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REAL ALGEBRAIC FUNCTIONS ON CLOSED MANIFOLDS
WHOSE REEB GRAPHS ARE GIVEN GRAPHS

NAOKI KITAZAWA

Abstract. In this paper, we construct a real-algebraic function on some closed
manifold whose Reeb (Kronrod-Reeb) graph is a graph respecting some algebraic
domain: a graph for this is called a Poincaré-Reeb graph.

The Reeb graph of a smooth function is defined as a natural graph which is the
quotient space of the manifold of the domain under a natural equivalence relation
for some wide and nice class of smooth functions. The vertex set is defined as the
set of all connected components containing some singular points of the function: a
singular point of a smooth function is a point where the differential vanishes. Morse-
Bott functions give very specific cases. The relation is to contract each connected
component of each preimage to a point.

Sharko has posed a natural and important problem: can we construct a nice
smooth function whose Reeb graph is a given graph? Explicit answers have been
given first by Masumoto-Saeki in a generalized manner for closed surfaces. After that
various answers have been presented by various researchers and most of them are
essentially for functions on closed surfaces and Morse functions such that connected
components of preimages that contain no singular points are spheres. Recently the
author has also considered questions and answered them in the cases where the
preimages are general manifolds.

У статтi побудовано дiйсну алгебраїчну функцiю на деякому замкнутому
многовидi, графом Реба (Кронрода-Реба) для якого є граф, який зберiгає деяку
алгебраїчну область: його графiк називається графiком Пуанкаре-Реба.

Граф Реба гладкої функцiї визначається як природний граф, який є фактор-
простором многовида, що вiдповiдає областi, вiдносно природньому вiдношенню
еквiвалентностi для деякого широкого класу гладких функцiй. Множина вершин
визначається як множина всiх зв’язаних компонентiв, що мiстять деякi особливi
точки функцiї: особливою точкою гладкою функцiї є точка, в якiй диференцiал
дорiнює нулю. Функцiї Морсе-Ботта є конкретними випадками таких функцiй.
Вiдношення еквiвалентностi полягає в тому, щоб звести кожен зв’язаний компонент
кожного прообразу до точки.

Шарко поставив природну i важливу проблему: чи можемо ми побудувати
хорошу гладку функцiю, граф Реба якої є заданим графом? Чiткi вiдповiдi були
данi спочатку Масумото-Саекi в узагальненому виглядi для замкнутих поверхонь.
Пiсля цього були данi вiдповiдi рiзними дослiдниками, i бiльшiсть з них були для
функцiй на замкнутих поверхнях i функцiй Морса для випадку, коли зв’язанi
компоненти прообразiв, що не мiстять особливих точок, є сферами. Нещодавно
автор також розглянув i вiдповiв на цi питання в випадках, де прообрази є
загальними многовидами.
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1. Introduction

The Reeb graph (Kronrod-Reeb graph) of a differentiable function c : X \rightarrow Y is a graph
whose underlying topology is the quotient space of the manifold of the domain with
respect to an equivalence relation defined in the following way: two points x1, x2 \in X
are equivalent if and only if they are in a same connected component of some preimage
c - 1(y).

Let Wc denote this quotient space. We define the quotient map qc : X \rightarrow Wc and we
can define a map \=c enjoying the relation c = \=c \circ qc uniquely.

This is regarded as a graph for some wide class of smooth functions. We explain the
structure of our Reeb graph for Wc.

Remark 1. We call such graphs simply “Reeb graphs” in situations we consider where
“Kronrod-Reeb graphs” are also well-known of course.

Such topological and combinatorial objects have been fundamental and powerful tools
in understanding the manifolds; [19] is a related pioneering paper.

We define fundamental terminology, notions, and notation.
For a topological space X having the structure of some cell complex whose dimension

is finite, its dimension is uniquely defined as the dimension of the cell complex. We denote
it by \mathrm{d}\mathrm{i}\mathrm{m}X.

