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EXISTENCE OF SOLUTIONS FOR SOLITONS TYPE EQUATIONS IN
SEVERAL SPACE DIMENSIONS: DERRICK’S PROBLEM WITH

(r, p)-LAPLACIAN

N.E. TAIBI, A. DELLAL, J. HENDERSON, AND A. OUAHAB

Abstract. In this paper we study a class of Lorentz invariant nonlinear field equa-
tions in several space dimensions. The main purpose is to obtain soliton-like solutions
with twice (r, p)-Laplacian. The fields are characterized by a topological invariant,
which we call the charge. We prove the existence of a static solution which minimizes
the energy among the configurations with nontrivial charge.

У статтi вивчається клас нелiнiйних рiвнянь, iнварiантних вiдносно лоренцевих
перетворень, для поля з декiлькома просторовими змiними. Основною метою
є отримання солiтоноподiбних розв’язкiв з подвiйним (r, p)-лапласiаном. Поля
характеризуються топологiчним iнварiантом, який ми називаємо зарядом. Доведено
iснування статичного розв’язку, який мiнiмiзує енергiю в конфiгурацiях з нетривiальним
зарядом.

1. Introduction

A soliton is a solution of a field equation whose energy travels as a localized packet and
which preserves its form under perturbations. In this respect solitons have a particle-like
behavior and they occur in many areas of mathematical physics, such as classical and
quantum field theory, nonlinear optics, fluid mechanics, and plasma physics; see [9].
Probably, the simplest equation which has soliton solutions is the sine-Gordon equation,

 - \partial 2\psi 

\partial x2
+
\partial 2\psi 

\partial t2
+ \mathrm{s}\mathrm{i}\mathrm{n}\psi = 0, (1.1)

where \psi = \psi (x, t) is a scalar field, x, t are real numbers representing, respectively, the
space and the time variable. Derrick, in a celebrated paper [8], considers the more realistic
three space dimension model,

 - \Delta \psi +
\partial 2\psi 

\partial t2
+ V \prime (\psi ) = 0, (1.2)

\Delta being the 3-dimensional Laplace operator and V \prime is the gradient of a nonnegative C1

real function V. In [8] it is proved by a simple rescaling argument that (1.2) does not
possess any nontrivial finite-energy static solution. This fact leads the author to say,
“We are thus faced with the disconcerting fact that no equation of type (1.2) has any
time-independent solutions which could reasonably be interpreted as elementary particles.”
Derrick proposed some possible ways out of this difficulty. The first proposal was to
consider models which are the Euler-Lagrange equations of the action functional relative
to the functional

S =

\int \int 
\scrL dxdt,

where the Lorentz invariant Lagrangian density proposed in [8] has the form

\scrL (\psi ) =  - 
\bigl( 
| \nabla \psi | 2  - | \psi t| 2

\bigr) p
2  - V (\psi ), p > 3. (1.3)
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However, Derrick does not continue his analysis and he concludes that a Lagrangian
density of type (1.3) leads to a very complicated differential equation. He has been unable
to demonstrate either the existence or nonexistence of stable solutions. In this spirit, a
considerable amount of work has been done by Benci and collaborators, and a model
equation proposed in [2]. The Lorentz invariant Lagrangian density proposed in [2] has
the form

\rho = | \nabla \psi | 2  - | \psi t| 2; \alpha (\rho ) = a\rho + b| \rho | 
p
2 , p > n,

\scrL (\psi , \rho ) =  - 1

2
\alpha (\rho ) - V (\psi ). (1.4)

In the case where p is constant, various mathematical results (existence, multiplicity
results, asymptotic behavior, etc.), have been obtained for different classes of solution
models (see [2, 3, 4, 1, 9, 5, 12, 7] and the references therein).

The aim of this paper is to carry out an existence analysis of the finite-energy static
solutions in more than one space dimension for a class of Lagrangian densities \scrL which
include (1.4) with (r, p)-Laplacian.

2. Statement of the Problem

The class of Lagrangian densities we consider generalizes the problem studied in [2],
Lagrangian density with variable exponent, in such a way as to include the Lorentz
invariant Lagrangian density proposed in [2]. First we introduce some notation. If n,m
are positive integers, and will denote, respectively, the physical space-time (typically
n = 3) and the internal parameters space. We are interested in the multi-dimensional case,
so we assume that n \geq 2. A point in \BbbR n+1 will be denoted by X = (x, t), where x \in \BbbR n

and t \in \BbbR . The fields we are interested in are maps \psi : n+1 \rightarrow \BbbR m, \psi = (\psi 1, . . . , \psi m).
We set

\rho = | \nabla \psi | 2  - | \psi t| 2,
\nabla \psi and \psi t denoting, respectively, the Jacobian with respect to x and the derivative with
respect to t.

We shall consider Lagrangian densities of the form

\scrL (\psi , \rho ) =  - 1

2
\alpha (\rho ) - V (\psi ), (2.5)

where the function V is a real function defined in an open subset \Omega \subset \BbbR m and \alpha is a real
function defined by

\alpha (\rho ) = a\rho | \rho | r2 - 1 + b| \rho | 
p
2 , a \geq 0, b > 0, 1 < r \leq 2 \leq n < p. (2.6)

The results of [2] were concerned with the case: r \equiv 2. The action functional related to
(2.5) is

S(\psi ) =

\int 
\BbbR n+1

\scrL (\psi , \rho )dxdt =
\int 
\BbbR n+1

 - 1

2
\alpha (\rho ) - V (\psi )dxdt.

