of such hypersurfaces is denoted by \scrH (2)

\ast .

\bullet Let (s1, s2) \in \scrH (n - 1)
\ast \times \scrH \ast . Then we define s1 \ast s2 in the same way. The set of such

hypersurfaces is denoted by \scrH (n)
\ast .

\bullet We set \Sigma \ast =
\bigcup 

n\in \BbbN \ast \scrH (n)
\ast .

Notice that there is a forgetful map \Sigma \ast \rightarrow \Sigma \vee only for the hypersurfaces s \in \Sigma \ast that
have no self-intersection. The following example, based on the Möbius band, shows that
this restriction is needed.

Example 1.1. Let us fix M = \BbbR 3 and let

s1 =

\biggl\{ \biggl( 
\mathrm{c}\mathrm{o}\mathrm{s}(\pi t), \mathrm{s}\mathrm{i}\mathrm{n}(\pi t), s - 1

2

\biggr) 
| (t, s) \in [0; 1]2

\biggr\} 
such that \alpha (s1) =

\bigl\{ 
(\mathrm{c}\mathrm{o}\mathrm{s}(\pi t), \mathrm{s}\mathrm{i}\mathrm{n}(\pi t), s)| (t, s) \in (\partial [0; 1])2, t = 0

\bigr\} 
, \beta (s1) = \partial s1 - \alpha (s1) and

let
s2 =

\bigl\{ 
( - \mathrm{c}\mathrm{o}\mathrm{s}(\pi t), - \mathrm{s}\mathrm{i}\mathrm{n}(\pi t)(1 + cos(\pi t)), s - cos(\pi t))| (t, s) \in [0; 1]2

\bigr\} 
such that

\alpha (s2) =

\biggl\{ \biggl( 
 - \mathrm{c}\mathrm{o}\mathrm{s}(\pi t), - \mathrm{s}\mathrm{i}\mathrm{n}(\pi t)

\biggl( 
1 +

sin(\pi t)

2

\biggr) 
, s - cos(\pi t) - 1

2

\biggr) 
| (t, s) \in (\partial [0; 1])2, t = 0

\biggr\} 
,

\beta (s2) = \partial s2  - \alpha (s2). If one glues topologically s1 and s2, we get the Möbius band which
is non-orientable. So that s1 \vee s2 is not defined in this case. By our choices of initial and
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final parts, s1 \ast s2 and s2 \ast s1 both exist, because they can be represented by the “cut” of
the Möbius band, with

\alpha (s1 \ast s2) = \alpha (s2) =
\Bigl\{ 
(1; 0; s)|  - 1

2
\leq s \leq 1

2

\Bigr\} 
,

\beta (s1 \ast s2) = \beta (s1) =
\Bigl\{ 
(1; 0; s)|  - 1

2
\leq s \leq 1

2

\Bigr\} 
,

and with

\alpha (s2 \ast s1) = \alpha (s1) =
\Bigl\{ 
( - 1; 0; s)|  - 1

2
\leq s \leq 1

2

\Bigr\} 
,

\beta (s2 \ast s1) = \beta (s2) =
\Bigl\{ 
( - 1; 0; s)|  - 1

2
\leq s \leq 1

2

\Bigr\} 
.

One can say that this is not natural, since, e.g., \alpha (s1 \ast s2) is not in the border of the
underlying C0-manifold. This is one of the reasons why we discuss this example in details.
Moreover, this fits with the natural composition of paths: ignoring the third coordinate,
we get back the classical composition of paths, for which loops are topologically without
border but have a starting point and an endpoint.

In what follow, \Sigma M represents either \Sigma \vee or \Sigma \ast with an adequate choice of the Lie
group G (we choose G to be abelian for \Sigma \vee ). Anyway, we denote the group law of G by
the operation of multiplication, and we denote s1s2 for s1 \vee s2 or s1 \ast s2.

Definition 1.3. A G - valued cosurface is a map

c : \Sigma M \rightarrow G

such that
(1) \forall (s1, s2) \in \Sigma M \times \scrH , c(s1s2) = c(s1)c(s2) and
(2) we denote by \~s the same cosurface as s \in \Sigma M with the opposite orientation. Then

\forall s \in \Sigma M , c(\~s) = c(s) - 1.

Let \tau s(c) = c(s) and \Gamma M,G be the set of G - valued cosurfaces of M equipped with the
the smallest \sigma  - algebra making measurable the collection of maps

\{ \tau s : \Gamma M,G \rightarrow G| s \in \Sigma M\} .

Let (\Omega ,\scrB , p) be any probability space.

Definition 1.4. A stochastic cosurface is a map

C : \Omega \times \Sigma M \rightarrow G

such that
(1) \forall \omega \in \Omega , C(\omega , .) \in \Gamma M,G.
(2) the map \omega \in \Omega \mapsto \rightarrow C(\omega , .) is a \Gamma M,G - valued measurable map.

For a subset \Lambda \subset M we consider the \sigma  - algebra T(\Lambda ) generated by stochastic cosurfaces
C(s) where s \subset \Lambda . In other words,

T(\Lambda ) = \sigma \{ \{ C \in \Gamma M,G| C(s) \in B\} | s \subset \Lambda ;B is a Borel subset of G\} .

Now, we have to define finite sequences of hypersurfaces that we consider as a complex
(of hypersurfaces).

Definition 1.5. Let n \in \BbbN \ast . An n - complex on M is a n - uple K = (s1, ...sn) \in (\Sigma M )
n

such that si \not = sj for i \not = j. We define

C(K) = (C1(s1), ..., Cn(sn))

where each Ci \in \Gamma (M ;G). We denote by \scrK the set of complexes of any length n.
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Notice that a complex is an ordered sequence, and related with this order there is a
natural notion of subcomplex of a complex K. If K = (s1, . . . , sn), a subcomplex L is a
subsequence of K, that is

\exists l < m \leq n, L = (sl, . . . , sm) = (si)l\leq i\leq m.

Now, we need to recognize the complexes that define skeletons of a partition of the
manifold M.

Definition 1.6. An n-complex K = (s1, . . . , sn) is regular if \forall (i, j) \in \BbbN n
2,

i \not = j \Rightarrow si \cap sj \subset \partial si \cap \partial sj .