A polyhedron and a CW complex is of course of such a class and a topological manifold
is of such a class, being known to have the structure of a CW complex of a finite dimension.

A graph is a 1-dimensional CW complex where the vertex set is the set of all 0-
dimensional cells and the edge set is the set of all 1-dimensional cells. If the closure of an
edge is homeomorphic to a circle, then it is called a loop. Hereafter, we do not consider
such graphs and a graph is always a 1-dimensional polyhedron. An isomorphism from a
graph K1 onto K2 means a piecewise smooth homeomorphism mapping the edge set and
the vertex set of K1 onto those of K2.

For a differentiable map c : X \rightarrow Y , a singular point x \in X is a point where the
differential is smaller than both \mathrm{d}\mathrm{i}\mathrm{m}X and \mathrm{d}\mathrm{i}\mathrm{m}Y . The value at some singular point of
c is a singular value of c. If a smooth function on a closed manifold has finitely many
singular values, then the Reeb space of it is a graph where the vertex set consists of all
points p whose preimages qc - 1(p) contain some singular points of c. Morse-Bott functions
and smooth functions of some considerably wide classes satisfy this. This is due to [20].

Problem 1. For a graph, can we construct a smooth function on some closed manifold
whose Reeb graph is isomorphic to a given one, and which enjoys some nice (differential)
topological properties and properties on singularity? We do not need to fix the manifold
of the domain.

In [23], this question has been posed for the first time. Smooth functions on closed
surfaces have been explicitly constructed for graphs satisfying some nice conditions there.
In [14], the author generalizes this for arbitrary graphs. Later, answers were given
in [15, 16]. These works study cases of smooth functions on closed surfaces and Morse
functions for which each connected component of each preimage containing no singular
points is always a sphere, for example. In [10, 11, 3, 4], the author has studied cases
where such connected components are general manifolds satisfying mild conditions on
singularities of the functions, for example. Paper [21] appears as a paper motivated by
[10] and through related informal discussions by us.

Problem 2. Can we construct a smooth map in Problem 1 as a morphism from a nicer
or finer category. In other words, can we construct this as a real analytic one, and as a
nicer one, real algebraic one, for example?
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The category we discuss is always the smooth one. In this paper, we consider Problem 2
and obtain related answers in some specific or explicit situations.

To present our main result, we need some terminology, notions, and notation from the
theory of smooth manifolds and (real) algebraic manifolds, for example.

By \BbbR k we denote the k-dimensional Euclidean space, and this is the simplest smooth
manifold of dimension k for an arbitrary integer k > 0. This is also the simplest real
algebraic manifold, which is also called the (k-dimensional) real affine space. It is also a
Riemannian manifold equipped with the so-called Euclidean metric. For a point x \in \BbbR k,
| | x| | \geq 0 is the distance between x and the origin 0 \in \BbbR k. We denote \BbbR := \BbbR 1, and let
Sk := \{ x \in \BbbR k+1 | | | x| | = 1\} be the k-dimensional unit sphere. This is a k-dimensional
algebraic submanifold of \BbbR k+1 which is compact and has no boundary. It is also a smooth
submanifold. It is connected for k \geq 1, and it is a discrete set with exactly two points for
k = 0.

An algebraic domain D of \BbbR k is some open subset there such that the boundary of the
closure D consists of finitely many smooth algebraic submanifolds of dimension k  - 1 or
smooth algebraic hypersurfaces with no boundaries.

To simplify our arguments, let us assume the following with l \geq 0 being an integer:

- For each hypersurface Sj in the family \{ Sj\} lj=1, a real polynomial f\mathrm{P},Sj is given so
that the zero set and Sj coincide and that the polynomial function f\mathrm{P},Sj

: Sj \rightarrow \BbbR 
defined canonically has no singular points on Sj .

- D is assumed to be the intersection
\bigcap l

j=1\{ x \in \BbbR k | f\mathrm{P},Sj (x) > 0\} .

