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ON INTEGRAL EQUATIONS OF FREDHOLM TYPE FOR A CLASS
OF BOUNDED FUNCTIONS ON THE REAL LINE

MAMMAD BAYRAMOGLU, ILGAR JABBAROV, AND SABINA IBRAHIMOVA

Abstract. We consider the problem of extending the notion of a Fredholm integral
equation and investigate its solvability in the class of bounded functions on the real
line.

Розглядається задача розширення поняття iнтегрального рiвняння Фредгольма
i дослiджено його розв’язнiсть у класi обмежених функцiй на дiйснiй прямiй.

1. Introduction

Integral equations of Fredholm type,

\varphi (x) = f(x) + \lambda 

\int b

a

K(x, \xi )\varphi (\xi )d\xi , (1.1)

were extensively studied in the literature [6, 2]. Our goal is to investigate such equations
in classes of functions defined on \bfR or \bfR + = [0,+\infty ). We will consider continuous and
bounded functions.

Definition 1. A function f(x), defined on \bfR , is called bounded if there exists a positive
constant c such that

| f(x)| \leq c \forall x \in \bfR .

By an analogy we define the notion of a bounded function in two or more real variables.
If a function f(x) is bounded on \bfR n for a natural n, then we use the notation f \in B (\bfR n).
The class of continuous bounded functions will be denoted by CB (\bfR n). It easy to observe
that both classes are linear spaces over the field \bfR .

It is well-known that equations (1.1) are closely related to the first order differential
equations

y\prime = f(x, y).

Many investigations were devoted to study integral equations in different classes of
functions [1]. In the Favard theory, for example, special cases of this equations were
considered for the class of Bohr almost periodic functions which belong to the class of
continuous bounded functions. In some cases, the equation

y\prime +A(x)y = f(x),

where the functions f(x) and A(x) are almost periodic, does not have almost periodic
solutions, see [7].

There are examples showing existence of unbounded functions that cannot be solutions
to any differential equation of the form

F (y, y\prime , . . . , y(n)) = 0

with a continuous function F , see [5, 4].
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In this paper, we consider equations of the type

\varphi (x) = f(x) + \lambda \mathrm{l}\mathrm{i}\mathrm{m}
T\rightarrow \infty 

1

T

\int T

0

K(x, \xi )\varphi (\xi )d\xi (1.2)

in the class of bounded functions on the real line, where f(x) is bounded and continuous
on \bfR . Despite that equation (1.2) differs from a Fredholm integral equation, the method
used to solve it is similar to the one used to solve equation (1.1). For this reason, we call
it a limit integral equation of Fredholm type. We suppose that the function K(x, \xi ), the
kernel, is bounded and continuous on \bfR \times \bfR . Existence of the limit in the right-hand
side, in the general case, may demand some constraints on the kernel, and needs to
consider more special classes of functions. For this reason, we will at first consider the
problem in following general setting: is there a sequence of values of the parameter
1 < T1 < . . . < Tk < . . . such that the equation

\varphi (x) = f(x) + \lambda \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

1

Tk

\int Tk

0

K(x, \xi )\varphi (\xi )d\xi 

has solutions in the class of bounded continuous functions? Below we introduce analogs of
some notions of the Fredholm theory, and give an explicit solution to the above equation,
assuming some natural conditions.

Below we introduce analogues of Fredholm functions and show that they are integral
functions. Defining eigenvalues of the kernel, we shall give a criterion of solvability of the
non-homogenous equation. We give then an explicit solution of equation (1.2).

2. Auxliary result.

The main auxiliary result of the present paper is the following.