Notice that the definition does not consider initial and final parts of the borders. In the
sequel, since many ways to understand complexes can be useful (set-theory, topological
spaces, sequences, oriented manifolds) we shall use the standard notations in these various
fields and we shall specify in what sense we use them only if the notations carry any
ambiguity.

Definition 1.7. Let K be a regular n-complex. K is called saturated if and only if\bigcup 
i\in \BbbN n

si defines the borders of a covering of M by connected and simply connected closed
subsets. In other words, there is a family (Ak)k of closed connected and simply connected
subsets of M such that

(1)
\bigcup 

k Ak = M ,
(2) for two any indexes k and k\prime , if k \not = k\prime ,

Ak \cap Ak\prime \subset \partial Ak \cap \partial Ak\prime \subset 
\bigcup 

i\in \BbbN n

si.

We say that a regular n-complex K splits M through the subcomplex L = (si)l\leq i\leq m if
(1)

\bigcup 
s\in L s splits M into two connected components M+ and M - and

(2)
\bigcup 

i<l si \subset Adh(M - ); we denote K - = (si)
\prime \prime 
i<l = K \cap M - "",

(3)
\bigcup 

i>m si \subset Adh(M+); we denote K+ = (si)
\prime \prime 
i>m = K \cap M+"".

(here, Adh means topological closure)

Example 1.2 (around the 2-cube). Let ABCDEFGH \subset \BbbR 3 be the 2-cube, and we
assume that each coordinate of A,B,C,D,E, F,G and H is equal to \pm 1.

Let us consider the (empty) 2-cube ABCDEFGH as a piecewise smooth hypersurface
in \BbbR 3. By the orientation of \BbbR 3, and since the cube divides \BbbR 3 into an inside part and an
outside part, each face is oriented so that ABCDEFGH \in \Sigma \vee . The 2-cube divides \BbbR 3

into two parts, that we recognize as interior and exterior, which are connected and simply
connected (but one is not contractible). So that, it splits \BbbR 3. We can also say that we
have a regular 6-complex made of the faces of ABCDEFGH (where we have to choose
an order which is non canonical).

Let us now project ABCDEFGH into S2 radially. Then the segments of ABCDEFGH
define a class of regular complexes on S2. The complex of the segments is not uniquely
defined because of the order that we have to choose, and also because of the orientations
of the segments that we have to choose. This will yield different possible splittings. For
example,if we consider the the complex K = (s1, ...s12) defined by

K =
\bigl( 
(A;B), (B;E), (B;C), (C;D), (C;G), (A;E), (E;F ),

(F ;G), (G;H), (H;D), (D;A), (E;H)
\bigr) 
,

we have the subcomplex

L = ((A;E), (E;F ), (F ;G), (G;H), (H;D), (D;A))
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that splits K. We have (S2)+ = AEHD \cup EFGH and (S2) - = ABCD \cup ABFE \cup 
BCGF \cup CDGH (which are both contractible) and finally K+ = (E;H) and K - =
((A;B), (B;E), (B;C), (C;D), (C;G)) .

Definition 1.8. Let C be a stochastic cosurface. C is said to be a Markov cosurface if
for each n \in \BbbN \ast and for each regular n-complex K which splits through a subcomplex
L = (si)l\leq i\leq m, for each couple of maps (f+, f - ) for which the above expectations
exists and f+ (resp. f - ) is T(M+ \cup 

\bigcup 
l\leq i\leq m si)-measurable (resp. T(M - \cup 

\bigcup 
l\leq i\leq m si)-

measurable), we have

\BbbE (f+f - | \scrT (
\bigcup 

l\leq i\leq m

si)) = \BbbE (f+| T(
\bigcup 

l\leq i\leq m

si))\BbbE (f - | T(
\bigcup 

l\leq i\leq m

si)).

1.2. Markov cosurfaces and Markov semigroups. Let \lambda be the Haar measure on
G which is now assumed unimodular. We introduce a projective system of probability
measures on \{ GK ;K \in \scrK \} . For this, we use a partial order on \scrK .

Proposition 1.1. Let (K,K \prime ) \in \scrK 2 such that K = K \prime in the set-theoretic sense. We
write K \prec K \prime if \forall s \in K, there exists a subcomplex L\prime of K \prime such that s is a composition
of elements of L\prime , ordered by indexes. Here \prec is an order on \scrK .

Proof. Comparing this proposition with [5], we already have that \prec is only a preorder.
So that we need only to check reflexivity. Let s \in K. Taking L\prime = \{ s\} , we get K \prec K.
Moreover, let (K,K \prime ) \in \scrK 2, if K \prec K \prime and K \prime \prec K, \forall s \in K, s \in K \prime and \forall s\prime \in K \prime , s \in K
and hence K and K \prime have the same hypersurfaces, indexed with respect to the same
order. \square 

We now recall the standard definition of filters for the order \prec .

Definition 1.9. A filter P \subset \scrK is such that:
(1) \forall (K,K \prime ) \in P 2,\exists K \prime \prime \in P, (K \prec K \prime \prime \wedge K \prime \prec K \prime \prime ) .
(2) (\forall K \in \scrK ,\exists K \prime \in P,K \prec K \prime ) \Rightarrow K \in P.

Let Qt be a convolution semigroup of probability measures on G with densities, i.e.,
Qt = qt.\lambda satisfies

(1) Q0 = \delta e (the Dirac measure at the unit element)
(2) \forall s, t \in (\BbbR \ast 

+)
2, \forall x \in G, (qtqs)(x) =

\int 
G
qs(xy

 - 1)qt(y)d\lambda (y) = qt+s(x)
(3) \mathrm{l}\mathrm{i}\mathrm{m}t\rightarrow 0 Qt = \delta e weakly
(4) \forall (x, y) \in G2, q(.)(xy) = q(.)(yx)

Now, we need to separate the exposition among the two approaches of cosurfaces, one on
\Sigma \vee and the other on \Sigma \ast . In both cases, we fix K \in P , a regular saturated complex with
associated domains D = \{ A1, ...Am\} . Each A \in D is oriented through the orientation of
M.

\bullet On \Sigma \vee . We define

\varphi A(s) =

\left\{   s, if s \subset \partial A has the same orientation as \partial A,
\~s, if s \subset \partial A has the opposite orientation from \partial A,
\emptyset , if s \not \subset \partial A.

