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LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDERS IN A
BANACH SPACE AND THE VANDERMONDE OPERATOR

M.F. HORODNII

Abstract. We study the question of existence of a unique bounded solution to
a Cauchy problem for a higher-order differential equation with bounded operator
coefficients. The case under consideration is where the corresponding “algebraic”
operator equation has separated pairwise commuting roots. Using the Vandermonde
operator constructed from such roots, representations for a unique bounded solution
and the Cauchy problem are obtained.

Вивчається питання iснування єдиного обмеженого рохв’язку задачi Кошi для
диференцiального рiвняння вищого порядку з обмеженим оператором коефiцiєнтами.
Розглядається випадок, в якому вiдповiдне “алгебраїчне” операторне рiвняння має
вiдокремленi попарно коммутуючi коренi. Використовуючи оператор Вандермонда,
який побудований за такими коренями, отримано представлення для єдиного
обмеженого розв’язку задачi Кошi.

1. Introduction

Let X be a complex Banach space with norm \| \cdot \| and zero element \=0, L(X) the Banach
algebra of bounded linear operators defined on X, I and O the identity and zero operators
in X, correspondingly, Cb(\BbbR , X) the Banach space of functions x : \BbbR \rightarrow X continuous
and bounded on \BbbR with the norm \| x\| \infty = \mathrm{s}\mathrm{u}\mathrm{p}t\in \BbbR \| x(t)\| , C(k)

b (\BbbR , X) the Banach space
of functions x \in Cb(\BbbR , X) that have the k-th derivative, continuous and bounded on \BbbR ,
with the norm \| x\| \infty ,k = \| x\| \infty + \| x(k)\| \infty .

Let us fix a natural number p \geq 2 and consider the differential equation

x(p)(t) = A1x
(p - 1)(t) + \cdot \cdot \cdot +Ap - 1x

\prime (t) +Apx(t) + y(t), t \in \BbbR , (1.1)

where y \in Cb(\BbbR , X) and A1, A2, . . . , Ap are fixed operators belonging to L(X). As usual,
a bounded solution of equation (1.1) is a function x \in C

(p)
b (\BbbR , X) such that identity (1.1)

holds for each t \in \BbbR .
The purpose of the paper is to find criteria for the operators A1, A2, . . . , Ap such

that the differential equation (1.1) has a unique bounded solution x for each function
y \in Cb(\BbbR , X).

If p = 1, then, according to M.G. Krein’s theorem (see [3]) the differential equation

x\prime (t) = A1x(t) + y(t), t \in \BbbR , (1.2)

has a unique bounded solution for each function y \in Cb(\BbbR , X) if and only if the spectrum
\sigma (A1) of the operator A1 does not intersect with the imaginary axis i\BbbR = \{ it | t \in \BbbR \} . In
this case, the unique bounded solution x of equation (1.2), corresponding to the function
y \in Cb(\BbbR , X), is constructed as follows. Let \sigma  - , \sigma + be the parts of the spectrum \sigma (A1)
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of the operator A1 lying in the left and right half-planes, respectively (one of them may
be empty), P\pm be the Riesz projections corresponding to \sigma \pm ,

GA1
=

\Biggl\{ 
 - eA1tP+, t < 0,

eA1tP - , t \geq 0.

The bounded solution x is the convolution

x(t) = (GA1
\ast y)(t) =

\int 
\BbbR 
GA1

(t - s)y(s)ds, t \in \BbbR . (1.3)

Put Xp =
\bigl\{ 
\=x = (x1, x2, . . . , xp)

\tau 
\bigm| \bigm| xk \in X, 1 \leq k \leq p

\bigr\} 
. Then Xp is a complex

separable Banach space with respect to coordinatewise addition and multiplication by
scalar, and the norm \| \=x\| \ast = \mathrm{s}\mathrm{u}\mathrm{p}1\leq k\leq p \| xk\| . If \{ Tij , 1 \leq i, j \leq p\} \subset L(X), then, as in
the case of numerical matrices, T = (Tij)1\leq i,j\leq p defines an operator, which belongs to
L(Xp), by

T \=x =
\Bigl( p\sum 
k=1

T1kxk,

p\sum 
k=1

T2kxk, . . . ,

p\sum 
k=1

Tpkxk

\Bigr) \tau 

, \=x \in Xp.

