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VANISHING CARLESON MEASURES AND POWER COMPACT
WEIGHTED COMPOSITION OPERATORS

AAKRITI SHARMA, AJAY K. SHARMA, AND M. MURSALEEN

ABSTRACT. In this paper, we characterize Carleson measure and vanishing Carleson
measure on Bergman spaces with admissible weights in terms of t-Berezin transform
and averaging function as key tools. As an application of the main results of this
paper, we characterize power bounded and power compact weighted composition
operators on Bergman spaces with admissible weights.

Hanano xapakrepusarito mipu Kapmecona i mipu Kapiecona, mo npsmye go myss,
Ha IIpocTopax Beprmana 3 I0onycTUMUMHU BaraMu B TepMiHax t-nepemeopents Bepesina
Ta HYHKUIEI YycepeoHenHs B sIKOCTI KJIFOYOBUX iHCTpyMmeHTIB. fIk 3acTrocyBaHHsS
OCHOBHUX Pe€3yJIbTATiB Ii€] pobOTH HAJAHO XapaKTEPU3AII0 CTEIEHEBO OOMEXKEHUX Ta
CTEIEeHEBO KOMITAKTHUX 3BarKEHUX OIl€paTOPiB KOMIO3UILl Ha mpocropax Beprmana 3
JIOIIyCTUMUMU BaraMmu.

1. INTRODUCTION

Let H(ID) denote the space of analytic functions on the unit disk D = {2€C : |z| < 1}.
Given a positive integrable function o € C?[0,1], we extend it on D by defining o(2) =
a(|z]),z € D, and call such o a weight function.

For 0 < p < oo and a positive Borel measure €2, the space LP(2) consists of all
measurable functions f on D for which

1y = [ 17GIPa0) < .

In the case p = oo, the space of all complex-valued measurable functions f on D is defined
as

L) = {f € H(D) : ||flloo = ess sup.cpl(2)] < o0},
where the essential supremum is taken with respect to the measure Q. A sequence { f, }nen
is norm bounded in L () if sup,,cy || fulloo is finite. Let dA(2) = %% be the normalized
Lebesgue area measure on D, we define the weighted Bergman space as

A = (f € H(D) IfHAp—/If Po(2)dA(z) < oo},

Note that A2 is a closed subspace of L?(cdA) and hence is a Hilbert space endowed with
the inner product

9 = [ FRaEo (AR f e 42

Throughout this paper, we will consider ¢ as admissible weight function. Recall that
if a weight function o is non-increasing on [0,1) and o (r)(1 — 7)~(**+9) is non decreasing
on [0,1) for some § > 0, then o is called admissible weight.

We refer the readers [12] for useful fact over pseudohyperbolic metric. The pseudohyper-
bolic metric is defined as p(a, z) = |pa(2)|, where ¢4(2) = == is M&bius transformation.

Forrin (0,1) and a in D, E(a,7) = {z € D: p(2,a) <1} = ¢ (E(0,7)) = ¢ ({z : |2| < T})
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denote the pseudohyperbolic disk center at a and radius r € (0,1). It turns out E(a,r) is
2 2
a Euclidean disk with center 1_7ra and radius w.
1— |al?r? 1 —|al?r?

For every z € E(a,r), (1 —|a*)? < (1 — |2/*)? < |1 —az|? and area of E(a,r) is
denoted by |E(a,)| and |E(a,r)| < (1 — |a]?)? are well known facts. Here the symbol
7 =<7 denotes that the left hand side is bounded above and below by constant multiples of
the right hand side, where the constants are positive and independent of variables. Given
rin (0,1), a sequence {z;}32, C D is said to be an r-lattice if the disk {E(zx,7)}52,
cover D and there is some integer M > 0 such that each z in D belongs to at most M of

the disks {E(zy,, 17)}5°,. Equivalently,

13 s () < M. (11)
k=1
Recall that,
1
K¥z,w)= ————, z€D

(1 —wz)et2’
is the reproducing kernel in standard weighted Bergman space AL = AP where standard

weight o(z) = (1 — |2]?)®™2, @ > —1. The normalized reproducing kernel of A?, is defined
as
« KOé (27 )
k3 ()=