We set
\phi A(C(K)) =

\prod 
s\in K

C \circ \varphi A(s)

(this product is a convolution product of measures.)
\bullet On \Sigma \ast . Here, K = (s1, ..., sm) is ordered by indexation. Then, we have to work by

induction to define \varphi A.
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\bullet Let sj \in K be the first element in K such that sj \subset \partial A. For i < j, we set
\varphi A(si) = \emptyset . Then we compare the orientation of \partial A with the one of sj as in the
case of \Sigma \vee 

M to define \varphi A(sj).
\bullet Assume now that we have determined \varphi A up to an index j. Take l to be the first

index after j such that sl \subset \partial A. As before, for j < i < l, we set \varphi A(si) = \emptyset .
First, compare the orientation of sl with the one of \partial A and change sl into \~sl, if
necessary, as before. Notice that final parts of sj and initial parts of sl are not
considered here. This enables anyway to define

\phi A(C(K)) = C \circ \varphi A(s1)...C \circ \varphi A(sn) (1.1)

Both in the case of \Sigma \vee and in the case of \Sigma \ast , we set

Definition 1.10.

\mu Q
K(C) =

k\prod 
i=1

q| Ai| (\phi Ai \circ C(K)) .

Remark 1.2. When d = 2, changing the orientation of the path s \in \scrH is the same as
permuting its initial and its final points. Then, the procedure described for \Sigma \ast makes
also final parts and initial parts coinciding.

1.3. Action of the symmetric group. Looking at Definition 1.10 of \mu K , we easily see
that the value of \mu K is independent of the order of the sequences A = (A1, . . . , Ak), since
the group G is unimodular. Unlikely, there is no invariance under reordering K in the
nonabelian case (see the definition of \phi A in equation 1.1). Here, \phi A depends on the order
of the saturated complex K = (s1, . . . , sn). So that, the action of the n-symmetric group
\frakG n on indexes of n-saturated complexes

(\sigma ,K = (s1, . . . , sn)) \mapsto  - \rightarrow \sigma .K =
\bigl( 
s\sigma (1), . . . , s\sigma (n)

\bigr) 
generates an action \sigma .\mu K = \mu \sigma .K . Setting \scrK \scrS to be the set of saturated complexes on M,
denoting by \frakG \infty the group of bijections on \BbbN \ast , we get an action \frakG \infty \times \scrK \scrS \rightarrow \scrK \scrS in the
following way: completing K = (s1, . . . , sn) \in \scrK \scrS into \^K = (s1, . . . , sn, \emptyset , . . .) \in \Sigma \BbbN \ast 

\ast , a
bijection \sigma \in \frakG \infty on indexes gives a sequence \sigma . \^K with only n elements different from
\emptyset . We define \sigma .K to be the n-saturated complex (indexed by \BbbN n = \{ 1, 2, . . . , n\} ) as the
collection \{ s1, . . . , sn\} , ordered by \sigma . \^K index-wise.

1.4. Examples. This selection of examples is based on earlier works [1, 2, 3, 4, 5], where
only d = 2 examples on \Sigma \ast or examples on \Sigma \vee were considered. An example on \Sigma \ast with
d = 3 will be given later because the tools needed have to be much clarified.

1.4.1. The d = 2 holonomy cosurface. ([2], compare with the settings described in [10])
Let M be a 2-manifold. Let \scrP (M) be the space of piecewise oriented smooth paths, with
canonical initial and final points (“canonical” means induced by the path orientation).
By the way, open paths in \scrP (M) can be identified with a subset of \Sigma \vee and there is a
map \Sigma \ast \rightarrow \scrP (M) which coincides with the forgetful map \Sigma \ast \rightarrow \Sigma \vee on open paths and
with a map on loops that is changing the initial and final parts if necessary. Let G be a
Lie group and let P = M \times G the trivial principal bundle over M with structure group
G. Let \theta be a connection on P and we note by Hol\theta the holonomy mapping \scrP (M) \rightarrow G
for which the horizontal lift starts at (\alpha (p), eG). Let s \in \Sigma \ast , which we identify with the
corresponding path that is also denoted by s. We define the holonomy cosurface c by

c(s) = Hol\theta (\~s).

We need here to invert the orientation of the path because of the right action of the
holonomy group on the principal bundle P.
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Remark 1.3. Since the definition of (non stochastic) cosurfaces does not require any
measure, one can take for G any Lie group on which the notion of horizontal lift of a path
with respect to a connection is well defined. At this level, the construction is valid for
any (finite dimensional) Lie group, but for any Banach Lie group, or regular Fréchet Lie
group, regular c\infty -Lie group [9], as well as for regular frölicher Lie group [12].

Remark 1.4. This approach is quite similar to the approach of gauge theories via
quantum loop gravity approach, see e.g. [13] for an up-to date paper. However, many
open questions remain when one wishes to work along the lines of this viewpoint.

Then choosing Q as the heat semi-group on G, we get a stochastic cosurface picture of
2d-Yang-Mills fields (see, e.g., [10, 14] and references therein for an extensive work in the
case where M is a 2-dimensional manifold and the topology is non trivial).

1.4.2. Markov cosurfaces and lattice models [2, 5]. Let L\epsilon = \BbbZ d. Let U be an invariant
function on a compact group G and a “coupling constant” \beta > 0. Let \Lambda be a bounded
subset of L\epsilon and let us define the (normalized) probability measure

\mu \Lambda 
\epsilon =

1

Z\Lambda ,\epsilon 
\mathrm{e}\mathrm{x}\mathrm{p}

\left(   - \beta 
\sum 
\gamma \subset \Lambda 

U(C(\partial \gamma ))

\right)  \prod 
\gamma \subset \Lambda 

dC(\partial \gamma )

where \gamma is an elementary cell, \partial \gamma the boundary, C(\partial \gamma ) a variable associated to \partial \gamma with
values in G. In the sense of projective limits of measures, the limit \Lambda \rightarrow L\epsilon exists and
defines a Gibbs-like lattice cosurface. In the cases G = U(1), SU(2), the continuum limit
\epsilon \rightarrow 0 for \mu \epsilon has been shown to exist for appropriate U and by a suitable choice of \beta (\epsilon )
such that \mathrm{l}\mathrm{i}\mathrm{m}\epsilon \rightarrow 0 \beta (\epsilon ) = +\infty .

