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LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDERS IN A
BANACH SPACE AND THE VANDERMONDE OPERATOR

M.F. HORODNII

ABsTrRACT. We study the question of existence of a unique bounded solution to
a Cauchy problem for a higher-order differential equation with bounded operator
coefficients. The case under consideration is where the corresponding “algebraic”
operator equation has separated pairwise commuting roots. Using the Vandermonde
operator constructed from such roots, representations for a unique bounded solution
and the Cauchy problem are obtained.

BuByaerbcs nuTaHHs icCHYBaHHSI €JMHOIO OOMEXKEHOro POxB’s3Ky 3asgadi Ko mjs
IudEPEHIiaIbHOTO PIBHAHHSI BUIIIOIO IIOPSIKY 3 OOMEXKEHIM OIIepaTOpOM KoedilieHTamu.
PosrisiiaeTbes BUnaiok, B sKOMy BifnoBijgHe “asrebpalune” ornepaTopHe PiBHSIHHS Ma€
BIJIOKpeMJIeH] TonapHO KOMMYTY04i KopeHi. Bukopucrosyioun oneparop BannepMmonia,
SAKUA T0OYJOBaHMI 3a TAKMMH KODEHSIMU, OTPUMAHO IIPEJCTABJIEHHS JIJIsi €IIHOIO
0bMeKeHOro po3B’sA3Ky 3aja4i Korri.

1. INTRODUCTION

Let X be a complex Banach space with norm || - || and zero element 0, L(X) the Banach
algebra of bounded linear operators defined on X, I and O the identity and zero operators
in X, correspondingly, Cy,(R, X) the Banach space of functions z : R — X continuous
and bounded on R with the norm ||z||cc = sup,cg ||z(¢)|], Clgk)(R, X) the Banach space
of functions z € Cp(R, X) that have the k-th derivative, continuous and bounded on R,
with the norm ||z ook = [|7]/oo + |2 ]| co-

Let us fix a natural number p > 2 and consider the differential equation

e (t) = AP V() + - Ay 2’ () 4+ Apx(t) +y(t),  tER, (1.1)

where y € C3(R, X) and A;, As, ..., A, are fixed operators belonging to L(X). As usual,

a bounded solution of equation (1.1) is a function z € C’ép )(R, X) such that identity (1.1)
holds for each ¢t € R.

The purpose of the paper is to find criteria for the operators A;, As,..., A, such
that the differential equation (1.1) has a unique bounded solution z for each function
y € Cy(R, X).

If p = 1, then, according to M.G. Krein’s theorem (see [3]) the differential equation

2/ () = Ajx(t) + y(t), teR, (1.2)

has a unique bounded solution for each function y € Cy(R, X)) if and only if the spectrum
o(Ay) of the operator A; does not intersect with the imaginary axis iR = {it |t € R}. In
this case, the unique bounded solution x of equation (1.2), corresponding to the function
y € Cy(R, X), is constructed as follows. Let o_, o be the parts of the spectrum o(A4;)
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of the operator A; lying in the left and right half-planes, respectively (one of them may
be empty), Py be the Riesz projections corresponding to o,

G —€A1tP+, t< 0,
AT ehtp_ ¢ >0.

The bounded solution x is the convolution
xz(t) = (Ga, xy)(t) = / Ga,(t —s)y(s)ds, teR. (1.3)
R

Put XP = {:Ic = (z1,22,...,2p)7 ’ z, € X, 1 <k < p}. Then X? is a complex
separable Banach space with respect to coordinatewise addition and multiplication by
scalar, and the norm ||Z||. = sup;<y<, [|7&l|. If {T;;, 1 <4,j <p} C L(X), then, as in
the case of numerical matrices, T = (T};)1<i,j<p defines an operator, which belongs to
L(X?), by

P P P -
Tz = (Zlexk,ZTgkxk,...,ZTpkl‘k) , T e XP.
k=1 k=1 k=1

Together with equation (1.1), we will consider a first-order differential equation

T'(t) = Taz(t) + y(t), t € R, (1.4)
where § € Cp(R, X?) and
Ay Ay Lo Ay Ay
I O o O
Ta=]10 I o O
O O I O
Put A(\) =INP — AP~ —... — A, 1A —A,, X € C. The following theorem holds true.