Theorem 1. Let K(x, \xi ) \in CB (\bfR \times \bfR ) and the equation

\varphi (x) = f(x) +
\lambda 

T

\int T

0

K(x, \xi )\varphi (\xi )d\xi (2.3)

have uniformly bounded solutions \varphi k(x) for some unbounded sequence of values of the
parameter T , 1 < T1 < T2 < \cdot \cdot \cdot < Tk < \cdot \cdot \cdot Then the sequence

\bigl( 
\varphi k(x)

\bigr) 
has a subsequence

(Tkl
), uniformly converging to some uniformly continuous function \varphi (x), such that

\varphi (x) = f(x) + \lambda \mathrm{l}\mathrm{i}\mathrm{m}
l\rightarrow \infty 

1

Tkl

\int Tkl

0

K(x, \xi )\varphi (\xi )d\xi . (2.4)

Proof. Take any segment [0, M ]. Denote by

\varphi 1(x), \varphi 2(x), . . . , \varphi n(x), . . .

a sequence of solutions of equation (2.3) corresponding to the values of T = T1, T2, . . .
Let us prove that the sequence \varphi 1(x), \varphi 2(x), . . . , \varphi n(x), . . . is an equicontinuous family of
functions on [0, M ]. These functions can be extended to the whole real line by means of
equation (2.3). Since, a change of a finite number of functions in this sequence does not
change its property of being equicontinuous, we can suppose that M < T1. Let \varepsilon be any
positive number. The function K(x, y) is continuous on the compact set [0, Tk]\times [0, Tk]
for each natural k. Thus it is uniformly continuous. So, for a given \varepsilon there exists \delta > 0
such that following inequalities are satisfied:

| K(x, y) - K(x\prime , y\prime )| < \varepsilon , | x - x\prime | < \delta , | y  - y\prime | < \delta 
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for every two pair of real numbers (x, y) and (x\prime , y\prime ) from the set [0, Tk]\times [0, Tk] satisfying
the conditions above. Then for each natural k we have

| \varphi k(x) - \varphi k(x
\prime )| =

\bigm| \bigm| \bigm| \bigm| \bigm| f(x) - f(x\prime ) +
1

Tk

\int Tk

0

(K(x, \xi ) - K(x\prime , \xi ))\varphi k(\xi )d\xi 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq | f(x) - f(x\prime )| + C

Tk

\int Tk

0

| K(x, \xi ) - K(x\prime , \xi )| d\xi 

= | f(x) - f(x\prime )| + C

Tk

N\sum 
m=1

\int m\delta 

(m - 1)\delta 

| K(x, \xi ) - K(x\prime , \xi )| d\xi ,

where N is a least natural number satisfying the condition N\delta \geq Tk and C is a bound for
the sequence of solutions (\varphi n(x)), | \varphi n(x)| \leq C. From uniform continuity of the function
K(x, y) it follows that

| K(x, \xi ) - K(x\prime , \xi )| < \varepsilon 

for points \xi in each interval [(m - 1)\delta ,m\delta ]. Therefore,

| \varphi k(x) - \varphi k(x
\prime )| \leq | f(x) - f(x\prime )| + C

Tk
N\delta \varepsilon \leq | f(x) - f(x\prime )| + C(1 + \delta T - 1

k )\varepsilon .

Since f(x) is also continuous, the right-hand side of the last inequality does not exceed
(2C + 1)\varepsilon . This shows that the considered sequence of solutions is equicontinuous on
[0,M ]. Consider now the values M = T1, T2, . . . By [3, Theorems 7.24, 7.25, pp. 157-158]
this sequence contains a subsequence uniformly convergent on [0, T1] to some continuous
function \phi 1(x),

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\varphi nk
(x) = \phi 1(x).

Taking M = T2 we repeat the same procedure. Then it is possible to choose a new
subsequence (nkm

)m\geq 1 from the sequence (nk)k\geq 1 such that

\mathrm{l}\mathrm{i}\mathrm{m}
m\rightarrow \infty 

\varphi nkm
(x) = \phi 2(x).

It can be seen that the function \phi 2(x) is an extension of the function \phi 1(x) to the segment
[0, T2]. Continuing in this manner, we get a sequence of functions \phi 1(x), \phi 2(x), . . . , \phi n(x), . . .
and, for each natural k,

\phi k+1(x) = \phi k(x), x \in [0, Tk].