1.4.3. Markov cosurfaces and Higgs fields in 2-dimensional space time [5, 1]. Let \Lambda be a
bounded non empty subset of \BbbZ 2. Cosurfaces C are defined along the edges of \BbbZ 2. Let G
be a compact Lie group, equipped with a representation \rho on a Euclidean space V with a
scalar product < .; . > and the norm | .| . Let (\lambda , \mu ) \in 

\bigl( 
\BbbR \ast 

+

\bigr) 2, and let \varphi be a V - valued
random field over \BbbZ 2. We define a probability measure\mu \lambda ,\Lambda on \BbbZ 2 with support in \Lambda by

\mu \lambda ,\Lambda (d\phi ) =
1

Z\Lambda 
e
 - \lambda 

2

\sum 
x\in \Lambda 

\Bigl( 
B+\mu 2

\lambda 

\Bigr) 
| \varphi (x)| 2

e - 
\lambda 
2

\sum 
x,y\in \Lambda <\varphi (x),\rho \circ C(xy)\varphi (y)>

\prod 
x\in \Lambda 

d\varphi (x),

where C(xy) is the evaluation of the Markov cosurface C on the path xy. Replacing the
lattice \BbbZ 2 with \epsilon \BbbZ 2, with a suitable choice of \lambda (\epsilon , \mu (\epsilon ), yields the continuum limit Higgs
models as \epsilon \rightarrow 0. In the cases G = U(1), SU(2), with Qt the heat semi-group, our Higgs
fields coincide with the Higgs fields in the physics literature. For a description of the
mathematical construction of the continuum limit, keeping C fixed, see [5].

2. Cosurfaces without underlying manifolds

Let us now consider a Hilbert space H. Mimicking section 1, we show how the notions
can be extended without the codimension 1 assumption.

2.1. Settings. Let M be a d-dimensional connected oriented Riemannian manifold.
Let \scrH \vee ,n (resp. \scrH \ast ,n) be the set of embedded, oriented, smooth, closed, connected
n-submanifolds of H with piecewise smooth border (resp. the set of embedded, oriented,
smooth, closed, connected n-submanifolds of H with piecewise smooth border and with
initial and final parts). Let us recall the assumptions for the composition \vee .

Let (s1, s2) \in \scrH \vee ,n \times \scrH \vee ,n. If
(1) s1 \cap s2 \subset \partial s1 \cap \partial s2 is a non empty (d - 2) piecewise smooth manifold and
(2) the orientations induced on s1 \cap s2 by s1 and s2 are opposite.
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then we define s1 \vee s2 by gluing s1 and s2 along their common border. The orientation
of s1 \vee s2 is the one induced by s1 and s2, and by the gluing conditions, if s1 \vee s2 is itself
a (non piecewise) smooth submanifold of H, then there is an orientation on s1 \vee s2 that
generates the orientation of s1 and of s2.

We denote by \Sigma \vee ,n the corresponding space of piecewise smooth n-submanifolds of H,
and set

\Sigma \vee ,H =
\coprod 
n\in \BbbN 

\Sigma \vee ,n.

Notice that we can extend \vee component-wise to \Sigma \vee ,H .
Let us do the same for \ast . \scrH \ast ,n is the set of (non-parameterized, but oriented) n-

submanifolds s of H equipped in addition with a prescribed orientation of smooth
components of \partial s. Initial parts of \partial s, denoted by \alpha (s), are those for which the prescribed
orientation is opposite to the one induced by s, and the final parts, denoted by \beta (s), are
the ones for which they coincide. These are exactly the definitions given in Section 1, we
can define \Sigma \ast ,n the corresponding space of piecewise smooth submanifolds and we set

\Sigma \ast ,H =
\coprod 
n\in \BbbN 

\Sigma \ast ,n

with extension of \ast component-wise. In what follows, when it causes no ambiguity, we
omit the notations \vee or \ast and denote the composition rule by multiplication, with an
adequate choice of the Lie group G (we choose G to be abelian for \Sigma \vee ,H). Anyway, we
denote the group law of G by multiplication too. The following notions can be extended
in a straightforward way; the only conceptual difference is that the orientation of a surface
s cannot be compared with the orientation of an underlying manifold M. The manifold M
is replaced with the CW-complex obtained by gluing the domains Ak along the borders.

Definition 2.1. A G-valued cosurface is a map

c : \Sigma H \rightarrow G

such that
(1) \forall (s1, s2) \in \Sigma H \times \scrH , c(s1s2) = c(s1)c(s2) and
(2) We denote by \~s the same n-submanifold as s \in \Sigma M with opposite orientation on

s and \partial s. Then \forall s \in \Sigma M , c(\~s) = c(s) - 1.

We denote by \Gamma (G) the set of all G-valued cosurfaces.
Let m \in \BbbN \ast . An (m,n)-complex on H is an m-uple K = (s1, . . . , sm) \in (\Sigma n)

m such
that si \not = sj for i \not = j. We define

C(K) = (C(s1), . . . , C(sn))

where each Ci \in \Gamma (M ;G). We denote by \scrK n the set of complexes of dimension n and of
any length m.

An n-complex K = (s1, . . . , sn) is regular if \forall (i, j) \in \BbbN n
2,

i \not = j \Rightarrow si \cap sj \subset \partial si \cap \partial sj .

There is a natural notion of subcomplex of a complex K. If K = (s1, . . . , sn), a
subcomplex L is a subsequence of K, that is,

\exists l < m \leq n,L = (sl, . . . , sm) = (si)l\leq i\leq m.

Let K be a regular n-complex. K is called saturated if and only if there is a (n+ 1)-
complex A such that

\bigcup 
i\in \BbbN n

si defines the borders of the (n+1)-surfaces of A by connected
and simply connected closed subsets. In other words, a family (Ak)k of closed connected
and simply connected subsets of H defines, by gluing along K, a CW-complex also noted
M such that

(1)
\bigcup 

k Ak = M
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(2) for any two indexes k and k\prime , if k \not = k\prime ,

Ak \cap Ak\prime \subset \partial Ak \cap \partial Ak\prime \subset 
\bigcup 

i\in \BbbN n

si.

We say that a complex K splits through a subcomplex L = (si)l\leq i\leq l\prime if
\bigcup 

s\in L s splits
M (as a subset of H) into two topologically connected components M+ and M - such
that K \cap M+ = (si)i>m and K \cap M - = (si)i>l\prime 

2.2. Dimension extension. We use here an idea of the previous definition, gluing
together simply connected (n+ 1)-surfaces Ai along an n-complex K in order to get, by
induction on the dimension N of the surfaces, a construction of n-cosurfaces from lower
dimensions.