Together with equation (1.1), we will consider a first-order differential equation

\=x\prime (t) = TA\=x(t) + \=y(t), t \in \BbbR , (1.4)

where \=y \in Cb(\BbbR , Xp) and

TA =

\left(      
A1 A2 . . . Ap - 1 Ap

I O . . . O O
O I . . . O O
. . . . . . . . . . . . . . . . . . . . . . . . .
O O . . . I O

\right)      .

Put \Delta (\lambda ) = I\lambda p  - A1\lambda 
p - 1  - \cdot \cdot \cdot  - Ap - 1\lambda  - Ap, \lambda \in \BbbC . The following theorem holds true.

Theorem 1.1. The following conditions are equivalent:
(i1) the differential equation (1.1) has a unique bounded solution x for each function

y \in Cb(\BbbR , X);
(i2) for each \lambda \in i\BbbR , the operator \Delta (\lambda ) is continuously invertible;
(i3) the differential equation (1.4) has a unique bounded solution \=x for each function

\=y \in Cb(\BbbR , Xp).

The proof of Theorem 1.1 is given in Appendix A.

In the general case, verification of the conditions of Theorem 1.1 is not trivial. We
will study the case where, for this verification, one can use properties of the “algebraic“
operator equation

\Lambda p  - A1\Lambda 
p - 1  - \cdot \cdot \cdot  - Ap - 1\Lambda  - Ap = O (1.5)

corresponding to equation (1.1). A similar approach was used for the second-order
differential equation in [1]. Various existence conditions and properties of bounded
solutions of linear differential equations with operator coefficients are studied in [1, 6, 4, 2].

2. Separated roots of equation (1.5) and the Vandermonde operator

Similarly to [1], the roots \Lambda 1,\Lambda 2, . . . ,\Lambda p of the operator equation (1.5) will be called
separated if, for any 1 \leq i < j \leq p, the operator \Lambda i  - \Lambda j is continuously invertible.

Further, the following assumption is used.

Assumption 2.1. The operator equation (1.5) has separated and pairwise commutable
roots \Lambda 1,\Lambda 2, . . . ,\Lambda p.
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As in [5], the Vandermonde operator corresponding to \Lambda 1,\Lambda 2, . . . ,\Lambda p acts in the space
Xp and is defined by the formula

W =

\left(      
\Lambda p - 1
1 \Lambda p - 1

2 . . . \Lambda p - 1
p

\Lambda p - 2
1 \Lambda p - 2

2 . . . \Lambda p - 2
p

. . . . . . . . . . . . . . . . . . . . . . . .
\Lambda 1 \Lambda 2 . . . \Lambda p

I I . . . I

\right)      .

For further reasoning, it is important that Assumption 2.1 allows one to generalize prop-
erties analogous to the well-known properties of the Vandermonde numerical determinant
to the case of the Vandermonde operator. The following theorem contains the properties
of the operator W , which will be used in what follows.

Theorem 2.2. If Assumption 2.1 is true, then:
(j1) the operator W has a continuous inverse operator W - 1;

(j2) W - 1TAW =

\left(    
\Lambda 1 O . . . O
O \Lambda 2 . . . O
. . . . . . . . . . . . . . . . .
O O . . . \Lambda p

\right)    ;

(j3) \sigma (TA) =
p\bigcup 

k=1

\sigma (\Lambda k).

Proof. Since the roots \Lambda 1,\Lambda 2, . . . ,\Lambda p are separated, the operator

D =
\prod 

1\leq i<j\leq p

(\Lambda i  - \Lambda j),

which is the same as the Vandermonde determinant in the scalar case, is continuously
invertible. Therefore, taking into account the pairwise commutativity of \Lambda 1,\Lambda 2, . . . ,\Lambda p,
the operator W - 1 is constructed using algebraic additions, as in the case of scalar matrices.
Thus, assertion (j1) is satisfied.

Assertion (j2) follows from (j1) and Corollary 1.1 in [5]. Finally, assertion (j3) is an
immediate consequence of (j2). \square 

Note that if Assumption 2.1 holds, then it follows from assertion (j1) of Theorem 2.2
and Theorems 1.2 and 1.3 in [5] that there is no “algebraic” operator equation of the p-th
degree with the identity operator at \Lambda p, different from (1.5) , which also has the roots
\Lambda 1,\Lambda 2, . . . ,\Lambda p.

3. Main results

The properties of the Vandermonde operator are used to prove the following assertions.