K (z,2)

1

(1= |z2)>+2"
For a finite positive Borel measure €2 on D, the t-Berezin transform is defined to be

ﬁt(z):/ﬂm(|k§‘(w)|)tdﬂ(w)7 zeD. (1.2)

where K*(z,z) =

Note that for ¢ = 2, the classical Berezin transform is denoted by Q,. Given r in (0,1),
the averaging function of € is defined to be

~ Q(E(z,71))

Q-(2) = Ezr)| z € D. (1.3)

If we set d2 = fdA, for a Lebesgue measurable function f, then we can write ft =
and ﬁ = Q, for simplicity.

Motivated by [21] and [9], in this article we characterize Carleson measure and vanishing
Carleson measure on Bergman spaces with admissible weights in terms of ¢-Berezin
transform and averaging function as key tools. An operator T' on a normed linear space
(X, ||l-llx) is called power bounded if {T™} is a bounded sequence in the space of all
bounded operators from X to itself. Also, recall that an operator T' on Banach space
(X, ||l-llx) is said to be power compact if there exist some integer m > 0 such that 7™
is compact from X to itself, see [2]. Denote by A?(C), the linear space of all double
sequences with complex entries. A double sequence {v; 1}; ren of complex numbers is
bounded if there exists some M > 0 such that sup; ; |y, x| < M. The space A2 of all
bounded double sequences is defined as

A2, = {7k = {viktiken € A2(C) : [skllaz, = Sup V5| < oo}
VL

Let Cy 4 denoted the well known weighted composition operator on the space H(D) is
defined as

Cyo(f)=10(fo9)
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where ¢ € H(D) and ¢ is an analytic self map of D. If ¢(z) = z and ¢ = 1, then Cy 4
becomes the multiplication operator M, and the composition operator Cy respectively.
Denote by ¢, the nth iteration of ¢, that is,

bn=0000.
——

n—times

Note that any power of Cy 4 on H(D) is a weighted composition operators which is
defined as

n—1
Cpsf =[[Wo¢j)fodn

Jj=0

For the sake of simplicity, we set
n—1
W, 0,m) =[] ved;
j=0

Thus,
1 S50y = /D (0, 6, n)(2) f © fn(2)[Pd(2).

We define dQ,, = [(¥, ¢, n)|dQo ¢, L. One can easily see that (2, is a measure and therefore

12 o I ) = / P,

.For t > 0, the t-Berezin transform and for 0 < r < 1, the averaging function of €,, are
defined as

ﬁnt(z) :/ (|k§‘(w)|)tdﬂn(2), z€D
D
and
~ Q. (E(z,1))
Qn,r(z) — I\ )
|E(z,7)]
respectively. For more about weighted composition operators, Carleson measures and

vanishing Carleson measures, we refer to [12]-[16]. Throughout the paper, the expression
E < F means that there exists a constant C' such that £ < CF.

z €D,

2. PRELIMINARIES

In this section, we prove and collect some useful facts and lemmas that are required
for the proof of our main results. The next lemma gives a growth estimate for functions
in AP and an asymptotic estimate for norm of K*(z,-) already proved in [1].

Lemma 1. Let 1 <p < oo, a > —1,r € (0,1), t >0, o be an admissible weight, and
be a finite positive Borel measure. Then

(1) for each z € D, we have
lf(2)|P < M forall fe AP, (2.4)
~o(z)(1—1z?)? 7
(2) for each z € D, we have

1

(0(2))7 (1= |zf2) @275

(3) the operator f — f» is bounded from LP(D) to LP(D).