For example, the interior \mathrm{I}\mathrm{n}\mathrm{t} Dk of Dk := \{ x \in \BbbR k | | | x| | \leq 1\} is the simplest example
and Dk is the k-dimensional unit disk. This is also a k-dimensional smooth, compact,
and connected submanifold. Note that | | x| | = \Sigma k

j=1xj
2, where x := (x1, \cdot \cdot \cdot , xk).

A Poincaré-Reeb graph is defined for a pair of an algebraic domain D of the real
affine space of dimension k > 1 and a canonical projection \pi k,1 mapping (x1, x2) \in \BbbR k to
x1 \in \BbbR . This can be presented in a more general manner. Hereafter, we mainly respect the
preprint [18] and there such cases are discussed. Note that terminologies and situations
are different in considerable cases and that here we can argue in a self-contained way.

Definition 1. A Poincaré-Reeb graph for the pair (D,\pi k,1) is a graph in the real affine
space embedded by a piecewise smooth embedding satisfying the following conditions.

\bullet Each edge e intersects each preimage of the projection \pi k,1 in a so-called generic
way or satisfying the “transversality”. In other words, each edge is embedded
smoothly and for each point pe in each edge e, the image of the differential at the
point and the tangent vector space at the value v(pe) in the preimage \pi k,1

 - 1(p)
of a suitable (unique) point p by the projection \pi k,1 generate the tangent vector
space at the point v(pe) \in \BbbR k.

\bullet Two points in the closure D of D can be defined to be equivalent if and only if
they are in a same connected component of the preimage D

\bigcap 
\pi k,1

 - 1(p) for some
point p \in \BbbR and the map obtained by the restriction of the projection to the
closure D. Let \pi D denote the restriction to the closure D. Our Poincaré-Reeb
graph for the pair can also be defined as the quotient space with respect to this
equivalence relation. This is isomorphic to the Reeb graph of \pi D. Furthermore,
an isomorphism is defined as the canonically obtained correspondence.

\bullet The vertex set of our Poincaré-Reeb graph for the pair is the union of the set of
all singular points of the restrictions of the projection \pi k,1 or \pi D to all connected
components of the boundary \partial D \subset D. This set is also finite.

See also [24, 25] for the related theory, for example. We present our main result. In the
following section we prove this result and present related comments as our main content.
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Main Theorem 1. Consider a Poincaré-Reeb graph K for the pair in Definition 1
such that the closure D is compact. Take an arbitrary integer k0 > k + 1. Then we can
construct a real algebraic function on some (k0  - 1)-dimensional smooth closed manifold
regarded as a smooth real algebraic manifold whose Reeb graph is isomorphic to the graph
K as a graph.

2. On Main Theorem 1.

Proof of Main Theorem 1. Let k0 be an arbitrary integer satisfying k0 > k as assumed.
We use x := (x1, \cdot \cdot \cdot , xk) for (local) coordinates for \BbbR k, y := (y1, \cdot \cdot \cdot , yk\prime ) for (local)

coordinates for \BbbR k\prime 
, where k\prime := k0  - k.

We take two steps to complete the proof.
STEP 1. Define a set in MD \subset \BbbR k0 , which is a real algebraic hypersurface and a

smooth regular compact submanifold of dimension k0  - 1 with no boundary.
First we define MD0

:= \{ (x, y) \in \BbbR k \times \BbbR k\prime 
= \BbbR k0 | 

\prod l
j=1(f\mathrm{P},Sj

(x)) - | | y| | 2 = 0\} , where
| | y| | = \Sigma l

j=1yj
2.