Note that \bfR + = [0,\infty ) =
\bigcup \infty 

k=1[0, Tk]. Now we define a function on \bfR + by

\varphi (x) = \phi n(x), x \in [0, Tn],

which is uniformly continuous on \bfR +. \square 

3. Main result

Theorem 1 does not answer the question about existence of solutions of equation (1.2).
Let us investigate the equation (1.2) and establish conditions for which (1.2) has solutions.
To apply Theorem 1, we have to show that equations (2.3), for a sequence of real numbers
T1, T2, . . ., have uniformly bounded solutions.

Let us introduce analogues of notions known in the theory of Fredholm equations [6, 2].
First define analogues of the functions D(\lambda ) and D(x, y;\lambda ) as follows. Take some
unbounded sequence of values of the parameter T , 1 < T1 < T2 < \cdot \cdot \cdot < Tk < . . . .We put

Dk(\lambda ) = 1 +

\infty \sum 
n=1

bn,k\lambda 
n

n!
,
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where

bn,k = ( - 1)n
1

Tn
k

\int Tk

0

\cdot \cdot \cdot 
\int Tk

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
K(x1, \xi 1) K(x1, \xi 2) \cdot \cdot \cdot K(x1, \xi n)
K(x2, \xi 1) K(x2, \xi 2) \cdot \cdot \cdot K(x2, \xi n)

...
...

. . .
...

K(xn, \xi 1) K(xn, \xi 2) \cdot \cdot \cdot K(xn, \xi n)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| d\xi 1d\xi 2 \cdot \cdot \cdot d\xi n.
The function D(x, y;\lambda ) is defined by the relation

Dk(x, y;\lambda ) = \lambda Dk(\lambda )K(x, y) +

\infty \sum 
n=1

( - 1)n+1Qn,k(x, y)\lambda 
n+1

n!
, x, y \in \bfR ,

where

Qn,k(x, y) =  - n

Tn
k

\int Tk

0

\cdot \cdot \cdot 
\int Tk

0

Pn,k(x, \xi , \xi 1, . . . , \xi n - 1)K(\xi , y)d\xi d\xi 1 \cdot \cdot \cdot d\xi n - 1,

and

Pn,k(x, \xi , \xi 1, . . . , \xi n - 1) =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
K(x, \xi ) K(x, \xi 1) \cdot \cdot \cdot K(x, \xi n - 1)
K(\xi 1, \xi ) K(\xi 1, \xi 1) \cdot \cdot \cdot K(\xi 1, \xi n - 1)

...
...

. . .
...

K(\xi n - 1, \xi ) K(\xi n - 1, \xi 1) \cdot \cdot \cdot K(\xi n - 1, \xi n - 1)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
These functions are defined in analogy with the corresponding quantities in [6, 2].

Since the function K(x, y) is bounded, there exists a positive constant L such that
| K(x, y)| \leq L. By Hadamard’s inequalitywe have

| bn,k| \leq Lnnn/2, k = 1, 2, . . . (3.5)

Therefore, the sequence (b1,k) is bounded. We can find a subsequence (b1,km
) that tends

to some real b1 as m \rightarrow \infty ,
\mathrm{l}\mathrm{i}\mathrm{m}

m\rightarrow \infty 
b1,km = b1.

It is clear that | b1| \leq L.
Now consider the sequence (b2,k). All of the said above remains true for this sequence,

and we can choose, from the sequence (km), a new subsequence, say (kmp
) (which for

simplicity we denote by (kp)) such that

\mathrm{l}\mathrm{i}\mathrm{m}
p\rightarrow \infty 

b2,kp
= b2.

Moreover, from inequalities (3.5) it follows that | b2| \leq 2L2.
Inductively continuing the above procedure of choosing a subsequence and applying

the diagonal procedure, we arrive at some final subsequence (k\mu ) such that, for every
natural n, we have

\mathrm{l}\mathrm{i}\mathrm{m}
\mu \rightarrow \infty 

bn,k\mu 
= bn, | bn| \leq Lnnn/2.