Theorem 3.1. Assume that Assumption 2.1 holds. The differential equation (1.1) has a
unique bounded solution x for each function y \in Cb(\BbbR , X) if and only if

(

p\bigcup 
k=1

\sigma (\Lambda k)) \cap i\BbbR = \emptyset . (3.6)

In this case, the unique bounded solution x of equation (1.1), corresponding to the function
y \in Cb(\BbbR , X), is represented as

x =

p\sum 
k=1

G\Lambda k
\ast D1kD

 - 1y, (3.7)
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where, for each 1 \leq k \leq p,

D1k = ( - 1)k+1
\prod 

1\leq i<j\leq p
i \not =k, j \not =k

(\Lambda i  - \Lambda j)

is an algebraic complement to the element \Lambda p - 1
k of the first row of the matrix that

determines the operator W .

Proof. Since equation (1.4) is an equation of the form (1.2), the equivalence of condi-
tion (3.6) and the condition on the existence of a unique bounded solution to equation (1.1)
follows from Theorem 1.1 and assertion (j3) of Theorem 2.2.

Let us check the correctness of representation (3.7). Due to the pairwise commutativity
of the roots \Lambda 1,\Lambda 2, . . . ,\Lambda p, as for numerical matrices, the equality

p\sum 
k=1

\Lambda j
kD1k = \delta j,p - 1I (3.8)

holds for each 0 \leq j \leq p  - 1. Here \delta l,m is the Kronecker symbol. Put xk = G\Lambda k
\ast 

D1kD
 - 1y, 1 \leq k \leq p. Taking into account (1.2), (1.4) for each k, 1 \leq k \leq p, we have

x\prime 
k(t) = \Lambda kxk(t) +D1kD

 - 1y(t), t \in \BbbR . (3.9)

Therefore, from (3.7), (3.8), (3.9) it follows that for every t \in \BbbR 

x(t) =

p\sum 
k=1

xk(t),

x\prime (t) =

p\sum 
k=1

\Lambda kxk(t) +
\Bigl( p\sum 
k=1

ID1k

\Bigr) 
D - 1y(t) =

p\sum 
k=1

\Lambda kxk(t),

...

x(p - 1)(t) =
\Bigl( p\sum 
k=1

\Lambda p - 2
k xk(t)

\Bigr) \prime 
=

p\sum 
k=1

\Lambda p - 1
k xk(t)

+
\Bigl( p\sum 
k=1

\Lambda p - 2
k D1k

\Bigr) 
D - 1y(t) =

p\sum 
k=1

\Lambda p - 1
k xk(t),

x(p)(t) =

p\sum 
k=1

\Lambda p
kxk(t) +

\Bigl( p\sum 
k=1

\Lambda p - 1
k D1k

\Bigr) 
D - 1y(t) =

p\sum 
k=1

\Lambda p
kxk(t) + y(t).

Hence, taking also into account that \Lambda 1,\Lambda 2, . . . ,\Lambda p are roots of the operator equation (1.5),
we obtain

x(p)(t) - A1x
(p - 1)(t) - \cdot \cdot \cdot  - Ap - 1x

\prime (t) - Apx(t)

=

p\sum 
k=1

(\Lambda p
k  - A1\Lambda 

p - 1
k  - \cdot \cdot \cdot  - Ap - 1\Lambda k  - Ap)xk(t) + y(t) = y(t).

Thus, the function x defined by formula (3.7) is indeed a bounded solution of equation (1.1)
corresponding to the function y \in Cb(\BbbR , X). \square 

Remark 3.2. If p = 2, then, by Remark 1.3 in [5], regardless of the commutability of
the roots \Lambda 1,\Lambda 2, the operator W is continuously invertible if and only if the operator
\Lambda 1  - \Lambda 2 is continuously invertible. In this case, it is directly verified that instead of
Assumption 2.1 in the statement of Theorem 3, it suffices to require that the operator
equation \Lambda 2  - A1\Lambda  - A2 = O have separated roots \Lambda 1,\Lambda 2.
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Remark 3.3. It is erroneously stated in [1] that for p = 2 the unique bounded solution
x of equation (1.1) corresponding to the function y \in Cb(\BbbR , X) has the form

x = (\Lambda 1  - \Lambda 2)
 - 1\Lambda 2(G\Lambda 2

 - G\Lambda 1
) \ast y. (3.10)

Indeed, for example, for the numerical differential equation x\prime \prime (t) = x\prime (t)+2x(t) - 2, t \in 
\BbbR , we have \Lambda 1 =  - 1, \Lambda 2 = 2 and, due to (3.10),

x(t) =  - 2

3

\Bigl( 
 - 

\infty \int 
t

e2(t - s)( - 2)ds - 
t\int 

 - \infty 

e - (t - s)( - 2)ds
\Bigr) 
=  - 2, t \in \BbbR .