Theorem 1.1. The following conditions are equivalent:

(1) the differential equation (1.1) has a unique bounded solution x for each function
y € Gy(R, X);

(i2) for each X\ € iR, the operator A(N) is continuously invertible;

(i3) the differential equation (1.4) has a unique bounded solution T for each function
g € Cp(R, XP).

The proof of Theorem 1.1 is given in Appendix A.

In the general case, verification of the conditions of Theorem 1.1 is not trivial. We
will study the case where, for this verification, one can use properties of the “algebraic*
operator equation

AP — AP — A, A Ay =0 (1.5)
corresponding to equation (1.1). A similar approach was used for the second-order
differential equation in [1]. Various existence conditions and properties of bounded
solutions of linear differential equations with operator coefficients are studied in [1, 6, 4, 2].

2. SEPARATED ROOTS OF EQUATION (1.5) AND THE VANDERMONDE OPERATOR

Similarly to [1], the roots A1, Ag,. .., A, of the operator equation (1.5) will be called
separated if, for any 1 < ¢ < j < p, the operator A; — A; is continuously invertible.
Further, the following assumption is used.

Assumption 2.1. The operator equation (1.5) has separated and pairwise commutable
roots Ay, Ag, ..., Ap.
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As in [5], the Vandermonde operator corresponding to Ai, Ag, ..., A, acts in the space
XP? and is defined by the formula
p—1 p—1 p—1
ﬁ%—2 ﬁ%—z o ﬁ§_2
P 5 . b
W= 1. .
Ay As A,
1 1 I

For further reasoning, it is important that Assumption 2.1 allows one to generalize prop-
erties analogous to the well-known properties of the Vandermonde numerical determinant
to the case of the Vandermonde operator. The following theorem contains the properties
of the operator W, which will be used in what follows.

Theorem 2.2. If Assumption 2.1 is true, then:

(j1) the operator W has a continuous inverse operator W=1;

A O ... O
(12) W-ATaW = O Ay ... O :
O O A,
(13) o(Ta) = kU o(Ag).-
=1
Proof. Since the roots Aj, Ag, ..., A, are separated, the operator
D= ] (ni-Ay),
1<i<j<p

which is the same as the Vandermonde determinant in the scalar case, is continuously
invertible. Therefore, taking into account the pairwise commutativity of Ay, Ag, ..., Ap,
the operator W ! is constructed using algebraic additions, as in the case of scalar matrices.
Thus, assertion (j1) is satisfied.

Assertion (j2) follows from (j1) and Corollary 1.1 in [5]. Finally, assertion (j3) is an
immediate consequence of (j2). O

Note that if Assumption 2.1 holds, then it follows from assertion (j1) of Theorem 2.2
and Theorems 1.2 and 1.3 in [5] that there is no “algebraic” operator equation of the p-th
degree with the identity operator at AP, different from (1.5) , which also has the roots
A, Ao, A,

3. MAIN RESULTS
The properties of the Vandermonde operator are used to prove the following assertions.
Theorem 3.1. Assume that Assumption 2.1 holds. The differential equation (1.1) has a
unique bounded solution x for each function y € Cy(R, X) if and only if

P

(| o(Ar) niR = 0. (3.6)

k=1

In this case, the unique bounded solution x of equation (1.1), corresponding to the function
y € Cy(R, X), is represented as

p
2= Gp,*DiyD 'y, (3.7)
k=1
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where, for each 1 < k < p,
Dy = (=) T (ni—4y)

1<i<y<p

i#k, j#k
is an algebraic complement to the element Aiil of the first row of the matrix that
determines the operator W.

Proof. Since equation (1.4) is an equation of the form (1.2), the equivalence of condi-
tion (3.6) and the condition on the existence of a unique bounded solution to equation (1.1)
follows from Theorem 1.1 and assertion (j3) of Theorem 2.2.