Definition 2.2. A complex K \in \scrK n is called saturated if it can be embedded into an
(n + 1)-submanifold M of H, for which it is a complex for cobordism. M is called a
saturation of K.

In this definition, we then obtain M by gluing, along K, a family of elements of \Sigma n+1

which are connected and simply connected.

Definition 2.3. A complex K \in \scrK \vee ,n is called weakly saturated if there is a complex
A = (A1, . . . , Ak) \in \scrK \ast ,n+1 obtained

- topologically by gluing each set Ai on L \subset K with respect to the borders \partial Ai such
that there is a bijective map \partial Ai \rightarrow L.

- the orientations of the borders on \partial Ai correspond to the orientations of the submani-
folds in the sequence L.

- any s \in K is at least glued once.
A is called a weak saturation of K.

Notice that with this definition, the orientation of each Ai is left free of choice. Moreover,
the definition can be extended straightaway by replacing \vee by \ast since the initial and final
parts of s \in K do not interfere with the gluing.

Definition 2.4. Let cK be defined on the surfaces A \in \Sigma \ast ,n+1 that are smooth with
piecewise smooth border \partial A \subset K. Then we define

cK(A) =
\prod 

s\in \partial A\subset K

c \circ \varphi A(s)

(the product is with respect to the order in K).

Proposition 2.1. If G is abelian, then cK is the restriction of a cosurface c\prime on \Sigma \ast ,n+1

that coincides with cK on any A where it is defined.

Proof. First, for a complex K1 such that K \prec K1, we can get the values of c on K1.
Then, all we have to show is that, given A an (n+ 1)-submanifold of H with piecewise
smooth border along K and taking A\prime = (A1, . . . , Al) such that A \prec A\prime , in other words
A = A1 \ast . . . \ast Al, taking K \prime the (unordered) skeleton of the gluing A1 \ast . . . \ast Al, one has

cK(A) = cK\prime (A1) . . . cK\prime (Al).

There is of course an ambiguity on the order of K \prime but since G is abelian, for each s \in K \prime ,
we have only to count the number of indexes j \in \BbbN l such that \varphi Aj

(s) = s and compare it
to the number of indexes such that \varphi Aj

(s) = \~s. Since we are in the \ast -composition, we
have at each edge s \not \subset K only one index of each type, which are the Aj ’s for which s
is in the initial part and the final part, respectively. So that the contributions that are
“interior” compensate. \square 
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Definition 2.5. Let K \in \scrK n. An overcomplex K \prime of K is a weakly saturated complex
such that there exists a complex K1 with K \prec K1 and K1 \subset K \prime with preserved order.

Proposition 2.2. If G is non abelian, cK is the restriction of a cosurface c\prime on \Sigma \ast ,n+1

such that for any overcomplex K \prime of K, for any s \in K \prime \setminus K, there exists c\prime \prime a cosurface on
\Sigma \ast ,n+1,

c\prime (s) = c\prime \prime K(s) \in Z(G).

Proof. Let A be a complex as in Definition 2.4. The main points are to know
- what happens for K1 such that K \prec K1? Here again, we can make use of the complex

c (we recall that if K \prec K1, the order is preserved).
- What happens for an overcomplex K’ that the skeleton of a complex A\prime such that A?

what to do with the "interiors"? Let K1 be the complex made of elements s \in K \prime . Let us
assign arbitrarily a value c\prime \prime (s) = g \in Z(G) (e.g. take g = e) if s \in K \prime  - K1. We have

l\prod 
i=1

cK(Ai) =

l\prod 
i=1

\prod 
s\in \partial Ai\subset K

c \circ \varphi Ai
(s)

=

l\prod 
i=1

\prod 
s\in \partial A\subset K1

c \circ \varphi Ai
(s)

on one hand. And on the other hand,
l\prime \prod 

j=1

cK(A\prime 
j) =

l\prime \prod 
i=1

\prod 
s\in \partial A\prime 

j\subset K

c \circ \varphi Aj
(s)

=

\left(  l\prime \prod 
j=1

\prod 
s\in \partial A\subset K1

c \circ \varphi Ai
(s)

\right)  \left(  l\prime \prod 
j=1

\prod 
s\in \partial A\subset K - K1

c \circ \varphi Ai
(s)

\right)  
=

\left(  l\prime \prod 
j=1

\prod 
s\in \partial A\subset K1

c \circ \varphi Ai
(s)

\right)  .e

for the same reasons as in the last proof. \square 

Example 2.1 (Dimension extension of the holonomy cosurface). We have given a way
to extend cosurfaces to higher dimensions. Let us now use it to show that the notion of a
non abelian cosurface is not void on \Sigma \ast ,n for n > 1. For this, let us consider the infinite
lattice

\BbbZ \infty =
\bigl\{ 
(un)n\in \BbbN \in \BbbZ \BbbN | un \not = 0for a finite number of indexes

\bigr\} 
Let G be a unimudular Lie group, and let \theta be a connection on H \times G. Along the edges
of this lattice in particular and more generally on any path, we can define the holonomy
cosurface as in Section 1.4.1. Let K be a weakly saturated 1-complex along the edges
of \BbbZ \infty . Let us now consider the squares that are described by this lattice, and more
specifically those that are gluing along K. They are 2-submanifolds on H and we can
define a cosurface c2,K on \Sigma 2,\ast that reads as in Theorem 2.2. Then, for K “large enough”,
we can find a weakly saturated complex of squares A = (A1, . . . , An) to reproduce the
procedure to get a non abelian cosurface on cubes, and this until we reach the dimension
d for which there no longer exists any weakly saturated complex “based” on K.

For example, take the cube ABCDEFGH and take a complex made of its 12 (oriented)
segments and \theta a SU(N)-connection. With this choice, Z(G) = e so that c2,K is uniquely
determined. Then c2,K is non abelian on the 6 faces of the cube, and by choosing an
order on the faces, i.e., by choosing complex A made of its 6 faces, c2,K extends to a
cosurface c3,A,K which is trivial except on the cube viewed as an element of \Sigma 3,\ast . If one
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wants to get into another dimension (e.g. on the hypercube), the cosurfaces obtained are
trivial except for the chosen manifolds along the cube.