However, it is easy to verify that this function is not a solution to the differential equation.
Consider now the differential equation

x(p)(t) = Apx(t) + y(t), t \in \BbbR , (3.11)

where A is a fixed operator belonging to L(X). The corresponding operator equation is
written as \Lambda p  - Ap = O and has pairwise commutable roots

Uk = ukA, 0 \leq k \leq p - 1, (3.12)

where uk = \mathrm{e}\mathrm{x}\mathrm{p}
\Bigl( 

2\pi k
p i

\Bigr) 
, 0 \leq k \leq p - 1, are the p-th roots of 1.

Theorem 3.4. For equation (3.11) to have a unique bounded solution x for any y \in 
Cb(\BbbR , X), it is necessary and sufficient that\Bigl( p - 1\bigcup 

k=0

\{ ukz | z \in \sigma (A)\} 
\Bigr) 
\cap i\BbbR = \emptyset . (3.13)

In this case, the unique bounded solution x of equation (3.11), corresponding to the
function y \in Cb(\BbbR , X), is represented as

x =
1

p

p - 1\sum 
k=0

ukGUk
\ast A - p+1y. (3.14)

Proof. Necessity. Since equation (3.11) has a unique bounded solution x for each function
y \in Cb(\BbbR , X), due to Theorem 1.1, the operator \Delta (\lambda ) = I\lambda p - Ap is continuously invertible
for each \lambda \in i\BbbR . Hence, using the equality \Delta (0) =  - Ap, we conclude that the operator
A has a continuous inverse operator A - 1 and, therefore, the roots U0, U1, . . . , Up - 1 are
separated. Consequently, by Theorem 3.1, condition (3.13) is satisfied.

Sufficiency. It follows from (3.13) that the operator A is continuously invertible and
condition (3.6) is satisfied for the operators U0, U1, . . . , Up - 1. Therefore, by Theorem 3.1,
equation (3.11) has a unique bounded solution x for each function y \in Cb(\BbbR , X).

Let us check that, for the differential equation (3.11), formula (3.7) is written in
the form (3.14). Indeed, taking into account properties of the p-th roots of 1, for each
1 \leq k \leq p we obtain

D1kD
 - 1 = ( - 1)1+kA - p+1

\prod 
0\leq j\leq k - 2

(uj  - uk - 1)
 - 1

\prod 
k\leq j\leq p - 1

(uk - 1  - uj)
 - 1

= A - p+1u - p+1
k - 1

\prod 
0\leq j\leq p - 1
j \not =k - 1

\biggl( 
u0  - 

uj

uk - 1

\biggr)  - 1

= A - p+1u - p+1
k - 1

\prod 
1\leq l\leq p - 1

(u0  - ul)
 - 1 = u - p+1

k - 1 D11D
 - 1.
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Consequently,

D =

p\sum 
k=1

Up - 1
k - 1D1k =

p\sum 
k=1

(uk - 1A)p - 1u - p+1
k - 1 D11 = pAp - 1D11,

and hence D11D
 - 1 = uk - 1

p A - p+1. Therefore, representation (3.14) of the unique bounded
solution x of equation (3.11) corresponding to the function y \in Cb(\BbbR , X) is correct. \square 

Theorem 3.5. If Assumption 2.1 is satisfied, then for any x0, x
\prime 
0, . . . , x

(p - 1)
0 \in X and

continuous function f : [t0;\infty ) \rightarrow X the solution of the Cauchy problem

x(p)(t) = A1x
(p - 1)(t) + \cdot \cdot \cdot +Ap - 1x

\prime (t) +Apx(t) + f(t), t \geq t0,

x(t0) = x0, x\prime (t0) = x\prime 
0, . . . , x(p - 1)(t0) = x

(p - 1)
0 ,

(3.15)

is represented as

x(t) =

p\sum 
k=1

e\Lambda k(t - t0)D - 1(Dpkx0 +D(p - 1)kx
\prime 
0 + \cdot \cdot \cdot +D1kx

(p - 1)
0 )

+

p\sum 
k=1

t\int 
t0

e\Lambda k(t - s)D1kD
 - 1f(s)ds, t \geq t0, (3.16)

where Dik is an algebraic complement to the element \Lambda p - i
k of the i-th row of the matrix

that determines the operator W .