So the Euler-Lagrange equations are
\partial 

\partial t
(\alpha \prime \psi t) - \nabla 

\bigl( 
\alpha \prime \nabla \psi 

\bigr) 
+ V \prime (\psi ) = 0, (2.7)

where \nabla 
\bigl( 
\alpha \prime \nabla \psi 

\bigr) 
denotes the vector whose j-th component is given by div

\bigl( 
\alpha \prime \nabla \psi j

\bigr) 
, and

V \prime denotes the gradient of V. The equation (2.7) is Lorentz invariant. Static solutions
\psi (x, t) = u(x) of (2.7) solve the equation

 - \nabla 
\bigl( 
\alpha \prime \nabla u

\bigr) 
+ V \prime (u) = 0. (2.8)

Using (2.6) and (2.8) we obtain

 - a
r

2
\Delta ru - b

p

2
\Delta pu+ V \prime (u) = 0, (2.9)
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where

\Delta ru = \nabla 
\bigl( 
| \nabla u| r - 2\nabla u

\bigr) 
,

and

\Delta pu = \nabla 
\bigl( 
| \nabla u| p - 2\nabla u

\bigr) 
.

Recall that the results of [2] were concerned with the case r \equiv 2.
It is easy to verify that, if u = u(x) is a solution of the (2.7) and v = (\nu , 0, . . . , 0) with

| \nu | < 1, the field

\psi \nu (x, t) = u

\biggl( 
x1  - \nu t\surd 
1 - \nu 2

, x2, . . . , xn

\biggr) 
(2.10)

is solution of (2.7). Notice that the function undergoes a contraction by a factor,

\gamma =
1\surd 

1 - \nu 2
,

in the direction of the motion; this is a consequence of the fact that (2.7) is Lorentz
invariant. Clearly (2.9) are the Euler-Lagrange equations with respect to the energy
functional

fa(u) =

\int 
\BbbR n

\biggl( 
a

2
| \nabla u| r + b

2
| \nabla u| p + V (u)

\biggr) 
dx, (2.11)

where m = n+ 1, so the time independent fields u are maps

u : \BbbR n \rightarrow \BbbR m.

For every \xi \in \BbbR n+1, we write \xi = (\xi 0, \~\xi ) \in \BbbR \times \BbbR n. V : \Omega \rightarrow \BbbR where \Omega = \BbbR n+1 \setminus \{ \eta \} , \eta =
(1, 0), and V is positive and singular at \eta . More precisely we assume:

(V1) V \in C1(\Omega ,\BbbR ).
(V2) V (\xi ) \geq V (0) = 0.
(V3) V is twice differentiable at 0 and the Hessian matrix V \prime \prime (0) is nondegenerate.
(V4) There exist c, \rho > 0 such that if | \xi | < \rho then

V (\eta + \xi ) \geq c| \xi |  - q

where
1

q
=

1

n
 - 1

p
.

(V5) For every \xi \in \Omega \setminus \{ 0\} we have

V (\xi ) > 0, and \mathrm{l}\mathrm{i}\mathrm{m}
| \xi | \rightarrow \infty 

\mathrm{i}\mathrm{n}\mathrm{f} V (\xi ) = \nu > 0.

(V6) There exist R > 0, | \xi | < R =\Rightarrow V (\xi ) \geq \omega R| \xi | r, \omega R > 0.

Example 2.1. A potential satisfying the assumptions (V1) - (V6) is

V (\xi ) = \omega 2
0

\biggl( 
| \xi | r + | \xi | 4

| \xi  - \eta | q

\biggr) 
.

Definition 2.2. We call soliton a solution of equation (2.7) having the form of equation
(2.10), where u is a local minimum of the energy functional.
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3. Functional Setting

Let p > n \geq 2 and, with no loss of generality, we can consider the functional (2.11)
with b = 1. It will be convenient to introduce the following notation:

fa(u) =

\int 
\BbbR n

\biggl( 
a

2
| \nabla u| r + 1

2
| \nabla u| p + V (u)

\biggr) 
dx,

and we define the space Ea to be the completion of C\infty 
0 (\BbbR n,\BbbR n+1) with respect to the

norm
\| u\| a = a\| \nabla u\| Lr + \| \nabla u\| Lp + \| u\| Lr , a > 0,

p > n \geq 2 \geq r > 1,

i.e.,

Ea = C\infty 
0 (\BbbR n,\BbbR n+1)

\| \cdot \| a
;

\| u\| Lr =

\left(  n+1\sum 
j=1

\| uj\| rLr

\right)  1
r

,

\| \nabla u\| Lr =

\left(  n+1\sum 
j=1

\| \nabla uj\| rLr

\right)  1
r

,

and

\| \nabla u\| Lp =

\left(  n+1\sum 
j=1

\| \nabla uj\| pLp

\right)  1
p

.