1K (2, ) llaz =<
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(4) there exists some constant C such that

/ h(z)dQ(z) < C / h(2)Q,(2)dA(2)
D D

for all non-negative subharmonic functions h : D — [0, 00).
(5) there exists a constant C' such that

C
B, B) < e o Q(B(2,7))dA(2). (2.6)

(6) the integral operator

4f(2) = () (1= o) 2 [ — g )'f(a_( ﬂ))% S HOAAE)

is bounded on LP (D), whenever 1 SE<s<(a+ 2)L %

Proof. The proof of the lemma is arranged as follows.

(1) and (2) are proved in [1].

(3) Since xp(z.r) (&) = XE(e,r)(2), 2, & € D. By Fubini’s theorem for all f € L'(D), we
have

Iy NG >]dA<z>
dA( )
[ oy [ e
B dA(z)
- / F©IdAE) /E o TG
< |l

The boundedness of the operator f —s £, is trivially holds for p = oo, that is, ||]?T||Oo <
I/ lloo and also holds for 1 < p < oo, by complex interpolation.

(4) holds, since h is a non negative subharmonic function h : D — [0, 00). Then, we
have

C
h(z) < s
|E(Z’T)‘ E(z,r)

for all z € D, see [12, page 125]. Using the above inequality, Fubini’s theorem and (1.3),

we have that
/ h()dQ(z) < C / h(€)dA(E)
‘ E(z,r)

dQ(z)
‘C/h dA(f)/EM BG.r)]

<C/ A(z)

h(€)dA(€)

This accomplished the result.
(5) For 7, R > 0, we have

/E o B AG) = /D Yo (2)dA(2) / oy ()42

- / a0(w) (e () dA(w)
D E(a,R)
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Since X g(z,r) (W) = XE(w,r) (2) for all z,w € D,

/E(%R)Q(E(zm))dA(z) Z/Ddﬂ(w) [E(%R) XE(w,r) (2)dA(2)
2/ |(E(a, R) N E(w,r))|dQ(w)
E(a,R)

> Q(E(a, R)) inf  {|(E(a, R) N E(w,r))[}
weE(a,R)
For w € (E(a, R), then there exists a Euclidean disk with diameter § min{r, R} contained
n (E(a, R) N E(w,r)). Therefore (2.6) holds.
(6) Let P = =2(s+1), Q = 2 {(a+2)t — 2 — s}, U = =H=E2 g v =
Then the intervals (P, Q) and (U, V) are non-empty. By using the hypothesis one ca
easily find that

= ‘U'\l‘n

1 1
and
_(a+2) 1
VU= ) >0

implies that the intervals (P, Q) and (U, V) are non-empty. Also,
1—
VoP=s——L>0
p
and
1
Q—U:(a+2)t—2+5—s>0

implies that P < V and U < Q. Thus, (P,Q) N (U,V) is non-empty. For some
m € (P,Q) N (U, V) and take h(¢) = (o(£)(1 - [£[*))™ and L + -7 = 1. From part (1) of
Lemma 1, there is a positive constant C' such that

O'S(Z)(]. _ |Z|2)(a+2)t72s /D Us(f)|ga(«z|é|i))|2(51) hp/(f)dA(f) < Chp/(g)7 2z €D,

and
—s 2(1—s) o s a+2)t— 25
7o) (L= ) [ IRl 1 = ) ©da) < ow),
z € D. By Schur’s test, boundedness of the operator T} s on L”(D) holds. O

Lemma 2. Let {z}72, be an r- lattice. For 1 < p < oo and {\g}32, € 1P, let

Fe) = i)\k K* (2, 2) (2.7)

= ov () (1 — |z f2) 502

where o > —1. Then f € AZ(D) and ||f|lp,c < Cl{ e} |lir-

The proof is an easy modification of arguments in |1, Theorem 4.1]. We omit the
details.