3. Cosurfaces and Cobordisms

By a manifold M we always mean a smooth finite dimensional manifold, possibly with
boundary; if the boundary, denoted by \partial M , is void, the manifold is said to be closed. If N
is a an oriented manifold we denote by N - the manifold N with the opposite orientation.

Let X1 and X2 be oriented closed submanifolds, both of dimension d - 1, where d is a
positive integer. By a pre-cobordism (Y, \phi 1, \phi 2) : X1 \rightarrow X2 we mean an oriented manifold
Y along with an orientation preserving diffeomorphism,

\phi : X - 
1 \sqcup X2 \rightarrow \partial Y.

An isomorphism from a pre-cobordism Y : X1 \rightarrow X2 to a pre-cobordism (Y \prime , \phi \prime 
1, \phi 

\prime 
2) :

X1 \rightarrow X2 is an orientation-preserving diffeomorphism f : Y \rightarrow Y \prime such that f \circ \phi 1 = \phi \prime 
1

and f \circ \phi 2 = \phi \prime 
2. A cobordism is a pre-cobordism up to isomorphisms.

Next, if Y : X1 \rightarrow X2 is a cobordism, and Y is equipped with a top-dimensional volume
form (a measure of volume) we say that Y is a volume pre-cobordism. A volume cobordism
is then an equivalence class of such pre-cobordisms, where the equivalence relation is
obtained by using only orientation preserving and volume-preserving diffeomorphisms. A
theorem of Morse guarantees that any two diffeomorphic compact oriented manifolds of
equal volume are diffeomorphic by means of a volume-preserving diffeomorphism, and so
to restrict the considerations to volume cobordism is not a huge restriction).

To keep notation under control, we will simply think of a cobordism from X1 to X2

as an oriented manifold Y , of dimension d, running “from” X1 “to” X2. Composition of
cobordisms is defined in a natural way. The “identity” cobordism X \rightarrow X is given by the
oriented manifold X \times [0, 1] along with a mapping

X - \sqcup X \rightarrow X \times [0, 1]

that takes p \in X - to (p, 0) and p \in X to (p, 1). Let \bfV \bfC \bfo \bfb d be the category whose
objects are d - 1 dimensional closed oriented manifolds and whose morphisms are volume
cobordisms.

We may also work within a fixed oriented d-dimensional manifold M equipped with a
volume form, and operate only with cobordisms which are (full dimensional) submanifolds
of M . Let \mathrm{V}\mathrm{C}\mathrm{o}\mathrm{b}M be the set of all such cobordisms.

3.1. Adapted saturated complexes. Consider Y and Y \prime two morphisms in the cate-
gory V Cobd, seen as two d-dimensional manifolds equipped with their borders and volume
form. Assume also that \alpha (Y ) = \beta (Y \prime ) so that Y \circ Y \prime exists in V Cobd. Fix now a regular
saturated complex K \prime \prime in Y \circ Y \prime and for the \ast -construction so that the set K \prime \prime \cap \alpha (Y ) is
made of complexes on each connected component of \alpha (Y \prime ). What we want to construct is
a composition rule for saturated complexes adapted to the composition of morphisms in
V Cobd. Namely, we want to build two complexes K \subset Y and K \prime \subset Y \prime and a “composition
rule” based on the composition \ast for which K \ast K \prime = K \prime \prime .

Definition 3.1. Let Y \in Mor(V Cobd) and let K be a regular saturated complex of Y.
Then K is adapted if for each x \in \partial Y \cap K and for eachs \in K such that x \in s,

x \in \partial s

and
x \in \alpha (s) \leftrightarrow x \in \alpha (Y ).
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Intuitively, the complex K is adapted if it satisfies a property of transversality on the
border of Y, and if the initial and final parts of Y coincide with the corresponding initial
and final parts of the surfaces of K reaching the border. Now, let

Y \prime \prime = Y \circ Y \prime .

We want to build a regular saturated complex of Y \prime \prime that splits into Y and Y \prime . For this,
we need 3 parts: \left\{   K1 = \{ \sigma \in K \prime \prime | \sigma \subset \alpha (Y ) = \beta (Y \prime )\} ,

K0 = \{ \sigma \in K \prime \prime | \sigma \subset Y and \sigma /\in K1\} ,
K \prime 

0 = \{ \sigma \in K \prime \prime | \sigma \subset Y \prime and \sigma /\in K1\} 
such that K1 is a covering of \alpha (Y ), and K0 and K \prime 

0 are adapted saturated complexes of
Y and Y \prime , respectively. Notice that under this condition, \alpha (Y ) is a m - 1-manifold, and
the borders \partial s, with s \in K1, can define a complex on \alpha (Y ) by their smooth components
up to re-ordering. This is what we specify first, and then we give a precise construction
from cutting and pasting.

3.2. Border reduction. Let K b an adapted complex on Y \in Mor(V Cobd). Let A be
a covering of Y with respect to K and let us consider Ak \in A such that \partial Ak \cap \alpha (Y ) has
a non empty interior in \partial Y (one can replace here \alpha (Y ) by \beta (Y )). Let \~Ak be the closure
in \partial Y of the interior of a connected component of \partial Ak \cap \partial Y. This is a connected subset
of \partial Y, not necessarily simply connected.

\bullet Orientation \~Ak is a (d - 1) manifold with boundary, with the orientation induced by
the orientation of the border of Y.

\bullet Initial and final parts. Now, let us consider \partial \~Ak. This is a (d - 2) piecewise smooth
manifold, since it is a subset of

\bigcup 
s\in K \partial s. Let s \in K \cap \partial Ak such that s \cap \~Ak \subset \partial \~Ak.

Then the orientation on s \cap \partial \~Ak is the one induced by the orientation of s, which defines
whether it is an initial or a final part.

Notice that we have here no induced order from the adapted complex K to the border
reduction. The border reduction is a non ordered regular complex on \partial Y, which is not
necessarily saturated because it defines a partition of \partial Y into subsets which are non
necessarily simply connected, with orientations induced by Y and K.