For every a > 0, the norms \| \cdot \| a are equivalent, so we have to study only two cases:
a = 0, a > 0.

Proposition 3.1. The Banach space E0 is continuously embedded in Ls(\BbbR n,\BbbR n+1), for
every s \in [r,\infty ], 1 < r \leq 2.

Proof. The space E0 is continuously embedded in Lr(\BbbR n,\BbbR n+1), therefore it is sufficient
to show that E0 is embedded also in L\infty (\BbbR n,\BbbR n+1). Since C\infty 

0 (\BbbR n,\BbbR n+1) is dense in E0,
and also in Ls, so it is sufficient to prove that there exists c > 0 such that, for every
u \in C0(\BbbR n,\BbbR n+1), we have

\| u\| L\infty \leq c\| u\| 0.
We fix u \in C0(\BbbR n,\BbbR n+1) and consider a family of cubes Qk \subset \BbbR n such that

mes(Qk) = 1, \Cup k\in \BbbN Qk = \BbbR n.

Then, by a well-known inequality (see [6, page 283]), for every k \in \BbbN and Qk \subset \BbbR n,

| u(x)| \leq 
\bigm| \bigm| \bigm| \bigm| \int 

Qk

udy

\bigm| \bigm| \bigm| \bigm| +M\| \nabla u\| Lp(Qk), (3.12)

where M \geq 0 being independent of u. Thus

| u(x)| \leq \| u\| Lr(Qk) +M\| \nabla u\| Lp(Qk) \leq \| u\| Lr(\BbbR n) +M\| \nabla u\| Lp(\BbbR n) \leq (1 +M)\| u\| 0.

Hence
\| u\| L\infty \leq c\| u\| 0, c = 1 +M. \square 

Corollary 3.2. The Banach space E0 is continuously embedded in W 1,p(\BbbR n,\BbbR n+1).
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Proof. By definition of the space E0, we have for every u \in E0

\| u\| 0 > \| \nabla u\| Lp .

From Proposition 3.1 there exists c1 > 0 such that

c1\| u\| 0 > \| u\| Lp

and so
\| u\| 0 > c\| u\| W 1,p . \square 

Corollary 3.3. For every a > 0, the space Ea can be identified with the Banach space

W =W 1,p(\BbbR n,\BbbR n+1) \cap W 1,r(\BbbR n,\BbbR n+1),

equipped with the usual norm

\| u\| W = \| u\| W 1,r + \| u\| W 1,p .

Proof. C\infty 
0 (\BbbR n,\BbbR n+1) is dense in W 1,p(\BbbR n,\BbbR n+1) and also in W 1,r(\BbbR n,\BbbR n+1). For any

u \in Ea we have
\| u\| a \leq \mathrm{s}\mathrm{u}\mathrm{p}(1, a)\| u\| W .

From Corollary 3.2, there exists c > 0 such that for every u \in C\infty 
0 (\BbbR n,\BbbR n+1), we have

\| u\| a \geq c(\| u\| W 1,r + \| u\| W 1,p).

\square 

By Proposition 3.1 and well-known Sobolev embeddings, we now make a Remark.

Remark 3.4. (see [6, Theorem 9.12 (Morrey), page 282]).
Since p > n, by the preceding Corollaries and well-known Sobolev embeddings, we get
easily some useful properties of the Banach space Ea :

(1) We have
Ea \subset W 1,p(\BbbR n,\BbbR n+1) \subset L\infty (\BbbR n,\BbbR n+1), (3.13)

if \{ uk\} converges weakly in Ea to u , then it converges uniformly on every compact
set contained in \BbbR n.

(2) Furthermore the Ea functions are Holder continuous of order (p - n)/p,

| u(x) - u(y)| = C(p - n)/p| x - y| \| \nabla u\| Lp , (3.14)

i.e.,
Ea \subset C0,(p - n)/p(\BbbR n,\BbbR n+1)

is a locally compact injection.
(3) For every value a \geq 0, the functions in Ea are bounded and decay to zero at

infinity,
\mathrm{l}\mathrm{i}\mathrm{m}

| x| \rightarrow \infty 
u(x) = 0. (3.15)

Recall that \eta is a singular point of the potential V, so it is reasonable to consider in
space Ea, the open subset

\Lambda a = \{ u \in Ea : u(x) \not = \eta , for all x \in \BbbR n\} ,
which is open in Ea. In fact, if u \in \Lambda a, by Remark 3.4, we have

\mathrm{i}\mathrm{n}\mathrm{f}
x\in \BbbR n

| u(x) - \eta | = d > 0.

Then, by using Proposition 3.1 (E0 is continuously embedded in L\infty ), we deduce that
there exists a small neighborhood of u contained in \Lambda a.

The boundary of \Lambda a is given by

\partial \Lambda a = \{ u \in Ea : there exist x \in \BbbR n such that u(x) = \eta \} .
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We can show that \Lambda a has a rich topological structure, more precisely it consists of
infinitely many connected components. These components are identified by the topological
charge we are going to introduce.