Lemma 3. Suppose 2 >0,1<p<oo,t>0 and s € R satisfies t < s—l—%< 1. Then

the following are equivalent:
— Qi(z
(0) Miale) = )
7% (2)(1 = [£f2)

Qr(2)
oo (2)(1 — [2[?)2(=D)

€ L?(D).

(b) MR’S(Z) = € LP(D) for some R, 0 < R < 1.
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Q, >
(c) The sequence { {za) 2(s—1—1 } belongs to P for any r-lattice
o5 (zi) (1 — |2|2)2C 7179 )y
{ze )2, with0 <r < 1.
Moreover, we have

— = Q1) °°

el = 1Tl = | § .
’ T N o ) (1 = 1227 Szl

Proof. We will prove the result in the order: (a) < (b) and (b) < ().
(a) = (b). For any R € (0,1), there exists a positive constant Cr such that for any
z € D the kernel estimate holds. Thus for s € R , we have

_QEGR)
os(2)(1 — |2|2)2s
1
2 k2 ()] d
o5(2)(1 — |2]?) 2~ (5508 [E@,R)' (©)[7do(e)
1 o
SCRUS(Z)(1—|2'|2)25—(QT+2)1£ /lez OI"d(&)

< CrMy.(2)

Mp.o(2) =

< Cr

Above implies that ||]\/4\R,s||p < C||Z\A4/t7s||p.
(b) = (a). By part (3) and part (4) of Lemma 1, there is a positive constant C' such
that for any z € D and s € R, we have

Qu(2)
ot (2)(1 = |22y
1 % t
- / ke (€)' (e)

% (2)(1 — |22) 2= (251

JS(Z)(l—|zC|’2)25—(”;“"’)t/D|k?(f)|t§R(5)dA(g)

< T KOO0 DR (€ dA)

< CTy_o(Mp.)(2).

M, (2) =

Since t < s + % < 1, part (6) of Lemma 1 implies that

1My sllp < Tt —s(Mp,s)llp < ClI MR,

o

(b) = (¢). Assume that ]/\/[\R,s € LP(D) for some R, 0 < R < 1. Let {z;}32; be any
r-lattice. By part 5 of Lemma 1, we may assume R < r. By triangle inequality, we have
E(z,7) C E(2,2r) for z € E(z,r) and for all k. Thus, we have

Q-(21) < Q(E(z,2r))
o (z) (1 — [2]2)2=D) US(Z)E1 — [2?)%
QQT(Z)

~

SEECIFREES
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whenever z € E(zg,r). Therefore, we have

0P(20) / a5, (2)
L dA
Z P(20)(1 — |2 [2)2G—Dp—2 = Z By 7P (2)(1 — [2]2)2G-Dp ()

()
<CMAJW>04W@UﬂM”

Thus by part (5) of Lemma 1, we have

H{a (z1)(1 — iZTg)Q“ 1—>}
O (1)

(¢) = (b). Finally, suppose {
oo (z) (1 — |z[2)* 77

{#zt}%2,. Similar to (2.8), Q,(2) < C’ﬁgr(zk) for z € E(z,r). Therefore, we have

/]D (08(5)(1%%)2)2(8_1)) Z/ (srr) 15?)(2 2)2(s= 175 PA(E)

< CZ QT(Zk)

O-Sp Zk 1_ ‘zk|2)2(s 1)p—2

< CZ QP (2)

2 o (z) (L — [z )02

< Ol Maysllp < [[MR,sllp-

} € [P for some r-lattice

Above inequality and part (5) of Lemma 1 implies that

Vi v ﬁr(zk)
|Mmmx«Mwb§4H _—
(o)1= | )2 S

for any R € (0,1). O

r

3. CARLESON MEASURE CHARACTERIZATIONS

In this section, we are using averaging function and t-Berezin transform as our main
tools to characterize the (p, ¢, 0)—Bergman Carleson measure for 0 < p,q < oo and ¢t > 0.
Let 2 be a finite positive Borel measure. Recall that

(i) Qis a (p,q,0)—Bergman Carleson measure if the embedding i : A — L(1) is
bounded. In other words, we can say Q) is a (p, ¢, 0)-Bergman-Carleson measure
if there exists a finite constant C' > 0 such that

[1svae < cise,

for all f € AP.