We show this is also a smooth regular submanifold in \BbbR k0 . We consider the partial
derivative of the function

\prod l
j=1(f\mathrm{P},Sj

(x))  - \Sigma l
j=1yj

2 with respect to the variables xj

and yj . First we take a point (x0, y0) \in MD0
such that

\prod l
j=1(f\mathrm{P},Sj

(x0)) > 0. We use
x0 := (x0,1, \cdot \cdot \cdot , x0,k) and y0 := (y0,1, \cdot \cdot \cdot , y0,k). Here we consider the partial derivative
of the function for some yj and we have the value 2yj = 2y0,j \not = 0. The differential of the
restriction of the function

\prod l
j=1(f\mathrm{P},Sj

(x)) - \Sigma l
j=1yj

2 at (x0, y0) \in MD0
is not of rank 0

and this is not a singular point of the function.
Second we take a point (xSa

, ySa
) \in MD0

such that f\mathrm{P},Sa
(xSa

) = 0. By the assumption
on the hypersurfaces Sb and the polynomials f\mathrm{P},Sj (xSb

), f\mathrm{P},Sa\prime (xSa) > 0 for a\prime \not = a. The
polynomial function defined canonically from the polynomial f\mathrm{P},Sa is assumed to have
no singular points on Sa. We use xSa

:= (xSa,1, \cdot \cdot \cdot , xSa,k) and ySa
:= (ySa,1, \cdot \cdot \cdot , ySa,k).

Here we consider the partial derivative of the function with respect to some xj , and we
have a non-zero value represented as the product of the partial derivatives of the function
f\mathrm{P},Sa

(x) with respect to xj at (xSa
, ySa

) and the product of l  - 1 numbers defined as
the values of polynomials (or the canonically defined polynomial functions) in the family
\{ f\mathrm{P},Sj\} lj=1 at xSa except for the number j \not = a. The differential of the restriction of
the function at (xSa

, ySa
) \in MD0

is not of rank 0 and this is not a singular point of the
function.

We have shown that MD0 is a smooth regular submanifold by the implicit function
theorem.

We define MD as the set of all points in MD0
such that x \in D \supset D. We investigate a

small neighborhood of each point in MD.
First we consider a point p1 \in D and a point (p1, q1) \in MD and take its sufficiently

small open neighborhood Up1,q1 in \BbbR k0 . For any point in MD0

\bigcap 
Up1,q1 , by the definition,

it is also a point in MD. Second we consider a point p2 \in \partial D in the boundary \partial D \subset D
and a point (p2, q2) \in MD and take its sufficiently small open neighborhood Up2,q2 in \BbbR k0 .
Take an arbitrary point (p\prime , q\prime ) in MD0

\bigcap 
Up2,q2 . By the definition and the assumption on

the hypersurfaces Sb and the polynomials f\mathrm{P},Sj (xSb
), we can assert that f\mathrm{P},Sb\prime (p

\prime ) > 0

for 1 \leq b\prime \leq l except for one b\prime := b0
\prime . It follows that f\mathrm{P},Sb0

\prime (p
\prime ) < 0 cannot occur due to

the form of the function
\prod l

j=1(f\mathrm{P},Sj
(x)) - \Sigma l

j=1yj
2. We have that (p\prime , q\prime ) is also a point

in MD.
We have shown that MD is also a smooth regular submanifold with MD = MD0

. By
the form of the function

\prod l
j=1(f\mathrm{P},Sj

(x)) - \Sigma l
j=1yj

2 and the compactness of the closure
D, it is also a smooth compact manifold with no boundary.
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STEP 2. Define the composition of the restriction of the canonical projection mapping
(x1, x2) \in \BbbR k0 to x1 \in \BbbR k to the submanifold MD with the restriction of the given
projection \pi k,1 or \pi D in Definition 1.

First restrict the canonical projection mapping (x1, x2) \in \BbbR k0 to x1 \in \BbbR k to the
submanifold MD. We thus have a surjection onto D. We restrict this to the preimage of
D. By the form of the function, this is regarded as a projection and a submersion. If we
restrict it to the preimage of the boundary \partial D, then, by the form of the function, we
have a smooth and real algebraic embedding onto \partial D. We compose the surjection onto
D with \pi D to have a new real algebraic function.