4. Topological Charge and Connected Components of \Lambda a

For the sake of simplicity, we consider the function space

C =

\biggl\{ 
u : \BbbR n \rightarrow \BbbR n+1\setminus \{ \eta \} is continuous and \mathrm{l}\mathrm{i}\mathrm{m}

| x| \rightarrow \infty 
u(x) = 0

\biggr\} 
where \eta = (1, 0). Every function u \in C we write in the form u(x) = (u0(x), \~u(x)) \in \BbbR n+1

where u0 : \BbbR n \rightarrow \BbbR and \~u : \BbbR n \rightarrow \BbbR n.

Definition 4.1. For every function u \in C we define the support of u

Ku = \{ x \in \BbbR n : u0(x) > 1\} .

Then we define the topological charge of u

ch(u) :=

\left\{   deg(\~u,Ku, 0) if Ku \not = \emptyset ,

0 if Ku = \emptyset ,

so that with the Brouwer degree,

deg(\~u,Ku, 0) =
\sum 

x\in \~u - 1(0)

sgnJ\~u(x).

where J\~u denotes the determinant of the Jacobian matrix. For more information about
this subject, see [11].

We notice that the above definition is well posed. Indeed, since

\mathrm{l}\mathrm{i}\mathrm{m}
| x| \rightarrow \infty 

u(x) = 0,

we have that Ku is an open, bounded set; moreover, for every x \in \partial Ku, we have which,
together with u(x) \not = \eta implies \~u(x) \not = 0.

We notice that this definition of charge is the same as in [2]. We recall that the
topological charge is continuous with respect to the uniform convergence.

Now, for every q \in \BbbZ we set

\Lambda q = \{ u \in \Lambda a : ch(u) = q\} .

Since the topological charge is continuous with respect to the uniform convergence and the
continuity of the embeddings Ea in L\infty (see Proposition 3.1) assure that the topological
charge is continuous on \Lambda a, it follows that \Lambda q is open in Ea, since we have also

\bullet \Lambda a =
\bigcup 

q\in \BbbZ \Lambda q,

\bullet \Lambda q \cap \Lambda p = \emptyset , p \not = q.

We conclude that every \Lambda q is a connected component of \Lambda a.
If we assume that the space dimension is odd then we conclude that for every q \in \BbbZ 

the component \Lambda q is isomorphic to the component \Lambda  - q.
So for every u \in \Lambda a we can define the charge ch(u) \in \BbbZ . Now, we consider the set of a

minimizer of fa in the open set

\Lambda \ast 
q = \{ u \in \Lambda a : ch(u) \not = 0\} .

Remark 4.2. We can easily see that ch(u) \not = 0 implies \| u\| L\infty > 1.
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5. Properties of the Energy Functional

Lemma 5.1. The functional fa takes real values and it is continuous on \Lambda a.

Proof. We have

fa(u) =

\int 
\BbbR n

\biggl( 
a

2
| \nabla u| r + b

2
| \nabla u| p

\biggr) 
dx\underbrace{}  \underbrace{}  +

\int 
\BbbR n

V (u)dx\underbrace{}  \underbrace{}  .
First we show that

fa(u) <\infty .

The first term on the left-hand side of energy fa is finite and continuous. Let us prove
that the second term is finite and continuous.

From the assumption (V2) we have V (\xi ) = V \prime \prime (0)\xi \xi + o(\xi 2).

By (V3) there exist a small neighborhood of 0 \in \BbbR n+1 and M > 0 such that, for every
\xi \in \BbbR n+1, we have

V (\xi ) \leq M | \xi | 2. (5.16)

Since every u \in Ea decays to zero at infinity (see (3.15)), there exists a ball Bu such
that, for every x \in \BbbR n \setminus Bu, | u(x)| < \epsilon .

By (5.16) and for \epsilon sufficiently small

V (u(x)) \leq M | u(x)| 2. (5.17)

Since u \in L2(\BbbR n,\BbbR n+1) (see Proposition 3.1), we deduce\int 
\BbbR n\setminus Bu

V (u)dx <\infty .

On the other hand, since u is continuous (see (3.14)), we also have\int 
Bu

V (u)dx <\infty .

Let \{ uk\} \subset \Lambda a be a sequence such thatfa(uk) <\infty and uk \rightarrow u in Ea.
We show that \int 

\BbbR n

V (uk)  - \rightarrow 
\int 
\BbbR n

V (u).

Since fa(uk) <\infty and with Lemma 5.4, u belongs to \Lambda a.
We have uk \rightarrow u on L\infty (\BbbR n,\BbbR n+1) (see (3.13)), and we deduce that V (uk) \rightarrow V (u)

uniformly on \BbbR . Then \int 
Bu

V (uk)dx\rightarrow 
\int 
Bu

V (u)dx. (5.18)

By (5.17) \int 
\BbbR n\setminus Bu

V (u(x))dx \leq 
\int 
\BbbR n\setminus Bu

| u(x)| 2dx,

and since uk \rightarrow u \in L2(\BbbR n,\BbbR n+1), by using the dominated convergence theorem,\int 
\BbbR n\setminus Bu

V (uk)dx\rightarrow 
\int 
\BbbR n\setminus Bu

V (u)dx. (5.19)

\square 
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Lemma 5.2. The map f \prime : Ea \rightarrow E\prime 
a defined by

< f \prime a(u), v > = <  - ar
2
\Delta ru - b

p

2
\Delta pu+ V \prime (u), v >

=

\int 
\BbbR n

\Bigl( 
a
r

2
| \nabla u| r - 2(\nabla u| \nabla v) + b

p

2
| \nabla u| p - 2(\nabla u| \nabla v) + V \prime (u).v

\Bigr) 
dx

is continuous.