(ii) Q is a vanishing (p, q, o)-Bergman-Carleson measure if [ ] fn]?dQ — 0 as n —
oo whenever {f,} is a bounded sequence in AP which converges to 0 uniformly
on any compact subset of .

Note that, by taking p = ¢ and o(z) = 1, Q becomes a Bergman-Carleson measure and a
vanishing Carleson measure. We divide our result into two cases: 0 < p < g < oo and
0<qg<p<oo.

Theorem 3.1. Let Q) be a finite positive Borel measure and 0 < p < g < co. Then the
following statements are equivalent:

(a) Q is a (p,q,0)-Bergman-Carleson measure.
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. £~2t(Z)
(b) The function OB is bounded on D fort > p(a+2)
ﬁ

(c) The function — R( ) =5 is bounded on D for any R € (0,1).

ov(z Z| )%
(d) The sequence { - ar) ~ } is bounded for any r-lattice {2},

7 |zk|2> ) =
with 0 < r < 1.
Furthermore,
il 4z £ (@) < SUP — n(z) 7otz
: 26D o (2)(1 - [£f2)7F -
_ ﬁR(Z)
2D o7 (2)(1 — [2[2)* 57
2 (z1)

(3.9)

= sup —
k =)

0% (z) (1 = |z2)

Proof. ( ) (a) We assume that {z;}72 | is an r-lattice. We use the elementary inequality
S ub < (Cpe k), up >0, k=1,2,---, by taking | = B> 1, using parts (1) and
(2) of Lemma 1 and (1.1), we obtain

/\f )[1d02

/ ()|
E(zk,r)

0GB, >|( w170

z€E(z,T)

3 0 ) Pg(€)dA ’
3 (1—|zk\ )2(%(/]5(%1?‘)|f(£)| ©aA(6))

QT(Z;C) >
< (Csu Po(€)dA
< kpg:<zk><1_|zkz)2<q:>(; [N GIRIGZT)

<CM?» sup —; 2 (z)
Foow(zk) (1 — |zk]?)

aq
P

IN

?ME% i M8

\ /\

g .1
1 e (3.10)

The above inequality reveals that

§T<Zk)
o (i) (1 — |2 [2) 25

3]l a2 = Loy < Cs:p
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(@) = (¢). Set fi(w)

statement(a), we have

ﬁR(Z)

= K%(z,w),

267

w € D. By part (1), (2) of Lemma 1 and

QE(z,R))

ot ()1~ |2P)*

o (2)(1 — |2[2)2F0)

0H~27g
z
<UD Ty gpan)
ov(z) E(z,R)
1— (@+2—2)
< o=kl [ ir@rane) (311)
o'p
(1- IZ\) ‘”2"
<UL % ooy 1%
or(2)
< Cllillsy -
The above inequality reveals that
Qr(z :
sup G — (312)

2eD o5 (2)(1 — |2]2)2(F")

The equivalence of (a), (¢), and (d) follows from the above proof of implications. Moreover,

Qr(2)
i ||AP—>LP(Q) = sup o 2(=E
2€D o (2)(1 — [2]2)°5
= sup S () . (3.13)

Eob (z)(1 - |2)?F)

(b) = (¢). For any R, 0 < R < 1, Lemma 3 yields
n(2) <c (2) . (3.14)
o (2)(1— 22205 T ab(2)(1 - |52)? )