3.3. Complexes for cobordism, cosurfaces and measures part I: cutting. We
now give a more restricted class of complexes.

Definition 3.2. We say that K \prime \prime is an n-complex for cobordism if K \prime \prime = K \prime \prime 
a \cup K \prime \prime 

\alpha \cup K \prime \prime 
\beta if

\bullet K \prime \prime 
\alpha is a covering of \alpha (Y \prime \prime ) = \alpha (Y \prime ),

\bullet K \prime \prime 
\beta is a covering of \beta (Y ) = \beta (Y \prime \prime ),

\bullet K \prime \prime 
a is a saturated complex of Y \prime \prime ,

We now need to say how we “cut” Y \prime \prime \in Mor(V Cobd). Let Y, Y \prime \in Mor(V Cobd) be
such that Y \prime \prime = Y \circ Y \prime exists. We say that we can cut (Y \prime \prime ,K \prime \prime ) if there exists \theta \in \scrP (\BbbN n)
such that

K \prime \prime 
a = \{ \sigma i \in K \prime \prime | i \in \theta \} 

is an adapted complex in Y \prime that splits as K \prime \prime 
a = Ka \cup K \prime 

a \cup K \prime \prime 
b , where Ka and K \prime 

a are
adapted complexes of Y and Y \prime , respectively, and

K \prime \prime 
b = \{ \sigma i \in K \prime \prime | i \not \in \theta \} 

which defines a covering of \alpha (Y ).
The sets Ka,K

\prime 
a,K

\prime \prime 
\alpha ,K

\prime \prime 
\beta and Kb are equipped with the order induced by K \prime \prime , and

gathering the corresponding parts, we get two complexes for cobordism:
- K = Ka \cup Kb \cup K \prime \prime 

\beta on Y ,
- K \prime = K \prime 

a \cup K\alpha \cup Kb on Y \prime .
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Remark 3.1. Kb, as a subcomplex of K \prime \prime , splits M.

Now let us turn to measures. For this, we now take a stochastic cosurface C \prime \prime 
N on Y \prime \prime 

adapted to the cobordism, that is one that can be divided into two stochastic cosurfaces
CN and C \prime 

N on Y and Y \prime which coincide on

\alpha (Y ) \cap \Sigma \ast = \{ \sigma \in \Sigma \ast | \sigma \subset \alpha (Y )\} .
Since the order on K \prime \prime determines orders on subcomplexes, for each domain A\prime \prime 

i we define
\phi Ai

\circ C \prime \prime that equals to \phi Ai
\circ C or \phi Ai

\circ C \prime (we recall that we have Ai \subset Y or Ai \subset Y \prime 

since K \prime \prime is a complex for cobordism) and each domain is connected and simply connected.
If G is non abelian, we assume that the indexation of the family (Ak)k is such that the
indexes of the domains in Y \prime are at the beginning of the list, and that the indexes of the
domains in Y are at the end of the list. If G is abelian, this assumption is not necessary.

Theorem 3.1.
\mu K .\mu K\prime = \mu K\prime \prime .

Proof. Let us build two groups in the formula of Definition 1.10, namely, with the
notations of Theorem 3.1,

\mu Q
K\prime \prime (c

\prime \prime ) =

k\prod 
i=1

q| Ai| (\phi Ai
\circ c\prime \prime (K)) .

This formula does not depend on the order among the indexes \BbbN k, so that we can define
a twofold partition I, J of \BbbN k defined as follows: I (resp. J) is the set of indexes i such
that Ai \subset Y (resp. Ai \subset Y \prime ). Then

\mu Q
K\prime \prime (c

\prime \prime ) =

\Biggl( \prod 
i\in I

q| Ai| (\phi Ai
\circ c\prime \prime (K))

\Biggr) 
.

\left(  \prod 
j\in J

q| Aj | 
\bigl( 
\phi Aj

\circ c\prime \prime (K)
\bigr) \right)  

=

\Biggl( \prod 
i\in I

q| Ai| (\phi Ai
\circ c(K))

\Biggr) 
.

\left(  \prod 
j\in J

q| Aj | 
\bigl( 
\phi Aj

\circ c\prime (K)
\bigr) \right)  

= \mu Q
K(c).\mu Q

K\prime (c
\prime )

\square 

Remark 3.2. In order to get saturated complexes we had to add a complex on the border
of the manifold Y. This assumption was not explicitly present in the papers [1, 2, 4, 5] where
open manifolds were also considered. For volume cobordism, only compact manifolds
with boundary are considered. A link with finite volume open manifolds can be done in a
particular case of cosurfaces c such that, for any complex for cobordism K, we have the
property c| Kb

= e.

3.4. Complexes for cobordism, cosurfaces and measures part II: pasting. Now
let us consider the inverse problem, and let us only point out extra facts that give
“anomalies” to the pasting procedure. Let us consider Y, Y \prime \in V Cobd, equipped with two
complexes for cobordisms K and K \prime and two cosurfaces c and c\prime . Here are conditions to
be able to build up a complex for cobordism K \prime \prime on Y \prime \prime = Y \circ Y \prime :

(A) Kb \cap \alpha (Y ) = K \prime 
b \cap \beta (Y \prime ) with corresponding orientations, initial and final parts

on each hypersurface and on each border.
(B) c| Kb\cap \alpha (Y ) = c\prime | K\prime 

b\cap \beta (Y \prime ).

With this, one can build up c\prime \prime , but one cannot build up K \prime \prime in a unified way. This
depends on a choice of reindexation, compatible with the orders of Ka, Kb, K

\prime b and K \prime a
that we have recovered by “extraction” from K \prime \prime .
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Proposition 3.1. There exists such a cobordism K \prime \prime with the properties (A) and (B).

Proof. Let us start with

K \prime \prime 
0 = Kb \cap \alpha (Y ) = K \prime 

b \cap \beta (Y \prime ) = (s1, . . . , sl).

We build up by induction a complex K \prime \prime which satisfies (A) and (B). In a complex Ke,
for s \in Ke, we denote by befKe

(s) the subcomplex of elements of Ke before s in the list,
and by aftKe(s) the subcomplex of elements that are after s in the list.

\bullet First step. Let
K \prime \prime 

1 = befK(s1) \cup befK\prime (s1)\cup 
(this union is an ordered union, made first of the ordered set befK(s1), secondly of
befK\prime (s1) and finally of K0).

\bullet Intermediate steps. Let i \in \BbbN l - 1. Assume that we know K \prime \prime 
i . Set

K \prime \prime 
i+1 = befK\prime \prime 

i
(si+1) \cup (aftK(si) \cap befK(si+1)) \cup 

(aftK\prime (si) \cap befK\prime (si+1)) \cup aftK\prime \prime 
i
(si).