Proof. We have
f \prime a(u) =  - ar

2
\Delta ru - b

p

2
\Delta pu\underbrace{}  \underbrace{}  +V \prime (u)\underbrace{}  \underbrace{}  .

The proof for the first term on the left-hand side of f \prime a is given in the Appendix A.
Let us prove that the second term is continuous. Let \{ uk\} \subset \Lambda a be a sequence such

that fa(uk) <\infty and uk  - \rightarrow u. We show that

V \prime (uk)  - \rightarrow V \prime (u) in E\prime 
a.

Since fa(uk) <\infty and with Lemma 5.4, u belongs to \Lambda a. Recall that Ea is continuously
embedded in L\infty ; see (3.13). We have

\| V \prime (uk) - V \prime (u)\| E\prime 
a

= \mathrm{s}\mathrm{u}\mathrm{p}
\| h\| Ea\leq 1

< V \prime (uk) - V \prime (u), h >E\prime 
a\times Ea ,

with

< V \prime (uk) - V \prime (u), h >E\prime 
a\times Ea

=

\int 
\BbbR n

(V \prime (uk) - V \prime (u))h dx

=

\int 
Bu

(V \prime (uk) - V \prime (u))h dx\underbrace{}  \underbrace{}  
1

+

\int 
\BbbR n/Bu

(V \prime (uk) - V \prime (u))h dx\underbrace{}  \underbrace{}  
2

.

In the term 1: since \| h\| L\infty \leq \| h\| Ea \leq 1, with the same reasoning as in (5.18), we have\int 
Bu

(V \prime (uk) - V \prime (u))h dx <
\epsilon 

2
,

with the same choice of Bu as in proof of Lemma 5.1.
In the term 2: we have V \prime (\xi ) = V \prime \prime (0)\xi + o(\xi ), and then by V3\int 

\BbbR n\setminus Bu

(V \prime (uk))h dx = M

\int 
\BbbR n\setminus Bu

| uk| | h| dx

\leq \| uk\| L2\| h\| L2

\leq \| uk\| L2 . (5.20)

From (5.20), with the same reasoning as in (5.19), we have\int 
\BbbR n\setminus Bu

(V \prime (uk) - V \prime (u))h dx <
\epsilon 

2
. \square 

Lemma 5.3. The functional fa is coercive in \Lambda a; that is, for every sequence uk \subset \Lambda a

such that \| uk\| a \rightarrow \infty , we have fa(uk) \rightarrow \infty .

Proof. In the case a > 0, n > r, we have

\| u\| a = a\| \nabla u\| Lr + \| \nabla u\| Lp + \| u\| L2 .

Let uk \in \Lambda a such that
\| uk\| a \rightarrow \infty as k \rightarrow \infty .
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It is clear that, if
a\| \nabla uk\| Lr + \| \nabla uk\| Lp \rightarrow \infty as k \rightarrow \infty , (5.21)

we have
fa(uk) \rightarrow \infty as k \rightarrow \infty .

Assume now that there exists c\ast > 0 such that

a\| \nabla uk\| Lr + \| \nabla uk\| Lp < c\ast (5.22)

and
\| uk\| Lr \rightarrow \infty as k \rightarrow \infty . (5.23)

We shall prove that \int 
\BbbR n

V (uk)dx\rightarrow \infty as k \rightarrow \infty .

From (V6), there exist R > 0, \omega R > 0 such that

| \xi | < R =\Rightarrow V (\xi ) \geq \omega R| \xi | r. (5.24)

For every k \in \BbbN , we set
Ak = \{ x \in \BbbR n : | uk(x)| \leq R\} ,

where uk \in W 1,r(\BbbR n,\BbbR n+1). By the Sobolev inequality (see [6, Theorem 9.9, page 278]),

\| uk\| Lr\ast \leq c\| \nabla uk\| Lr , r\ast =
rn

n - r
, n > r > 1. (5.25)

From (5.22), we obtain
\| uk\| Lr\ast < c\ast . (5.26)

Moreover, from (3.12), there exists M \geq 0 independent of uk, such that, for mes(Qk) = 1,

| uk(x)| \leq 
\bigm| \bigm| \bigm| \bigm| \int 

Qk

udy

\bigm| \bigm| \bigm| \bigm| +M\| \nabla uk\| Lp(Qk) \leq \| u\| Lr\ast (Qk) +M\| \nabla uk\| Lp(Qk).

By (5.21) and (5.26), for any x \in \BbbR n, we have

| uk(x)| < c\ast +Mc\ast . (5.27)

Then, there exists c > 0 such that

mes(\BbbR n\setminus Ak) < c. (5.28)

From (5.27) and (5.28), we deduce that there exists c1 > 0 such that\int 
\BbbR n\setminus Ak

| uk| rdx < c1. (5.29)

By (5.24), we obtain\int 
\BbbR n

V (uk)dx \geq 
\int 
Ak

V (uk)dx \geq \omega r

\int 
Ak

\| uk\| rdx \geq \omega r

\Biggl( 
\| uk\| rLr  - 

\int 
\BbbR n\setminus Ak

| uk| rdx

\Biggr) 
.