(a) = (b). The estimate (3.13) reveals that the embedding operator i : AL — L(Q)
is bounded for some 0 < p < ¢ < oo if and only if ¢ : A2 — L% (Q) is bounded

for some 0 < p; < ¢ < oo with 1% = 4. Since Q is a (p,q,o)-Carleson measure,
= Kza(')’ zeD,

i: ANP — LN4(Q) where N is some integef with Np > ﬁ. Let f.(.)
and (3.13) tells us that
Qng(2) 1
oh ()1~ [22)?F TN B ()1~ []2)%
LN T

T oR(2)(1 - |2|2)2E(FFINa

Q
< Csup — r(z) —.
Eoob (z)(1— [2[2)>5)

o [ 1O e (1)

Hence, for any z € D

D (2) < cllif™
E(2)(1 — |2)2 5PN A L)
Q.
=< Csup— et
© ot () (1L — [2f2)25
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ip
Statement (a) shows that the operator i : Ay — L~ (Q) is bounded. Since t > —21_

pla+2)’
we have w > 2. The above calculations show that
ﬁt(z) N
su < COil|
o e = v
O ()
= Csup —; )
koov(z)(1—|z?)" 7
This completes the proof. O

Corollary 1. Lett >0, 0 < p < 0o, d§) = odA be a positive measure, and Cy , : AL —
LP(Q) be a bounded operator. Then the following statements are equivalent.

(a) Cy,, ts power bounded, that is,
Q1 = sup ||C$#,||p < o0.
neN
(b) The sequence of functions {f,}>, defined on D as

B Q4(2)
fn(Z) - 0(2)62_(0‘+2)t/2<2’)

is a norm bounded family in L= (D) fort > 2/(a + 2), that is,

Qna(2)
Q2 - i‘ég ||fTL||OO = SUPpcN©eSS SupzeDO'(Z)(52_(a+2)t/2(Z) < 00.

, 2z €D,

(c) The sequence of functions {gn >, defined on D as

z —L"’R(Z) z
gn( ) - O'(Z) 9 S ]D)a

is a norm bounded family in L (D) for any R € (0,1), that is,

Q3 = sup [|gn|loc = sup,eness sup.cp— "= < oo.
neN o(z

(d) The double sequence ynk = {Vn.k n.k, where

_ Qn,r(zk)
Yok = -~
o(zk)
is bounded for any r-lattice {z}52, with fized r, 0 < r <1, that is,
Q Zk
Q1 = |ukllaz, = sup D (zk) <000

n,keN U(zk)
Moreover, Q1 < Q2 < Q3 < Q4.

Theorem 3.2. Let @ > 0 and 0 < p < q < oo. Then the following statements are
equivalent:

(a) Q is a vanishing (p, q,c)-Bergman-Carleson measure.

(b) Fort > ﬁ, we have

as z — OD.
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(¢) For any R € (0,1), we have

Qr(z
o )2 =T
oF ()1~ 25
as z — OD.
(d) For any r-lattice {z}32, with r € (0,1), we have
Q,
q (Zk) a—P — 0
o7 (21)(1 = [2[2)*F
as k — 0.

Proof. The implication (¢) = (d) is trivial because 2z — 0D as k — oo whenever {zj}7° ;
is an r-lattice. It follows from (3.14) that (b) = (c).

Ka
(a) = (c) Given 0 < R < 1. For z € D, we set f.(§) = — (©) , €D
v (2)(1—|z2)p )

One can easily find that f. € AZ, ||f.|p,c < C and f, — 0 uniformly on any compact
subset of D as z — 9D. Since ) is a vanishing (p, ¢, 0)-Bergman-Carleson measure, it

follows from (3.11) that

Qr(z 1— |z]2)dlet2=3
R ) L 0 [ 1#91rdne) — o
2)2(45%)
or(2)(1—[2?)"® or(2) D

as z — JD.