By our definitions and constructions, we can see that the composition obtained before
can be regarded as the desired function for k0 > k + 1, where we need to respect
connectedness of the preimages. \square 

Remark 2. Let us make some comments that could help to understand our arguments
more rigorously. Firstly, our resulting function is a function for [21], having finitely many
singular values. Secondly, our map on MD onto D can be topologically regarded as a
so-called special generic map. The class of special generic maps contains Morse functions
with exactly two singular points on spheres, or Morse functions in the so-called Reeb’s
theorem, and canonical projections of unit spheres. See [20] for fundamental theory on
special generic maps and some advanced results on manifolds admitting such maps. For
construction of special generic maps related to our construction of the map on MD onto
D, consult also the preprints [2, 1] of the author for example.

Figure 1. Some simplest Poincaré-Reeb graphs for Main Theorem 1.
Small dots are used to denote circles, edges, and vertices.

Example 1. Figure 1 shows two simplest explicit cases.
The upper figure shows a Poincaré-Reeb graph for a pair of the algebraic domain

surrounded by l \geq 1 circles centered at points and having fixed radii and a canonical
projection into (a copy of) the 1-dimensional real affine space where l \geq 1 is an arbitrary
positive integer. It shows a graph with exactly 2 vertices of degree 1, exactly 2(l  - 1)
vertices of degree 3, and exactly 2(l  - 1) + l = 3l  - 2 edges.

The lower figure shows a Poincaré-Reeb graph for a pair of the algebraic domain
surrounded by l \geq 1 circles centered at points and having fixed radii and a canonical
projection into (a copy of) the 1-dimensional real affine space where l \geq 2 is an arbitrary
integer greater than 1. It shows a graph with exactly 2 vertices of degree 1, exactly 2
vertices of degree l + 1, and exactly l + 2 edges.
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Let us make some remarks related to our result.

Remark 3. In the proof of Main Theorem 1, | | y| | = \Sigma l
j=1yj

2 can be replaced with a
polynomial of the form \Sigma l

j=1k1,jyj
2k2,j with arbitrary positive real numbers k1,j and

arbitrary positive integers k2,j , for example.

Remark 4. According to the preprint [18], for any graph of some certain wide class,
we can obtain some algebraic domain respecting the situation that the underlying 2-
dimensional real affine space and a more general projection are given. More precisely,
we also have a Poincaré-Reeb graph for the pair of the real affine space and the general
projection and the graph is isomorphic to a given graph as a graph. It tries to obtain
domains arguing in the topological category or in the class Cr that may not be the class
C\infty with r \geq 1 regarding differentiability. After some arguments, it applies a so-called
Weierstrass-type theorem and approximations.

This can give various examples if the algebraic domains satisfy our conditions. However,
it is in general difficult to investigate such conditions. See Example 2.2 and Figure 2 of
the preprint for an explicit example.

Another remark, which is not directly related to our study in the present paper, is
closely related to our future study.

Remark 5. Let \BbbC k denote the k-dimensional complex space, whose underlying Euclidean
space is 2k-dimensional real affine space. It is also a simplest complex algebraic manifold.
Let \BbbC := \BbbC 1. It has been difficult to construct very explicit examples of real algebraic
functions into \BbbR or maps into higher dimensional real affine spaces for explicitly given
closed and connected real algebraic manifolds via explicit polynomial maps. In [22],
Sakurai gives an explicit example via celebrating theory of Milnor on links of complex
polynomials [17]. He first considers a polynomial function on the 3-dimensional complex
space \BbbC 3 mapping (z1, z2, z3) \in \BbbC 3 to z1

2 + z2
2 + z3

2 \in \BbbC and the link associated with
this link is represented as the intersection of the unit sphere S5 in \BbbR 6 and the zero set of
the polynomial. He restricts a very explicit complex linear function on the outer complex
space \BbbC 3 = \BbbR 6 to the link, which is diffeomorphic to the 3-dimensional real projective
space, and obtains a smooth map into \BbbR 2. This map enjoys nice properties. The image
of the set of all singular points of the map is two smoothly and disjointly embedded
circles. This is conjectured to be essentially the same as a so-called round fold map in
[7, 9, 8, 5, 6, 13, 12], by Osamu Saeki and the author.
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