From (5.29) and (5.23), we have\int 
\BbbR n

V (uk)dx \geq \omega r(\| uk\| rLr  - c1) \rightarrow \infty as k \rightarrow \infty .

In the case, a = 0 or n = 2, by (V5), there exists R\ast > 0 such that, for every \xi \in \BbbR n

with | \xi | \geq R\ast , we have
V (\xi ) \geq \nu 

2
. (5.30)

Let uk \in \Lambda a be a sequence such that

\| uk\| 0 \rightarrow \infty as k \rightarrow \infty .
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Since the functional fa is invariant with respect to translation in \BbbR n, we can assume

\| uk\| L\infty = | uk(0)| . (5.31)

Now, we consider the case

\| \nabla uk\| Lp \leq M\ast and \| uk\| Lr \rightarrow as k \rightarrow \infty .

Here we have two subcases:

(a) \| uk\| L\infty \rightarrow \infty as k \rightarrow \infty ,
(5.32)

or

(b) \| uk\| L\infty is bounded. ,
(5.33)

In the subcase (a), by (5.32), we can choose a sequence (Rk) \subset (0,\infty ) such that

r\ast \leq \| uk\| L\infty  - K(R
p - n
p

k ) and Rk \rightarrow \infty , (5.34)

where K = cM\ast and c is the same constant as in (3.14). For every y \in \BbbR n, we have

| uk(0)|  - | uk(y)| \leq | uk(0) - uk(y)| .
Hence by (3.14), we obtain

| uk(0)|  - | uk(y)| \leq K(| y| 
p - n
p ).

From (5.31), we get
| uk(y)| \geq \| uk\| L\infty  - K(| y| 

p - n
p ).

For | y| \leq Rk and (5.34), we have

| uk(y)| \geq \| uk\| L\infty  - K(R
p - n
p

k ) \geq R\ast . (5.35)

From (5.30) and (5.35), we get\int 
\BbbR n

V (uk)dx \geq 
\int 
B(0,Rk)

V (uk)dx \geq \nu 

2
mes(B(0, Rk)).

This implies that \int 
\BbbR n

V (uk)dx\rightarrow \infty as Rk \rightarrow \infty .

In the last subcase (b), we assume there exists \=M > 0 such that

\| uk\| L\infty \leq \=M.

From (5.24), we obtain\int 
\BbbR n

V (uk)dx \geq \omega \=M\| uk\| Lr \rightarrow \infty as k \rightarrow \infty . \square 

We are going to study the behaviour of energy fa when u approaches the boundary of
\Lambda a; we remark that \partial \Lambda a = Ea \setminus \Lambda a.

Lemma 5.4. Let (uk) \subset \Lambda a be a weakly converging sequence. If the weak limit belongs
to \partial \Lambda a, then

fa(uk) \rightarrow \infty as k \rightarrow \infty .

Proof. The proof is the same as in [4, Lemma 3.7].
\square 

Corollary 5.5. For every b > 0, there exists d = d(b) such that, for every u \in \Lambda a we
have

fa(u) \leq b\Rightarrow \mathrm{m}\mathrm{i}\mathrm{n}
x\in \BbbR n

| u(x) - \eta | \geq d.
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Proof. The proof is the same as in [4, Proposition 3.9].
\square 

Lemma 5.6. The functional fa is weakly lower semicontinuous in \Gamma a.

Proof. The proof is the same as in [4, Proposition 3.10]. Let u \in \Lambda a and let a sequence
(uk) \subset \Lambda a weakly converge to u.

We show that
\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{i}\mathrm{n}\mathrm{f}
k\rightarrow \infty 

fa(uk) \geq fa(u).

The result is obvious when

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{i}\mathrm{n}\mathrm{f}
k\rightarrow \infty 

fa(uk) = +\infty .

We have

fa(uk) =

\int 
\BbbR n

\biggl( 
a

2
| \nabla uk| r +

b

2
| \nabla uk| p

\biggr) 
dx\underbrace{}  \underbrace{}  

A

+

\int 
\BbbR n

V (uk)dx\underbrace{}  \underbrace{}  
B

The part A is convex and strongly continuous, and so is weakly lower semicontinuous
(see[6, Remark 6, page 61]).

Now we have to study the part B. Since \{ uk\} converges to u uniformly on every
compact set, we fix a sphere BR(0) and we have

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\int 
BR(0)

V (uk)dx =

\int 
BR(0)

V (u)dx.

On the other hand, since V is nonnegative, we have

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{i}\mathrm{n}\mathrm{f}
k\rightarrow \infty 

\int 
\BbbR n

V (uk)dx \geq \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{i}\mathrm{n}\mathrm{f}
k\rightarrow \infty 

\int 
BR(0)

V (uk)dx =

\int 
BR(0)

V (u)dx,

and taking the limit as R\rightarrow \infty , we obtain

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{i}\mathrm{n}\mathrm{f}
k\rightarrow \infty 

\int 
\BbbR n

V (uk)dx \geq 
\int 
\BbbR n

V (u)dx.