(d) = (a). Suppose (d) holds. For any ¢ > 0, there exists a positive integer ko such

QT(Zk)

ov (z)(1 — |2 [2)? 5"
compact in D. Let us consider a bounded sequence {f;}32; in A% such that f; — 0
uniformly on any compact subset of D as j — co. Similar to the proof of (3.10) and if j
is large enough, we have that

/D 1£5(2)9d2z) < / 0 oo, N0 Py / _ Ih@rae)

k=ko+1

that < ¢, whenever k > ko. Notice that US° | F(z,7) is relatively

< Cel £ill,0

< Ce, (3.16)

where C' is independent of e.

(a) = (b) The equivalence of (a), (¢), and (d) shows that the measure 2 is a vanishing
(Np, Ng,0)-Bergman-Carleson measure if 2 is a vanishing (p, ¢, 0)-Bergman-Carleson
K2(§)

o7 (2)(1 = |z[2) =+
fz € A2 || f2llpe < C, and f, — 0 uniformly on any compact subset of D as z — 9D.

Since Np > ﬁ and it follows from (3.15), we have that

measure. For z € D, set f,(§) = £ € D. One can easily find that

ﬁNq(Z) _ 1 quQ
0% (2)(1— |22)25~CFING T o3 (2)(1 — |22 )2;_(a2+2)Nq/sz(£)| (©)-

Statement (a) yields that € is a vanishing (

tp i
Ng N0 O o)-Bergman-Carleson measure. There-
fore

lim
=20 05 (2)(1 - |2 )

The proof is completed. O




270 AAKRITI SHARMA, A. K. SHARMA, AND M. MURSALEEN

Corollary 2. Lett >0, 0 < p < 00, d2 = 0dA be a positive measure and Cy , : AL —
LP(Q) be a bounded operator. Then the following statements are equivalent.

(a) Cy,p is power compact, that is, Cfﬁw is compact, for some m € N.

(b) Fort> — 2% we have

p(a+2)’
Qi (2) 0
oh ()1 = [f2)?E
as z — OD.
(c) For any R € (0,1), we have
O
q ’R(Z) 9—pP —> 0
v (2)(1 = [22)*F")
as z — OD.
(d) For any r-lattice {z;}72, with r € (0,1), we have
q QM7T(Zk) q—p —0
o7 (z) (1 = |24[2)*7")
as k — 0.

Theorem 3.3. Let Q) be a finite positive Borel measure and 0 < g < p < co. Then the
following statements are equivalent:

(a) Q is a (p,q,0)-Bergman-Carleson measure.
(b) Q is a vanishing (p,q,c)—Bergman Carleson measure.

) Fort> 29 e have
p(a+2)

— Qt(z) _p
My(z) = — - —— € Lr—(D).
S o)1 - )RR

(d) For any R € (0,1), we have

)

]/\/TR(Z) =

=) ¢ 175 ).
ov(2)
(e) For any r-lattice {z;},_, with r € (

Q )
. ACO NNV )
o (zx) (1 — 2] 2) 25

0,1), we have

Moreover, we have

. (3.17)

p
lp—a

Qv (21) }°°
a7 (2) (1 — |2,]2) 250

Proof. Since Lemma 3 implies that the statements (c), (d), and (e) are equivalent with
the corresponding norm estimate (3.17) and the implication (b) = (a) is trivially true, it
is sufficient to prove that (d) = (a), (a) = (e), and (a) = (b).

(d) = (a). Since 0 < ¢ < p < oo implies % > 1, the conjugate exponent of % is ﬁ.
For f € AP, we have

g oy = WVl = Tl 2 = | §

k=1

/D F(©)1a0(e) < C / FOIRR(E)dAE)

< CHMR

1115,
=
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Above inequality follows from part (4) of Lemma 1 and Holder’s inequality shows that Q
is a (p, ¢, 0)-Bergman-Carleson measure and ||z||Ap @) S C’HMRH

(a) = (e). Let {A\y}72, € 1? and set f as in Lemma 2. Statement (a) and Lemma 2 imply
that