Let us prove that, on every closed domain of the complex plane, the following limit
relations are uniformly satisfied for some integral functions D(z) and D(x, y, z):

D(z) = \mathrm{l}\mathrm{i}\mathrm{m}
\mu \rightarrow \infty 

Dk\mu 
(z), D(x, y, z) = \mathrm{l}\mathrm{i}\mathrm{m}

\mu \rightarrow \infty 
Dk\mu 

(x, y, z).

We can suppose that | z| \leq M for some large M . Take some positive \varepsilon > 0 and some
natural N that will be specified below. We have\bigm| \bigm| \bigm| \infty \sum 

n=N+1

bn\lambda 
n

n!

\bigm| \bigm| \bigm| \leq \infty \sum 
n=N+1

(| \lambda | L
\surd 
n)

n

n!
\leq 

\infty \sum 
n=N+1

\Bigl( eLM\surd 
N

\Bigr) n

.
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Taking now N large enough so that\bigm| \bigm| \bigm| \bigm| \bigm| 
\infty \sum 

n=N+1

bn\lambda 
n

n!

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 0.25\varepsilon 

and noting that the Nth reminder of the series Dk(z) has the same bound, we get the
needed result,\bigm| \bigm| D(\lambda ) - Dk\mu 

(\lambda )
\bigm| \bigm| \leq 0.5\varepsilon + 0.5\varepsilon +

N\sum 
n=1

\bigm| \bigm| bn  - bn,k\mu 

\bigm| \bigm| Mn

n!
\leq \varepsilon + eMN\mathrm{m}\mathrm{a}\mathrm{x}

n\leq N

\bigm| \bigm| bn  - bn,k\mu 

\bigm| \bigm| ,
because taking sufficiently large \mu we can make the last expression less than 2\varepsilon . Indeed,
if we write the expansion of the determinant for bk\mu with term-by-term integration of the
obtained sum, then one can note that, for n \leq N , the relation \mathrm{l}\mathrm{i}\mathrm{m}

p\rightarrow \infty 
bn,k\mu 

\rightarrow bn is satisfied

as \mu \rightarrow \infty . Similarly, one can establish the relation

D(x, y, z) = \mathrm{l}\mathrm{i}\mathrm{m}
\mu \rightarrow \infty 

Dk\mu (x, y, z).

Uniformly in the disc | z| \leq M follows From the bounds obtained above for the coefficients
of the series, and we deduce that the all analytic functions above given by the power
series are integral functions.

As in the theory of ordinary Fredholm integral equations, the roots of the function
D(\lambda ) play an essential role. Here we at first consider the case where \lambda is a real number
does not satisfying the equation D(\lambda ) = 0.

Theorem 2. Let \lambda be a real number such that D(\lambda ) \not = 0 and f(x) \in CB (\bfR ). Then
equation (1.2) has a solution defined by

\varphi (x) = f(x) + \mathrm{l}\mathrm{i}\mathrm{m}
\mu \rightarrow \infty 

1

Tk\mu 

\int Tk\mu 

0

f(\xi )
D(x, \xi ;\lambda )

D(\lambda )
d\xi . (3.6)

Proof. Let us consider equation (2.3) for some fixed k, and take T = T\mu = Tk\mu 
for

simplicity of notations. Then

\varphi (x) = f(x) +
\lambda 

T\mu 

\int T\mu 

0

K(x, \xi )\varphi (\xi )d\xi . (3.7)

Let \lambda be a real number such that D(\lambda ) \not = 0. Let \lambda 0 be the nearest to the number
\lambda zero of the function D(\lambda ), and set | \lambda 0  - \lambda | = r. By a theorem of Hurwitz [5, p.128],
there can exist not more than a finite number of zeroes of the functions Dk\mu 

(\lambda ) in the
neighborhood | \lambda  - z| \leq r/2 of the number \lambda . For this reason, for sufficiently large values
of k, we have Dk(\lambda ) \not = 0 (and, moreover, the number Dk(\lambda ) is sufficiently close to D(\lambda )).