Let us check the correctness of representation (3.7). Due to the pairwise commutativity

of the roots A, Ag, ..., Ay, as for numerical matrices, the equality
p .
> A Dy =i a1 (3.8)
k=1

holds for each 0 < j < p — 1. Here §;,, is the Kronecker symbol. Put z; = Gy, *
D1, D1y, 1 <k < p. Taking into account (1.2), (1.4) for each k, 1 < k < p, we have

l'gc(t) = Akl'k(t) + leD_ly(t>, teR. (39)
Therefore, from (3.7), (3.8), (3.9) it follows that for every ¢t € R

2(t) = Y ai(t),
k=1

(1) = Apai(t) + (Z ID1k>D_1y(t) =3 M),
k=1 k=1 k=1

200 = (3 Ai’Q:rk(t)),: S AL (1)
k=1 k=1
+ (DA Du) D () = DAL (o),
k=1 k=1

2 (t) = 37 At + (D AL Du ) D7 ly(t) = - ALk () + ().
k=1 k=1 k=1

Hence, taking also into account that A, A, ..., A, are roots of the operator equation (1.5),
we obtain
2P (t) — APV (1) — - — A, 12 (t) — Ap(t)
P
=Y (AR = AT — e — Ay Ay — Ay )i(t) + y(t) = (D).
k=1

Thus, the function x defined by formula (3.7) is indeed a bounded solution of equation (1.1)
corresponding to the function y € Cy(R, X). O

Remark 3.2. If p = 2, then, by Remark 1.3 in [5], regardless of the commutability of
the roots Ay, Ag, the operator W is continuously invertible if and only if the operator
A1 — As is continuously invertible. In this case, it is directly verified that instead of
Assumption 2.1 in the statement of Theorem 3, it suffices to require that the operator
equation A2 — A;A — Ay = O have separated roots Aq, As.
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Remark 3.3. It is erroneously stated in [1] that for p = 2 the unique bounded solution
x of equation (1.1) corresponding to the function y € Cy(R, X) has the form

xr = (Al — A/\Q)ilA/\Q(GYA2 — GAl) * 9. (310)

Indeed, for example, for the numerical differential equation =" (t) = 2/ () +2x(t) -2, t €
R, we have A = —1, Ay =2 and, due to (3.10),

o t
(1) :-%(—/eﬂtﬁ)(—mds— / e OI(-2)ds)= -2, teR
t —0o0

However, it is easy to verify that this function is not a solution to the differential equation.
Consider now the differential equation

P (t) = APx(t) +y(t), t € R, (3.11)

where A is a fixed operator belonging to L(X). The corresponding operator equation is
written as AP — AP = O and has pairwise commutable roots

Up=utA, 0<k<p-1, (3.12)
where ug = exp(z%ki)7 0 <k <p-—1, are the p-th roots of 1.

Theorem 3.4. For equation (3.11) to have a unique bounded solution x for any y €
Cy(R, X), it is necessary and sufficient that

( U{uez | = € or(A)}) NiR = 0. (3.13)
k=0

In this case, the unique bounded solution x of equation (3.11), corresponding to the
function y € Cy(R, X), is represented as

15
== Z up Gy, * APy, (3.14)
k=0

Proof. Necessity. Since equation (3.11) has a unique bounded solution x for each function
y € Cy(R, X), due to Theorem 1.1, the operator A(\) = IA\P— AP is continuously invertible
for each A € iR. Hence, using the equality A(0) = —AP, we conclude that the operator
A has a continuous inverse operator A~! and, therefore, the roots Uy, Uy, ..., U,—1 are
separated. Consequently, by Theorem 3.1, condition (3.13) is satisfied.

Sufficiency. It follows from (3.13) that the operator A is continuously invertible and
condition (3.6) is satisfied for the operators Uy, Ut, ..., Up—1. Therefore, by Theorem 3.1,
equation (3.11) has a unique bounded solution z for each function y € Cp(R, X).