= K%, (2)
/ Z A~ 2_(a+2)p
plim o7 (ze)(1—|zf?)?
Recall that Rademacher functions 1 are defined by
1, ifo<t—[t] <1/2
Yo(t) = { -1, if1/2<t—[t] <1,

and ¥y (t) = o(2Ft) for k = 1,2,---, where [t] denotes the greatest integer less than or
equal to t. For 0 < ¢ < oo, Khinchine’s inequality is given as

m q/2 1 q m q/2
a(yme) < asca Y mP)
k=1 0 k=1

which holds for all m > 1 and all complex numbers by, by, - - - b,,. Let 15 (t) be the kth
Rademacher function on [0, 1]. Replacing \x with 15 (¢) A, integrating w.r.t ¢ from 0 to 1
and applying Khinchine’s inequality in (3.18), we see that

> K2 (2)] : .
[ (Eme O ) a0 < Ol A
DNy o ( ) e

2) (1 — |2

q
() < Clll%s_, po l{Ak eIl (3.18)

Thus, we have

Q(z)
|A ‘q a=p
Z ot ) (1 — 52"
Z/E MRS (2)[ 708 (2)(1 = [2[2) (T2 5 d0(z)

k>ko (zk,7)

K2 (2) )3
=¢ / ( Ml EeTE: 4z
Z E(zr,r) Z| k| ; )(1 — |zk|2)2(5_(a+2)) ( )

k>ko

|KS (2) )3
<C/< e |? 2 dQ(z
Z' . o7 (2) (1 — |z [2)2 G~ (@F2) )
< Clfé IIAgﬁLqII{Ak}kllla (3.19)

Since Uz(’zlE(zk, R) is relatively compact in D, we see that

a,(:
Zwlq oy < Ol Okl
Zk — |2k

Setting ¢, = |Ai|?, for each k, then {cx}72, € I7 because {A\e}32, € 1P implies that

Q,(21)
ch =z S Ollillds Ll {er}ll -

=0 o ()1 — |af2)%

Hence by duality argument we have

N ).
o7 (1) (1 = |26)2)20F) ) k=1

- 119
_p_ = C”ZHAZ{%LP(Q)'

lp—a
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Finally, we will prove the implication (a) = (b). Let us consider a bounded sequence
{fn}S2, in AL such that f,, — 0 uniformly on each compact subset of D. Let F be any
compact subset of D and Q be the restriction of Q to F. Then we have

/D ful2)]79(z) = /F + / MECLT

Since f,, — 0 uniformly on F as n — oo, we have
I= [ 1@ < Csup 1)1 — o
F z€F

Fix R € (0,1) and z € D, and we obtain that

—

(QF)R(Z) 0

ov(z)

as F extended to D. By the equivalence of (a) and (d), we have

Jﬁ(z) = 2) .

Therefore,
L= / ()72 (2)
(?Z\F)R(Z)

q

o (2)
— 0 as F extended to D, (3.21)

< Csup || fullf
n

D

which follows from (1.1) and the dominated convergence theorem. Hence

lim /D 1 f(2)|7d02) = 0

n—roo

implies that Q is a vanishing (p, ¢, o)-Bergman-Carleson measure. This completes the
proof. O

4. FURTHER APPLICATIONS OF AND FUTURE PLAN

The study of Toeplitz operators on the Bergman spaces with measures as symbols was
initiated by Luecking in [4]. Zhu in [14] and [15] characterized boundedness, compactness
and the Schatten class of Toeplitz operators using Berezin transform and averaging
functions. A detailed study of Toeplitz operators on Bergman spaces is found in Zhu’s
book [13]. For 7 € L>(D) and a > —1, the Toeplitz type integral operators T, on A2
are defined by

= /Dma(wwl(w), fe Al

As an application of Carleson measure and vanishing Carleson measure in the next
paper our focus will be to characterize the bounded, compact and schatten class Toeplitz
type integral operators on Bergman spaces with admissible weights in terms of Berezin
transform and averaging functions.
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