The proof is complete. \square 

Proposition 5.7. There exists \Delta a > 0 such that, for every u \in \Lambda a satisfying \| u\| L\infty \geq 1,
we have

fa(u) \geq \Delta a.

Proof. By the continuous injection in Proposition 3.1,

\| u\| a \geq \| u\| L\infty \geq 1,

and by the coercivity of fa, we get

\| u\| a \geq 1 \Rightarrow \exists \Delta a > 0 such that fa(u) \geq \Delta a.

\square 

6. Existence Result

Theorem 6.1. The minimum points u \in \Lambda a for the functional fa are weak solutions of
the system (2.9).
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Proof. Let u be a minimum point of fa and h \in C\infty 
0 (\BbbR n,\BbbR ). Let ej denote the jth-

vector of the canonical basis in \BbbR n. If \epsilon is sufficiently small, then u + \epsilon ejh \in \Lambda a and
fa(u+ \epsilon ejh) <\infty . Since u is a minimum point of fa, then

0 =
df(u+ \epsilon ejh)

d\epsilon 

\bigm| \bigm| \bigm| \bigm| 
\epsilon =0

=

\int 
\BbbR n

\biggl( 
a
r

2
(| \nabla u| r - 2\nabla uj\nabla h) + b

p

2
(| \nabla u| p - 2\nabla uj\nabla h) +

\partial V (\xi )

\partial \xi j
h

\biggr) 
dx,

1 \leq j \leq n+ 1.

By Green’s formula,\int 
\BbbR n

b
p

2
(| \nabla u| p - 2\nabla uj\nabla h)dx =

\int 
\BbbR n

 - bp
2
div(| \nabla .u| p - 2\nabla uj)hdx.

So \int 
\BbbR n

\biggl( 
 - ar

2
div(| \nabla .u| r - 2\nabla uj) - b

p

2
div(| \nabla .u| p - 2\nabla uj) +

\partial V (\xi )

\partial \xi j

\biggr) 
.hdx = 0,

for 1 \leq j \leq n+ 1, and for any h \in C\infty 
0 (\BbbR n,\BbbR ). Then\int 

\BbbR n

\Bigl[ 
 - ar

2
\Delta ru - b

p

2
\Delta pu+ V \prime (u)

\Bigr] 
\phi dx = 0, for every \phi \in C\infty 

0 (\BbbR n,\BbbR n+1).

By Lemma 5.2 and by density we have

 - a
2
\Delta ru - b

2
\Delta pu+ V \prime (u) = 0. \square 

Proposition 6.2. (Splitting lemma) Let (uk) \in \Lambda \ast 
a be a sequence and M be a positive

real number such that
fa(uk) \leq M.

Then there exists l \in \BbbN such that

1 \leq l \leq M

\Delta a

where \Delta a was introduced in Proposition 5.7 and there exist \=u1, . . . , \=ul \in \Lambda a, (x
1
k), . . . , (x

l
k) \subset 

\BbbR n such that, up to a subsequence,

uk(\cdot + xik) \rightarrow \=ui,

| xik  - xjk| \rightarrow \infty , i \not = j,

l\sum 
i=1

fa(\=ui) \leq \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{i}\mathrm{n}\mathrm{f}
k\rightarrow \infty 

fa(uk),

and

ch(uk) =

l\sum 
i=1

ch(\=ui).

Proof. From Lemmas 5.3, 5.4 and 5.6, and by the same method as used in [4, Lemma
4.1], we can conclude the result of this proposition. \square 

The minimum is attained on the set \Lambda a, and it is easy to see that u \equiv 0 is a trivial
solution of the problem. But, of course, we are interested in nontrivial solutions. We
consider the following problem

I\ast = \mathrm{i}\mathrm{n}\mathrm{f}
u\in \Lambda \ast 

a

fa(u), \Lambda \ast 
a = \{ u \in Ea : ch(u) \not = 0\} .

The functional is bounded below and the set Ea is not empty. We consider fields u having
the form

u(x) =

\biggl( 
2

1 + | x| m
,

1

1 + | x| m
x

\biggr) 
. (6.36)
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Lemma 6.3. There exists a suitable m \geq 1, such that the field u defined in (6.36) belongs
to \Lambda \ast 

a .

Proof. Clearly, if m is sufficiently large, then the field u defined in (6.36) belongs to Ea.
For the sake of contradiction, suppose that there exists \=x \in \BbbR n such that u(\=x) = \eta = (1, 0).
We deduce that

2

1 + | \=x| m
= 1,

1

1 + | \=x| m
\=x = 0.

We get the contradiction: | \=x| = 1 and \=x = 0. So, u \in \Lambda a.
We show that ch(u) \not = 0.
We set g(x) = 1

2x. We have

Ku = \{ x \in \BbbR n :
2

1 + | x| m
> 1\} = B(0, 1),

\mathrm{i}\mathrm{f} | x| = 1 \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n} g(x) =
1

1 + | x| m
x,

and then by the properties of the topological degree (see [11]) we get,

deg

\biggl( 
1

1 + | x| m
x,B(0, 1), 0

\biggr) 
= deg(g(x), B(0, 1), 0) \not = 0.