For such values of k, due to [6, p.305], equation (3.7) has a unique solution given by
the formula

\varphi k\mu (x) = f(x) +

\int T\mu 

0

f(\xi )
\=D\mu (x, \xi ;\lambda /T\mu )
\=D\mu (\lambda /T\mu )

d\xi ,

where
\=D\mu (\lambda /T\mu ) = 1 +

\infty \sum 
n=1

an,\mu (\lambda /T\mu )
n

n!

and

an,\mu = ( - 1)n
\int T\mu 

0

\cdot \cdot \cdot 
\int T\mu 

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
K(x1, \xi 1) K(x1, \xi 2) \cdot \cdot \cdot K(x1, \xi n)
K(x2, \xi 1) K(x2, \xi 2) \cdot \cdot \cdot K(x2, \xi n)

...
...

. . .
...

K(xn, \xi 1) K(xn, \xi 2) \cdot \cdot \cdot K(xn, \xi n)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| d\xi 1d\xi 2 \cdot \cdot \cdot d\xi n.
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The function \=D\mu (x, y;\lambda /T\mu ) is defined by

\=D\mu (x, y;\lambda /T\mu ) = (\lambda /T\mu )D\mu (\lambda /T\mu )K(x, y)

+

\infty \sum 
n=1

( - 1)n+1Qn,\mu (x, y)(\lambda /T\mu )
n+1

n!
, x, y \in \bfR ,

where

Qn,\mu (x, y) =  - n

\int T\mu 

0

\cdot \cdot \cdot 
\int T\mu 

0

Pn,\mu (x, \xi , \xi 1, ..., \xi n - 1)K(\xi , y)d\xi d\xi 1 \cdot \cdot \cdot d\xi n - 1

and

Pn,\mu (x, \xi , \xi 1, ..., \xi n - 1) =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
K(x, \xi ) K(x, \xi 1) \cdot \cdot \cdot K(x, \xi n - 1)
K(\xi 1, \xi ) K(\xi 1, \xi 1) \cdot \cdot \cdot K(\xi 1, \xi n - 1)

...
...

. . .
...

K(\xi n - 1, \xi ) K(\xi n - 1, \xi 1) \cdot \cdot \cdot K(\xi n - 1, \xi n - 1)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
It is not difficult to note that the expressions for \=D\mu (\lambda /T\mu ) and Dk\mu (\lambda ) are identical.
The same is true for the functions \=D\mu (x, y;\lambda /T\mu ) and Dk\mu 

(x, y;\lambda )/T\mu . So, we have the
unique solution

\varphi k\mu 
(x) = f(x) +

1

T\mu 

\int T\mu 

0

f(\xi )
Dk\mu (x, \xi ;\lambda )

Dk\mu 
(\lambda )

d\xi .

It follows from the expressions for the functions Dk\mu (\lambda ) and Dk\mu (x, y;\lambda ) and the as-
sumption f(x) \in CB (\bfR ) that the conditions of the Theorem 1. By this theorem the
sequence \varphi k\mu 

(x) of solutions has a subsequence uniformly converging to \varphi k\mu 
(x), a solution

of equation (1.2) corresponding to the chosen subsequence. Without loss of generality, we
can assume that the sequence of the obtained solutions is itself converges to a solution of
equation (1.2). So, the equation (1.2) has a solution defined by the relation

\varphi k\mu 
(x) = f(x) +

1

T\mu 

\int T\mu 

0

f(\xi )
Dk\mu 

(x, \xi ;\lambda )

Dk\mu (\lambda )
d\xi .

It is obvious, due to uniform continuity and boundedness, that we can pass to the limit
under the integral and write the solution of the equation as follows:

\varphi (x) = f(x) + \mathrm{l}\mathrm{i}\mathrm{m}
\mu \rightarrow \infty 

1

T\mu 

\int T\mu 

0

f(\xi )
D(x, \xi ;\lambda )

D(\lambda )
d\xi . \square 
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