Proof. Since \Lambda 1,\Lambda 2, . . . ,\Lambda p are roots of the operator equation (1.5), taking into account
an explicit form of the solution of the Cauchy problem for a first-order differential equation
(see [3]), it is directly verified that the function x defined by formula (3.16) is a solution
to the Cauchy problem (3.15). \square 

Appendix A. Proof of Theorem 1.1

Proof. Equivalence of conditions (i2) and (i3) follows from M. G. Krein’s theorem and
the statement about the spectrum of a polynomial pencil of operators proved in [5].

Let us prove implication (i3)\Rightarrow (i1). Fix y \in Cb(\BbbR , X). Let \=x(t) = (x1(t), x2(t), . . . , xp(t))
\tau , t \in 

\BbbR , be the unique bounded solution of equation (1.4) corresponding to \=y(t) = (y(t), \=0, . . . , \=0)\tau , t \in 
\BbbR . Then

x\prime 
1(t) = A1x1(t) + \cdot \cdot \cdot +Ap - 1xp - 1(t) +Apxp(t) + y(t), t \in \BbbR ,

and x\prime 
k+1(t) = xk(t), t \in \BbbR , for every 1 \leq k \leq p  - 1. Consequently, the differential

equation (1.1) has a bounded solution xp(t), t \in \BbbR , corresponding to y.
If, by contradiction, this solution is not unique, then the homogeneous differential

equation corresponding to (1.1), has a nonzero bounded solution u(t), t \in \BbbR . But
then \=u(t) = (u(p - 1)(t), u(p - 2)(t), . . . , u(t))\tau , t \in \BbbR , is a nonzero bounded solution of the
homogeneous equation corresponding to (1.4), which is impossible.

Finally we prove that (i1)\Rightarrow (i2). Fix w \in X, \alpha \in \BbbR . Let x\alpha (t), t \in \BbbR , be the unique
bounded solution of equation (1.1) corresponding to y\alpha (t) = ei\alpha tw, t \in \BbbR . It is directly
verified that then \=x\alpha (t) = (x

(p - 1)
\alpha (t), x

(p - 2)
\alpha (t), . . . , x\alpha (t))

\tau , t \in \BbbR , is a bounded solution of
the differential equation (1.4) corresponding to the function \=y\alpha (t) = (y\alpha (t), \=0, . . . , \=0)

\tau , t \in 
\BbbR .

If, by contradiction, equation (1.4) has several bounded solutions corresponding to
\=y\alpha , then the homogeneous differential equation corresponding to (1.4) has some nonzero
bounded solution \=u(t) = (u1(t), u2(t), . . . , up(t))

\tau , t \in \BbbR . But then the homogeneous
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differential equation corresponding to (1.1) also has a nonzero bounded solution up(t), t \in 
\BbbR . This contradicts condition (i1).

Making the change of function \=x(t) = ei\alpha t\=v(t) in the equation \=x\prime (t) = TA\=x(t)+\=y\alpha (t), t \in 
\BbbR , we conclude that the differential equation

\=v\prime (t) = (TA  - i\alpha III)\=v(t) + (w, \=0, . . . , \=0)\tau , t \in \BbbR , (A.17)

where III is the identity operator in Xp, also has a unique bounded solution \=v(t), t \in \BbbR .
Since, for each fixed s \in \BbbR , the function \=v(t+ s), t \in \BbbR , is also a bounded solution of

equation (A.17), we see that \=v(t) = \=v(0), t \in \BbbR . Therefore, it follows from (A.17) that

(i\alpha )pvp(0) - (i\alpha )p - 1A1vp(0) - \cdot \cdot \cdot  - Apvp(0) = w.

Thus, the operator equation \Delta (i\alpha )u = w has a solution u = vp(0).
If, by contradiction, this solution is not unique, then there is a nonzero element u \in X

such that \Delta (i\alpha )u = \=0. But then the function x(t) = ei\alpha tu, t \in \BbbR , is a nonzero bounded
solution of the homogeneous differential equation corresponding to (1.1), which contradicts
condition (i1).

Thus, the operator \Delta (i\alpha ) is continuously invertible by the Banach inverse operator
theorem. \square 
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