Let us check that, for the differential equation (3.11), formula (3.7) is written in
the form (3.14). Indeed, taking into account properties of the p-th roots of 1, for each
1 < k < p we obtain

Dy D' = (=)A= wee)™ [ (uker =)™

0<j<k—2 k<j<p-1
—1
_ — 1 U4
S | Ry
Uk —
0<j<p—1 k=1
J#k—1

—ptl, —p+1 1 —p+1 -1
= APy, P H (ug —w)™ " =u, 7 DD
1<i<p—1
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Consequently,
P P
D =) U |Di=> (up1 AP u P Dy = pAP~' Dy,
k=1 k=1
and hence D11 D! = %A‘p“. Therefore, representation (3.14) of the unique bounded
solution z of equation (3.11) corresponding to the function y € Cy(R, X) is correct. [

Theorem 3.5. If Assumption 2.1 is satisfied, then for any xq,x(, . . x(()p e X and
continuous function f : [to;00) — X the solution of the Cauchy pmblem

2@ (1) = Ayz®P=V(#) + -+ A2/ (t) + Apz(t) + f(1), t > to,

- (3.15)
z(ty) = o, '(to) =af, ..., @ V(tg)=al ",

is represented as

p
X t) == Z eAk(t—tO)D_l(Dpk(Ij(] —|— D(p—l)kxé) + e + lex(()p—l))

+Z/ M=) Dy D1 f(s)ds t>tg, (3.16)

k=1 i}

where Dy, is an algebraic complement to the element Ai_i of the i-th row of the matriz
that determines the operator W.

Proof. Since A1, Az, ..., A, are roots of the operator equation (1.5), taking into account
an explicit form of the solution of the Cauchy problem for a first-order differential equation
(see [3]), it is directly verified that the function x defined by formula (3.16) is a solution
to the Cauchy problem (3.15). O

APPENDIX A. PROOF OF THEOREM 1.1

Proof. Equivalence of conditions (i2) and (i3) follows from M. G. Krein’s theorem and
the statement about the spectrum of a polynomial pencil of operators proved in [5]

Let us prove implication (i3)=-(i1). Fixy € Cp(R, X). Let Z(t) = (z1(¢), x2(t), ..., z,(t))7, t €
R, be the unique bounded solution of equation (1.4) corresponding to %(t) = (y(t),0 O)T te
R. Then

2i(t) = A (t) + -+ Ap_1zp—1 () + Apzp (8) + y(t), t eR,

and x},(t) = 2x(t), t € R, for every 1 < k < p— 1. Consequently, the differential
equation (1.1) has a bounded solution z,(t), t € R, corresponding to y.

If, by contradiction, this solution is not unique, then the homogeneous differential
equation corresponding to (1.1), has a nonzero bounded solution u(t), t € R. But
then (t) = (u®=V(t),u?=2(t),...,u(t))", t € R, is a nonzero bounded solution of the
homogeneous equation corresponding to (1.4), which is impossible.

Finally we prove that (i1)=-(i2). Fix w € X, a € R. Let z4(t), t € R, be the unique
bounded solution of equation (1.1) corresponding to y,(t) = e!**w, t € R. It is directly
verified that then Z,,(t) = (sc((ffl) (t), x&piz)(t), .., Z(t))7, t € R, is a bounded solution of
the differential equation (1.4) corresponding to the function g, (t) = (y4(¢),0,...,0)7, t €
R.

If, by contradiction, equation (1.4) has several bounded solutions corresponding to
Ja, then the homogeneous differential equation corresponding to (1.4) has some nonzero
bounded solution u(t) = (u1(t),u2(t),...,up(t))”, t € R. But then the homogeneous
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differential equation corresponding to (1.1) also has a nonzero bounded solution u,(t), t €
R. This contradicts condition (il).

Making the change of function Z(t) = e!**(t) in the equation Z'(t) = TaZ(t)+a(t), t €
R, we conclude that the differential equation

v'(t) = (Ta —iad)o(t) + (w,0,...,0)7, t € R, (A.17)

where I is the identity operator in XP, also has a unique bounded solution o(t), ¢ € R.
Since, for each fixed s € R, the function o(t + s), t € R, is also a bounded solution of
equation (A.17), we see that (t) = ©(0), ¢t € R. Therefore, it follows from (A.17) that

(10)P0,(0) — (i0)P ™ A10,(0) — -+ — Ay (0) = w.

Thus, the operator equation A(ia)u = w has a solution u = v,(0).

If, by contradiction, this solution is not unique, then there is a nonzero element u € X
such that A(ia)u = 0. But then the function x(t) = e*“*u, t € R, is a nonzero bounded
solution of the homogeneous differential equation corresponding to (1.1), which contradicts
condition (il).

Thus, the operator A(ia) is continuously invertible by the Banach inverse operator
theorem. O
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