\square 

And moreover the set \Lambda \ast 
a is open in the space Ea; indeed,

\bullet \Lambda \ast 
a =

\bigcup 
q\in \BbbN \ast \Lambda q

a,

\bullet \Lambda q
a \cap \Lambda p

a = \emptyset , p \not = q.

where \Gamma q is a connected component.

Theorem 6.4. Let a, b > 0, and p > n \geq 2 \geq r > 1. If V satisfies (V1) - (V6), then there
exists a weak solution of (2.9) (i.e., a static solution of (2.7)), which is a minimizer of the
energy functional (2.11) in the class of maps whose topological charge is different from 0.

Proof. By the Splitting lemma (Proposition 6.2) and the same technique used in [2], we
can conclude that there exists a weak solution of (2.9). And with suitable change of
variable (2.10) we deduce a solution of equation (2.7) \square 

Remark 6.5. The functional exhibits an invariance for the symmetry group of rotations
and translations; indeed, for every function u and g \in O(n), if we set ug(x) = u(gx), we
have immediately

fa(ug) = fa(u).

Then our theorem gives the existence of an orbit of minimum solutions. This orbit consists
of two connected components, which are identified, respectively, by \=u and

\=u \circ \scrP (x) = \=u( - x).

Since typically n = 3 is odd, \=u \circ \scrP and \=u have opposite topological charge.
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Appendix A. Continuity of (\Delta p, p > 2) and (\Delta r, 1 < r \leq 2)

Lemma 6.6. The maps (\Delta r : E \rightarrow E\prime , p > 2) and (\Delta r : E \rightarrow E\prime , 1 < r \leq 2) defined
respectively by

\langle  - \Delta ru, v\rangle E\prime 
a\times Ea

=

\int 
\BbbR n

| \nabla u| r - 2(\nabla u| \nabla v)dx, 1 < r \leq 2,

and

\langle  - \Delta pu, v\rangle E\prime 
a\times Ea

=

\int 
\BbbR n

| \nabla u| p - 2(\nabla u| \nabla v)dx, p > 2

are continuous.

The proof of the Lemma 6.6 follows from the following lemma.

Lemma 6.7. (see R. Glowinski and A. Marroco [10].)
(i) If p \in [2;\infty ) then it holds that\bigm| \bigm| z| z| p - 2  - y| y| p - 2

\bigm| \bigm| \leq \beta | z  - y| (| z| + | y| )p - 2 for all z, y \in \BbbR n

with \beta independent of y and z;
(ii) If p \in (1; 2], then it holds that\bigm| \bigm| z| z| p - 2  - y| y| p - 2

\bigm| \bigm| \leq \beta (| z| + | y| )p - 1 for all z, y \in \BbbR n

with \beta independent of y and z.

Proof. Recall E to be the completion of C\infty 
0 (\BbbR n,\BbbR n+1), let h \in C\infty 

0 (\BbbR n,\BbbR n+1).

The map (\Delta r : E \rightarrow E\prime , 1 < r \leq 2) is continuous.

\langle \Delta ru - \Delta rv, h\rangle =

\int 
\BbbR n

\bigl( 
| \nabla v| r - 2(\nabla u| \nabla h) - | \nabla u| r - 2(\nabla v| \nabla h)

\bigr) 
dx

=

\int 
\BbbR n

\bigl( 
| \nabla v| r - 2\nabla u - | \nabla u| r - 2\nabla v | \nabla h

\bigr) 
dx

\leq 
\int 
\BbbR n

\bigm| \bigm| | \nabla v| r - 2\nabla u - | \nabla u| r - 2\nabla v
\bigm| \bigm| . | \nabla h| dx

(from Lemma 6.7) \leq \beta 

\int 
\BbbR n

| \nabla v  - \nabla u| r - 1
. | \nabla h| dx

(from Hölder’s inequality ) \leq \beta .\| \nabla u - \nabla v\| r - 1
Lr .\| \nabla h\| Lr .

The map ( \Delta r : E \rightarrow E\prime , p > 2 ) is continuous.

\langle \Delta pu - \Delta pv, h\rangle =

\int 
\BbbR n

\bigl( 
| \nabla v| p - 2(\nabla u| \nabla h) - | \nabla u| p - 2(\nabla v| \nabla h)

\bigr) 
dx

=

\int 
\BbbR n

\bigl( 
| \nabla v| p - 2\nabla u - | \nabla u| p - 2\nabla v | \nabla h

\bigr) 
dx

\leq 
\int 
\BbbR n

\bigm| \bigm| | \nabla v| p - 2\nabla u - | \nabla u| p - 2\nabla v
\bigm| \bigm| . | \nabla h| dx

(from Lemma 6.7) \leq \beta 

\int 
\BbbR n

\bigm| \bigm| | \nabla v| p - 2 + | \nabla u| p - 2
\bigm| \bigm| . | \nabla u - \nabla v| . | \nabla h| dx

(from Hölder’s inequality ) \leq \beta 
\Bigl( 
\| \nabla v\| p - 2

Lp + \| \nabla u\| p - 2
Lp

\Bigr) 
.\| \nabla u - \nabla v\| Lp .\| \nabla h\| Lp .

\square 
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