(with the ordered union)
\bullet Final step. We have obtained K \prime \prime 

l the last element of which is sl. Then

K \prime \prime = K \prime \prime 
l \cup aftK(sl) \cup aftK\prime (sl).

Then one can extract K and K \prime from K \prime \prime with the desired order. \square 

Since the corresponding coverings A = (Ai)i\in I of Y and A\prime = (A\prime 
j)j\in J of Y \prime are well

defined and since all the quantities depend only on the indexation of the hypersurfaces
on the borders of each domain, with an order already defined by K and K \prime and that will
not be changed while passing to K \prime \prime , the quantity\Biggl( \prod 

i\in I

q| Ai| (\phi Ai \circ c(K))

\Biggr) 
.

\left(  \prod 
j\in J

q| Aj | 
\bigl( 
\phi Aj

\circ c\prime (K)
\bigr) \right)  = \mu Q

K(c)\mu Q
K\prime (c

\prime )

corresponds to the (classical) definition of \mu Q
K\prime \prime (c\prime \prime ) for any possible choice of indexation

for K \prime \prime .

4. Series indexed by stochastic cosurfaces and cobordisms

We describe here a class of formal series where the indexes which remain in cobordisms,
based on the setting of stochastic cosurfaces. We do not wish to consider homotopy
invariant properties, and describe some kind of “pseudo-cobordism”. We now consider the
set

Gr =
\coprod 

m\in \BbbN \ast 

Grm,

where Grm is the set of m-dimensional connected oriented manifolds M , possibly with
boundary, where the boundaries \partial M are separated into two disconnected parts: the initial
part \alpha (M) and the final part \beta (M). Then, we have a composition law \ast , called cobordism
composition in the rest of the text, defined by the following relation.

Definition 4.1. Let m \in \BbbN \ast . Let M,M \prime \in Grm. Then M \prime \prime = M \ast M \prime \in Grm exists if
(1) \alpha (M) = \beta (M \prime ) \not = \emptyset , up to diffeomorphism,
(2) \alpha (M \prime \prime ) = \alpha (M \prime ),
(3) \beta (M \prime \prime ) = \beta (M),
(4) M \prime \prime cuts into two pieces M \prime \prime = M \cup M \prime with M \cap M \prime = \alpha (M) = \beta (M \prime ).
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This composition, that we call cobordism composition, extends naturally to embedded
manifolds.

Definition 4.2. Let N be a smooth (finite dimensional) manifold,

Gr(N) =
\coprod 

m\in \BbbN \ast 

\coprod 
M\in Grm

Emb(M,N),

where the notation Emb(M,N) denotes the smooth manifold of smooth embeddings of
M into N.

Notice that, since dim(N) < \infty , we have m \leq dim(N). We recall that that Gr(N) is
naturally a smooth manifold, since Emb(M,N) is a smooth manifold [9], and that \ast is
obviously smooth because it is smooth in the sense of the underlying diffeologies. When
we only consider manifolds without boundary (in this case, cobordism composition is not
defined), these spaces are called non linear grassmanians in the literature, which explains
the notations.

Definition 4.3. \bullet Let I = (Gr \times \BbbN \ast )
\coprod 
(\emptyset , 0), graded by the second component.

Assuming \emptyset as a neutral element for \ast , we extend the cobordism composition into
a composition, also denoted \ast , defined as:

(M,p) \ast (M \prime , p\prime ) = (M \ast M \prime , p+ p\prime )

when M \ast M \prime is defined. We call length of (M,p) the number len(M,p) = p.
\bullet Let I(N) = (Gr(N)\times \BbbN \ast )

\coprod 
(\emptyset , 0), be graded by the second component. Assum-

ing \emptyset as a neutral element for \ast , we extend the cobordism composition into a
composition, also denoted \ast , defined as:

(M,p) \ast (M \prime , p\prime ) = (M \ast M \prime , p+ p\prime )

whenever M \ast M \prime is defined.
\bullet Let m \in \BbbN \ast . We denote by Im and Im(N) the set of indexes based on Grm and

on Grm(N), respectively

Let us now gather the framework of cobordism and stochastic cosurfaces into series.
First, fix m > 1, the dimension of the theory of cobordism. The set of indexes is the
one described in Theorem 3.1, namely, \Gamma \subset 

\coprod 
p\in \BbbN \ast Ip, resp. \Gamma (N) \subset 

\coprod 
p\in \BbbN \ast Ip(N), be a

family of indexes, stable under \ast , such that \forall p \in \BbbN \ast ,

(1) \forall p \in \BbbN \ast , \Gamma \cap Ip is finite or, more general;
(2) \forall \gamma \in \Gamma , the set of pairs (\gamma \prime , \gamma \prime \prime ) \in \Gamma 2 such that \gamma = \gamma \prime \ast `\gamma \prime \prime is finite.

We fix a family
\scrA \Gamma =

\prod 
\gamma \in \Gamma 

\scrA \gamma 

of Fréchet vector spaces \scrA \gamma which is equipped with a multiplication \ast which is defined
component-wise,

\scrA \gamma \times \scrA \gamma \prime \rightarrow \scrA \gamma \ast \gamma \prime 

smooth (in the Gâteaux sense), and such that (\scrA \Gamma ,+, \ast ) is an Fréchet algebra for the
product Fréchet structure.

Let us now turn to our motivating example. Let \Gamma be a family of piecewise smooth
manifolds, made along the infinite lattice \BbbZ \infty , of fixed dimension m. Let us also normalize
the volume of a m-cube to 1. The family \Gamma is \BbbN -graded by the volume, and assume that
we have a stochastic cosurface on o (m - 1)-cubes, either defined directly, or by dimension
extension. Assume now that the complex K, supporting the family \Gamma , is a (maybe infinite)
complex for cobordism. Then, following Theorem 3.1, we have the map

\mu K : M \in \Gamma \mapsto \rightarrow \mu K(M) \in \scrA \subset M(\Omega ),
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where M(\Omega ) is the space of measures on \Omega , and \scrA is a complete vector space of measures
such that convolution is associative. Then, we are in the context of application of the
main theorems of this paper.

Theorem 4.1. For a fixed choice of stochastic cosurface, the mapping \gamma \in \Gamma \mapsto \rightarrow \mu K(\gamma )
defines an element of \scrA \Gamma 

The proof is obvious.
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